Ruprecht Karls Universität Heidelberg

Stellenangebote - Bachelorarbeiten


Development of a new pixel detector in High Voltage-MAPS technologyAndré Schöning
Our group is developing new pixel detectors based on the High-Voltage MAPS (monolithic active pixel detector) technology. Monolithic detectors are in many respects superior compared to standard hybrid silicon detectors. They are used for the new Mu3e experiment and considered for LHC-High Luminosity Upgrades. We offer several bachelor and master theses in this area. This project also qualifies as Projektpraktikum.

Experimentelle und theoretische Tests der Quantenmechanik bei niedrigsten EnergienMaarten DeKieviet

Das in Heidelberg entwickelte 3He-Atomstrahl-Spinecho-Spektrometer ermöglicht das Vermessen kleinster Energieänderungen (~100 peV) in der Wechselwirkung zwischen Atomen und Felder oder Materie. Das Experiment ist in seiner Form weltweit einzigartig und erforscht derzeit:

  • Casimir Kräfte und Quantenreibung
  • Nicht-Newtonische Gravitation
  • Axion-Suche (Dark Matter Kandidat)
  • Geometrische Phasen

Für diese spannenden und grundlegenden physikalischen Fragen können wir Hilfe gebrauchen, sowohl am Experiment, als auch bei der Theorie. Interesse mit zu machen? Dann meldet euch bei:

Planung und Aufbau vom neuen GIHAS-Experiment am CAM Maarten DeKieviet

In dem gerade neu fertig gestellten Gebäude INF225, dem „Center for Advanced Materials (CAM)“, soll eine Atomstrahl-Apparatur aufgebaut werden für „Grazing Incidence He Atom Scattering“. Dieses GIHAS-Experiment ist eine Weiterentwicklung des erfolgreichen 3He-Atomstrahl-Spinecho-Spektrometer, das am Physikalischen Institut (INF226) entwickelt wurde und dort für die Grundlagenforschung eingesetzt wird. Das GIHAS soll sich der Erforschung der Oberflächendynamik organischer Materialien widmen und baut auf ein existierendes Flugzeit-Spektrometer auf. Ziel dieser BSc-Arbeit ist es das letztere ins neue Gebäude auf zu bauen, unter Berücksichtigung von den Randbedingungen, die die neuen Modalitäten verlangen. Es gibt also nicht nur viel Erfahrung zu sammeln beim „hands-on“ Aufbauen vom Experiment im Labor, sondern auch beim detailgetreuen Planen von zukünftiger Hardware mit Hilfe moderner CAD-Programme.

    Lust mit an zu packen? Dann meldet euch bei:

Muon Physics at PSIAndré Schöning

The Paul Scherrer Institute (PSI, Switzerland) operates the highest intensity proton accelerator (HIPA) in the world. This facility also provides high intensity muons beams where the muons are produced in pion decays. An upgrade of the accelerator is planned for 2026 with the goal to increase the muon beam intensity by almost two orders of magnitude, thus providing 10^10 muons per second. This upgrade will dramatically increase the discvery potential for rare physics processes like mu->eee (Mu3e Phase II) and mu-> e gamma which are also called the "golden" muon decay channels. Simulation and design studies need to be performed to reduce background and optimise the sensitivity.  

Geometric algebra: The Grand Unifying Math !Maarten DeKieviet

Instead of having special mathematics for all the different fields of physics, Geometric Algebra (GA) supplies a unified and unifying mathematical language for the whole of physics. It not only allows for a geometric interpretation of the constituent elements, it uncovers hidden connections between the otherwise seemingly unrelated mathematical descriptions. „Why hasn‘t anyone told me that before?“ is a regularly heard, awing reaction of students being exposed to this language for the first time. We are currently searching for discrepancies with and extensions of the regular mathematical approach, both theoretically and experimentally. These are exciting times, come and join us!

Track Reconstruction with Graph Neural Networks for the ATLAS Trigger SystemAndré Schöning,

Our group explores the feasibility of applying modern machine learning algorithms such as Graph Neural
Networks (GNN) deployed on FPGAs for online track reconstruction within the ATLAS online server farm
for the High-Luminosity LHC (HL-HLC) upgrade. GNNs are a powerful class of geometric deep learning
methods for modelling spatial dependencies via message passing over graphs. They are well-suited for
track reconstruction tasks by learning on an expressive structured graph representation of hit data. A
considerable speed-up over CPU-based execution is possible on FPGAs.
We can offer several topics for theses:

  1. focusing on performance simulation aspects and model optimizations
  2. limiting the input data to e.g. the pixel detector only and studying the performance if the GNN only delivers track seeds or even only hit triplets
  3. focusing on model translation and hardware deployment
  4. studying the robustness of the models with respect to detector deformations

Development of Silicon Pixel und Scintillating Fibre Detectors for the new LHCb Tracking System Ulrich Uwer,

For the planned upgrade of the LHCb experiment our group develops new detector technologies to be applied in the new tracking system of this experiment. The main challenge is to ensure an excellent tracking capability at very high particle fluxes and radiation levels. We offer several bachelor and master thesis in the fields of

  1.  Simulation and optimization of the detector design.
  2. Investigation of the detector performance at very high particle fluxes.
  3. Comparison of the detector performance before and after irradiation with X-rays, neutrons and protons.
  4. Development and improvement of Readout Systems for detector tests.

If you are interested to work in a technologically challenging field in the framework of an international collaboration please contact:

  • Prof. Dr. Ulrich Uwer (
  • Dr. Sebastian Bachmann (

Production of thin coatings for neutron detection based on quantum tunnelingSkyler Degenkolb

Precision measurements with ultracold neutrons address such fundamental questions as: "Why does the universe contain matter, but not antimatter?", "What are the most fundamental symmetries obeyed in nature?", and "Is there new physics beyond the Standard Model that we have been unable to detect with colliders?" This project will help extend recent progress on storing ultracold neutrons for extremely long times, building on the recent delivery of the new instrument SuperSUN at the Institut Laue-Langevin in Grenoble. To fully exploit this new source technology we plan to develop detectors that can operate inside a cryogenic storage vessel, using magnetic fields to lower a thin potential barrier and enable neutrons to reach an active detector layer by tunneling. Very thin coatings of high surface quality will be produced and characterized for validation studies, with opportunities for use of cutting-edge metrology methods and beamtime experiments at world-leading facilities for neutron research.

Bitte beachten sie:
Die Einträge in dieser Job-Börse sind nicht vollständig!
Versuchen Sie auch freie Stellen den Seiten der einzelnen Arbeitsgruppen zu entnehmen.

Um neue offene Stellen einzutragen, benutzen Sie bitte das Formular auf den internen Seiten.

EDV Abteilung