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Chapter 0

Introduction

If a man, holding a belief which he was
taught in childhood or persuaded of
afterwards, keeps down and pushes away any
doubts which arise about it in his mind,
purposely avoids the reading of books and
the company of men that call in question or
discuss it, and regards as impious those
questions which cannot easily be asked
without disturbing it - the life of that man is
one long sin against mankind.

William Clifford, The Ethics of Belief (1879)

0.1 Overview

Physics is the science of trying to describe reality with mathematics. Over time, specific mathematical
constructs like vectors, matrices, tensors or differential forms have been established as the standard
mathematical language for physics. However, these concepts are not unique. Physicists do not do
mathematics for the sake of mathematics, but to model reality - and the most important part of this is
to find the best mathematical tools for the specific phenomenon we are trying to describe.

Sadly, it is not commonplace in physics to try to improve upon the existing mathematical tooling.
Once some mathematical concept like the cross product is introduced, physicists generally don’t try to
improve it, but uncritically use it for all eternity - even if it is already long obsolete for mathematicians.
This has led us into a difficult situation - the mathematical tooling we are being taught in our university
classes is a messy, incoherent patchwork that grew over multiple centuries. The various inconsistencies
that have crept into it over time have a very real effect on the everyday work of physicists - they inhibit
intuitive understanding of physical concepts, slow down our calculations and lead to misunderstandings.

Geometric algebra (GA) is an attempt at clearing up some parts of this chaos. In particular,
geometric algebra replaces, improves and unifies

• vector algebra,

• large parts of matrix algebra,

• antisymmetric tensor algebra,

• exterior algebra and differential forms,

• multivariate, vector and exterior calculus,
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• the tetrad formalism in differential geometry, and

• spinor algebra

into a simple, elegant and natural framework. Many concepts from physics become a lot clearer once
they are reformulated in GA. In particular, GA puts a focus on geometric intuition for what is going on
behind the maths.

The core concept of geometric algebra is the so-called geometric product. It is both associative
and invertible. These properties make practical calculations with it very simple. To make it work out,
we need to define so-called k-vectors and multivectors - a generalization of the concept of a vector.

0.2 History of geometric algebra

The inventors of geometric algebra in the modern sense are Hermann Grassmann (1809 - 1877) and
William Clifford (1845 - 1879).

Grassmann introduced the wedge product and the exterior algebra in 1844. At that time, how-
ever, the general concept of a vector still was in its infancy, and Grassmann’s exterior algebra was regarded
as incomprehensible by contemporary physicists and mathematicians. Also, it had several important is-
sues - the wedge product was not invertible, which hindered practical computations. Grassmann’s work
was largely ignored during his lifetime.

The situation changed, however, when Clifford combined the wedge product with the inner product to
form the so-called geometric product. Based on Grassman’s exterior algebra, he introduced geometric
algebra in his 1878 work “Applications of Grassmann’s Extensive Algebra”. The algebra he described
was very elegant and much easier to work with than exterior algebra. Unfortunately, he died from
tuberculosis several months later, so his ideas had little chance to spread. His work was only remembered
by some mathematicians under the name “Clifford algebra”.

Meanwhile, physicists were investigating electromagnetism. This is when the concept of vectors and
vector fields became mainstream in physics. However, Josiah Gibbs and Oliver Heaviside, two chief
investigators of electromagnetism at that time, did not know of the work of Clifford and instead invented
the makeshift ad-hoc construct of the “cross product” in the 1880s. For physicists, it certainly represented
an advance at that time, but it should never have become a permanent solution. Unfortunately, it did
- Heaviside’s formulation of the Maxwell equations is identical to the modern-day one being taught to
undergraduate physics students.

The cross product quickly took its roots in physics in the early 20th century, and Clifford’s geometric
algebra was largely forgotten until the advent of quantum mechanics. While investigating electron spin,
Wolfgang Pauli introduced the Pauli matrices in 1927, and Paul Dirac the Dirac matrices in 1928.
However, they were regarded as something purely quantum-mechanical at that time - what Pauli and
Dirac did not realize is that the algebra formed by their matrices is nothing but the geometric algebra,
and that their matrices have a geometric interpretation.

Later, in the 1960s, theoretical physicist David Hestenes (1933 - ) rediscovered Clifford’s work and
made the connection to the work of Pauli and Dirac. He realized that geometric algebra was a much
more convenient, elegant and natural tool for performing spatial computations than the matrix-vector
and tensor algebra prevailing at his time, and went on a crusade to convince other physicists to use it.
He extended geometric algebra to the theory of special relativity, devising spacetime algebra (STA).

However, geometric algebra did not gain traction until the 2000s and 2010s, when Chris Doran and
Anthony Lasenby published the comprehensive work Geometric Algebra for Physicists (2002)1. In
the following years, geometric algebra began to spread among physicists and computer scientists due to
its many advantages in practical calculations.

1This book is a great resource on how to apply geometric algebra to various parts of physics. Among us GA connaisseurs,
it is jokingly called the “GA bible” or the “Gabel”.
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0.2.1 “Unified language for physics” claims

Some proponents have claimed that geometric algebra is so versatile that it can be used as a unified
mathematical language for the entirety of physics. For instance, there are GA reformulations of the
entirety of Lie group theory - even of the groups that are not directly elements of a (real) geometric
algebra. Perhaps the most vocal proponents of this claim are Doran and Lasenby - in their book, they
try to use as few non-GA mathematical constructs as possible. Critics of this claim have argued that the
usefulness of geometric algebra is limited to specific branches of mathematics, and that it should not be
used everywhere regardless of its specific benefits.

0.3 This lecture

In this lecture, we put a focus on practical computations and geometric intuition instead of mathematical
formalism. It is explicitly not a mathematics lecture, but a physics lecture. We roughly follow the path
of Doran, Lasenby: Geometric Algebra for physicists - we first introduct the concept of multivectors and
the geometric product, and then successively treat the 2D, 3D, and 1+3D geometric algebras and their
applications to everyday physics. In contrast to Doran and Lasenby, we put an emphasis on showing how
to directly translate between GA and conventional maths.

We are not going to concern ourselves with whether geometric algebra is a unified language for physics.
Instead, we are just going to switch between conventional math and geometric algebra depending on
whichever is most convenient for the problem at hand.

The conventions we use mostly come from either Doran and Lasenby or sudgylacmoe’s videos on
geometric algebra, or have been devised by ourselves to achieve maximum clarity. Most notably, we use

τ = 2π. (1)

Using Tau has become somewhat commonplace in geometric algebra, for instance in sudgylacmoe’s videos.
This convention makes rotations much clearer to think about - one full turn is equal to τ radians, one
half of a turn is equal to τ/2, a quarter-turn is equal to τ/4, and so on.

We are going to use colored boxes for various purposes:

This is a warning.

This is a box for information that is only tangentially related to the topic at hand - hints at more
advanced topics, trivia, fun facts, etc

Important equation

∂F = j (2)

0.3.1 Literature

For further study, we recommend:

• Doran, Lasenby: Geometric Algebra for Physicists (2002). Very comprehensive work on
geometric algebra. Most notably, its treatment of rotors and spinors differs from ours.

• sudgylacmoe’s video series on geometric algebra (available on YouTube). 3blue1brown-
styled introduction to various fields of geometric algebra. Very good primer.
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• Hestenes: Spacetime Algebra (1966). The original book that reintroduced geometric algebra
to physics. It covers the material of the second half of this script, although it uses some conventions
that have become antiquated.
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Chapter 1

Basics of geometric algebra

Chapter summary

• k-vectors are a generalization of the concept of scalars and vectors.

• The exterior product can be used to construct k-vectors from vectors.

• The interior product “tears down” k-vectors.

• The geometric product is the combination between the interior and the exterior product.

• Multivectors are sums of k-vectors of different grades.

• The geometric product is associative and invertible, but not commutative.

• The geometric algebra of the 2D plane Cl(2) is the simplest example of a geometric algebra.

• We can use the 2D geometric algebra to reformulate complex numbers and 2D rotations.

1.1 k-vectors and the exterior product

Much of geometric algebra revolves around finding a vector product that is both associative and
invertible. In this chapter, we start by examining the exterior product (also known as the outer
product or wedge product), and the interior product (also known as the dot product or inner
product). We are going to show why neither of them fulfills these requirements.

Then, we are going to combine the interior and exterior product into the geometric product and
show that it does exactly what we want - the geometric product will be both associative and invertible.

1.1.1 Scalars and vectors

We start by introducing k-vectors, a core concept in GA. You already know two types of k-vectors:

• scalars (or 0-vectors): A quantity without dimension or orientation.

• vectors (or 1-vectors): A length with an orientation.

First of all, let’s talk about scalars. Scalars represent simple quantities like mass or temperature which
have no concept of direction or orientation. There’s something important to note about scalars: If two
scalars are “located” at two different positions in space - for instance the masses two distinct objects or
two temperature measurements at different locations - we consider them equal iff their numerical values
are equal, even though they are not at the same location. For instance, these two masses are considered
equal:
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m = 1 kg

m = 1kg

Vectors, on the other hand, are a length with an orientation, like velocity, acceleration, or momentum.
We consider two vectors equal to each other iff they have the same length and orientation. All of these
vectors are considered equal to each other:

Mathematically, we describe vectors by first choosing a set of basis vectors, for instance in three
dimensions:

e1, e2, e3. (1.1)

A specific vector is formed by taking a linear combination of them. For instance, the vectors in the above
figure are given by

v = 2e1 + e2. (1.2)

1.1.2 Bivectors

The next grade of k-vectors we are going to examine is 2:

• bivectors (or 2-vectors): An area with an orientation.

To illustrate what that means, we are going to introduce the wedge product - also called outer
product or exterior product: Let a,b be two distinct vectors. They define a parallelogram:

a ∧ b

a

b

This parallelogram has an area and an orientation. Thus, we call it a bivector B. Its area can
be calculated with the standard formula for parallelogram areas, while the orientation is given by the
combined orientations of a and b. Note that the order matters - we drew a “swirl” inside the bivector
that marks the rotation from the first vector a to the second vector b.
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Mathematically, this bivector is given by the wedge product ∧ between the two vectors:

B = a ∧ b (1.3)

The wedge product is anticommutative for vectors, a∧ b = −b∧ a. The bivector given by going
from a to b is exactly −1 times the bivector given by going from b to a:

a ∧ b

a

b

= (−1)·

b ∧ a

a

b

Note that the direction of the swirl in the second bivector was reversed. As a consequence, this means
that for any vector,

a ∧ a = 0. (1.4)

This makes intuitive sense - two times the same vector span no area between them.
Two bivectors are equal iff they have the same orientation and area, regardless of shape or position.

This means that, for instance, the following bivectors are all equal to each other:

So how do we mathematically determine if two bivectors B = a ∧ b and C = c ∧ d are equal to each
other? We make use of the associativity and distributivity of the wedge product. For instance, for:

a = 2e1 (1.5)

b = e1 + 2e2 (1.6)

c = 3e1 − 4e2 (1.7)

d = e1 + e3, (1.8)

we insert the respective basis decompositions of the vectors into the wedge product:

B = a ∧ b (1.9)

= 2e1 ∧ (e1 + 2e2) (1.10)

= 2e1 ∧ e1 + 4e1 ∧ e2 (1.11)

= 4e1 ∧ e2, (1.12)
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and

C = c ∧ d (1.13)

= (3e1 + 4e2) ∧ (e1 + e3) (1.14)

= 3e1 ∧ e1 + 3e1 ∧ e3 + 4e2 ∧ e1 + 4e2 ∧ e3 (1.15)

= −4e1 ∧ e2 + 4e2 ∧ e3 − 3e3 ∧ e1. (1.16)

We see that B and C clearly are not equal to each other. The form we brought them into right now is
somewhat analogous to the basis decomposition for a vector - similarly to how we decomposed a vector
a into a linear combination of e1, e2, ..., we decomposed the bivectors B and C into linear combinations
of e1 ∧ e2, e2 ∧ e3, ... to compare them.

Conventionally, we order the indices of our basis k-vectors in a cyclic way (1 → 2 → 3 → 1 · · · ).

1.1.3 Trivectors and more

The next type of k-vector on the line are:

• trivectors (or 3-vectors): A volume with an orientation.

We can form trivectors by taking the wedge product between three trivectors. For instance, the
trivector

T = e1 ∧ e2 ∧ e3 (1.17)

is the parallelepiped spanned by the vectors e1, e2 and e3.

Figure 1.1: The trivector e1 ∧ e2 ∧ e3.

As before, trivectors with the same volume and orientation but with different shapes are considered
equal. In three dimensions, it is somewhat hard to see how different trivectors could have different
orientations - after all, there is only one possible orientation for volumes in three dimensions. Consider,
however, for a second, a four-dimensional Euclidean space with the basis vectors e1, e2, e3, e4. Then, e.g.
the trivectors

e1 ∧ e2 ∧ e3 (1.18)

and

e2 ∧ e3 ∧ e4 (1.19)

would have the same volume, but differing orientations.
Again, these vectors need to be linearly independent. If they aren’t, they don’t span a volume, so the

resulting trivector is zero. For instance, if we tried to take the wedge product between e1, e2 and e2:

e1 ∧ e2 ∧ e2 = 0. (1.20)
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We can also form trivectors by taking an already existing bivector and wedging another vector on top
of it:

U = B ∧ e3 = (4e1 ∧ e2) ∧ e3 (1.21)

The wedge product is associative, so we can drop the parentheses:

U = 4 e1 ∧ e2 ∧ e3 (1.22)

In four-dimensional space, we will also get to know tetravectors, which represent four-dimensional
hypervolumes. We can construct tetravectors either by wedging four vectors,

H = e1 ∧ e2 ∧ e3 ∧ e4, (1.23)

a vector and a trivector,

H = (e1 ∧ e2 ∧ e3) ∧ e4 (1.24)

or two bivectors:

H = (e1 ∧ e2) ∧ (e3 ∧ e4). (1.25)

There is something important to take note of here: When we go to higher grades, the wedge product is
not always anticommutative.

We could go to higher and higher grades of k-vectors, but in practice, tetravectors are going to be
the highest grade of k-vectors we need.

1.1.4 Invertibility?

We have seen how we can build up bivectors, trivectors and tetravectors using the wedge product. But
does it fulfill the conditions we set for a vector product? It is obviously associative.

The exterior product between a scalar λ and some other k-vector X is just the scalar multiplication:

λ ∧X = λX (1.26)

In this special case, the exterior product is invertible. However, in general, it is not invertible at all for
a simple reason:

We saw that the exterior product can be used to “span up” k-vectors from other k-vectors of lower
grade. For instance, the wedge product between a vector and a bivector resulted in a trivector. For this
to work out, the vector should not lie inside the bivector - if it does, the parallelipiped will be completely
flat, and the trivector equal to zero. Only vectors with an orthogonal part w.r.t. the bivector produce
non-zero trivectors.

This means that if we have a bivector B and a vector v with a part orthogonal and a part parallel to
B,

v = v⊥ + v∥ (1.27)

the wedge product B ∧ v will only contain information about the orthogonal part:

B ∧ v = B ∧ v⊥ +B ∧ v∥ (1.28)

= B ∧ v⊥ (1.29)

This means that the information about the parallel part v∥ is lost. In other words, given the final trivector
T = B ∧ v and the bivector B, there is no way we could reconstruct the original vector v. Hence, the
wedge product is not invertible.
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1.2 The interior product

Next, we are going to talk about the interior product - also known as the inner product or the
dot product. We already know the simplest case of the interior product - namely, the interior product
between two vectors:

v ·w (1.30)

The interior product is commutative for vectors. It measures the amount of overlap between v and
w. If v and w are parallel, we have v · w = |v||w|. If v and w are orthogonal, however, the interior
product between them is zero.

Let’s compare this with the exterior product between two vectors, v ∧ w. If the two vectors are
orthogonal, the bivector has the area |v||w|, and if the vectors are parallel, the exterior product between
them is zero. This is roughly the opposite of what the exterior product does.

1.2.1 Interior product between k-vectors and vectors

In conventional mathematics, the interior product is only defined for two vectors. It measures the amount
of overlap between them. This concept extends neatly to k-vectors, though! For instance, we can take
the interior product between a bivector B = e1 ∧ e2 and a vector e1:

B · e1 = (e1 ∧ e2) · e1. (1.31)

To evaluate this product, we first reorder the geometric product such that the vector standing next to
the dot product is equal to the vector on the other side of the dot product:

(e1 ∧ e2) · e1 = −(e2 ∧ e1) · e1. (1.32)

If the two vectors next to this an interior product are equal, we can rewrite the parentheses to:

−(e2 ∧ e1) · e1 = −e2(e1 · e1) = −e2 (1.33)

This scheme only works if all of the vectors in the wedge product are orthogonal to each other.
This is autmoatically the case if the k-vectors are in basis form, i.e. ei ∧ ·el. If they aren’t, we
need to write out the wedge product into multiple terms like in (1.16).

The result of the interior product between a bivector and a vector is another vector. Intuitively, we
can say that by dotting a vector onto the bivector, we “took away one grade” from the bivector and
thus made it a vector. The resulting vector is what “remains” after “taking away” one grade from the
bivector:

e1

e2

· e1 = −e2

If the bivector and the vector are orthogonal to each other, for instance

(e1 ∧ e2) · e3 (1.34)

the interior product between them is zero.
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The same goes for trivectors and vectors. For instance, let T = e1 ∧ e2 ∧ e3. If we want to take the
interior product between T and e.g. e2,

T · e2 = (e1 ∧ e2 ∧ e3) · e2 (1.35)

we first reorder the trivector such that the two e2 stand next to each other:

(e1 ∧ e2 ∧ e3) · e2 = −(e1 ∧ e3 ∧ e2) · e2, (1.36)

Now that the vectors left and right of the interior product are equal, we can rewrite the parentheses to:

−(e1 ∧ e3 ∧ e2) · e2 = −(e1 ∧ e3)(e2 · e2) (1.37)

= −e1 ∧ e3 (1.38)

= e3 ∧ e1. (1.39)

The geometric picture is the same as previously - the grade of the trivector is lowered by one:

· =

Again, the remaining bivector is the bivector orthogonal to e2.

There is also a more elegant way to define the interior product between k-vectors - the Hodge
adjoint of the exterior product. However, this definition requires too much abstract mathematics,
so we won’t treat it in this lecture.

1.2.2 Properties of the interior product

The interior product is not commutative in general. For instance, for a bivector and a vector, it is
anticommutative:

(e1 ∧ e2) · e1 = −(e2 ∧ e1) · e1 = −e2(e1 · e1) = −e2 (1.40)

e1 · (e1 ∧ e2) = (e1 · e1)e2 = e2 (1.41)

In general, the interior product between a k-vector and a vector is commutative if k is odd, and anti-
commutative if k is even.

Just like the exterior product, the interior product is not invertible - but for a different reason:
The exterior product throws the parallel part of the vector away, while the interior product throws the
orthogonal part away. For instance, given a bivector B = e1 ∧ e2 and an interior product B · v = e1,
we can tell that the component of v parallel to B is e2, but there is no way to tell if it also had an e3
component - remember that

(e1 ∧ e2) · e3 = 0 (1.42)

In the general case v = v∥ + v⊥, we can write that

B · v = B · v∥. (1.43)

Therefore, there is an inherent information loss in the interior product. It is not invertible.
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In fact, the interior product is not even associative - consider for instance the two expressions

T · (B ·w) (1.44)

(T ·B) ·w (1.45)

The first expression evaluates to a bivector, while the second expression evaluates to a a scalar.
Therefore, it is important to always write down parentheses if we are handling multiple interior
products.

1.3 Multivectors and the geometric product

In our quest for an invertible product, we have examined the interior and exterior product. We found
that:

• The exterior product is used to construct k-vectors.

– The exterior product between a k-vector and a vector is a k + 1-vector.

– The exterior product throws away the parallel parts.

• The interior product is used to tear down k-vectors.

– The interior product between a k-vector and a vector is a k − 1-vector.

– The interior product throws away the orthogonal parts.

None of them are invertible. What if we combined them, though? Then we ought to have both pieces
of information (the orthogonal and parallel part) we need for invertibility. For two vectors a and b, we
define the geometric product:

Geometric product between vectors

ab = a · b+ a ∧ b (1.46)

This is the sum of a scalar and a bivector. You are probably wondering how that is possible - how can
we sum together two completely different things? The answer is that we just do it without evaluating
the sum. Think of complex numbers - real and imaginary numbers are two completely different things,
and yet we just sum them together. In geometric algebra, we will be constantly summing k-vectors of
different grades together. A sum of k-vectors of different grades is called a multivector1.

As we shall soon see, this geometric product is both associative and invertible. For now, let us
calculate a few examples. For instance, let a = e1 and b = e1 + e2. Then the geometric product between
them is

ab = e1 · (e1 + e2) + e1 ∧ (e1 + e2) (1.47)

= 1 + e1 ∧ e2, (1.48)

a sum of a scalar and a bivector. We can use grade diagrams like this one to depict the geometric product:

1The mathematician’s way of saying this is that the space of multivectors is the direct sum of all the spaces of k-vectors
from k = 0 to k = ∞.
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0

1

2

3

vector a

bivector a ∧ b

scalar a · b

∧b

·b

a ab

We can apply the geometric product to more than two vectors. For instance,

abc (1.49)

is a perfectly valid expression - the geometric product is associative, so we can drop the parentheses. It
decomposes into four terms:

abc = (a · b)c+ (a ∧ b)c (1.50)

= (a · b) · c+ (a ∧ b) · c+ (a ∧ b) · c+ (a ∧ b) ∧ c. (1.51)

First things first - in the first term, we are trying to take the interior product between a scalar (grade-0)
and a vector (grade-1). This is supposed to lower the grade of the scalar by one - but there are no grade
−1 elements. Thus , this interior product is equal to zero. The second and third terms are interior
products between a bivector and a vector. They result in vectors. The fourth term is the wedge product
between two vectors - this results in a trivector.

0

1

2

3

a ab abc

Therefore, the expression abc results in the sum of a vector and a trivector.

1.3.1 Grade projection

We can extract the real and imaginary parts of a complex numbers with the functions Re(z) and Im(z).
Similarly, given some arbitrary multivector M , we can extract the k-th grade component by using the
so-called grade projection

⟨M⟩k . (1.52)

For instance, the bivector part of M would be written ⟨M⟩2. Applied to the previous example, it yields

⟨ab⟩2 = ⟨1 + e1 ∧ e2⟩2 = e1 ∧ e2. (1.53)
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Its scalar part is:

⟨ab⟩0 = ⟨1 + e1 ∧ e2⟩2 = 1. (1.54)

We will also often drop the subscript to denote the scalar part, i.e.

⟨M⟩ := ⟨M⟩0 . (1.55)

1.3.2 Anticommutation relations

When the two vectors are orthogonal to each other, the interior product between them is zero. In such
cases, the geometric product reduces to the scalar product:

eiej = ei ∧ ej for all i ̸= j. (1.56)

Therefore, in such cases, the geometric product is anticommutative:

eiej = −ejei for all i ̸= j. (1.57)

Therefore, basis k-vectors like e1 ∧ e2 ∧ e3 can be equally written with the geometric product, e1e2e3.
We can abbreviate this even further - to avoid having to write e’s all the time in products like e1e2e3,
we just write e123.

If the two vector operands of the geometric product are equal to each other, the exterior product
is zero and only the interior product remains. In such a case, the geometric product is equal to the
magnitude squared of the vector:

vv = v2 = v · v + v ∧ v (1.58)

= v · v (1.59)

= |v|2 (1.60)

Using the anticommutator brackets

{A,B} = AB +BA, (1.61)

We can also denote these relations more succinctly as

{ei, ej} = 2δij (1.62)

where δij is the metric of our space - in the Euclidean case, just the Kronecker delta.

In fact, this relation is where mathematicians start when investigating Clifford algebras - they
postulate this anticommutation relation and then derive all the other properties of geometric
algebras from it. Obviously, we are not going to do that - we don’t want mathematical rigour,
but physical intuition.
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1
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ei eiei

Figure 1.2: The grade diagram for the anticommutation relation {ei, ej} = 2δij .

1.3.3 Higher grades

The most prominent advantage of the geometric product is that it is associative. So far, we’ve just been
taking geometric products between vectors. However, we can just as well take the geometric product
between arbitrary k-vectors. For instance, let B be the bivector

B = e1 ∧ e2 = e1e2 = e12. (1.63)

Then, for another vector v = e1 + e3, we can write down the geometric product

Bv. (1.64)

Let’s draw a grade diagram:

0

1

2

3

Before even evaluating it, we can tell that this product will consist of a vector and trivector part.
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Let’s test this:

Bv = e12(e1 + e3) (1.65)

= e12e1 + e12e3 (1.66)

= e121 + e123 (1.67)

= −e112 + e123 (1.68)

= −e2 + e123, (1.69)

a vector and a trivector. In general, we can calculate every geometric product between arbitrary multi-
vectors by resolving the multivectors into products of vectors and then writing them out.

Let’s try another example: Let C = e12 + e23 and D = e34 + e13 be two bivectors. Multiplying by a
bivector is the same as consecutively multiplying by its constituent vectors. The grade diagram for the
geometric product CD is:

0

1

2

3

4

C D

We see that the result will be the sum of a scalar, a bivector and a tetravector. In fact,

CD = (e12 + e23)(e34 + e12) (1.70)

= e12e34 + e23e34 + e12e12 + e23e12 (1.71)

= e1234 + e24 − e1221 − e2321 (1.72)

= e1234 + e24 − e11 + e2231 (1.73)

= e1234 + e24 − 1 + e31 (1.74)

= −1 + e24 + e31 + e1234. (1.75)

We see that this is the sum of a scalar

⟨CD⟩ = −1, (1.76)

a bivector

⟨CD⟩2 = e24 + e31, (1.77)

and a tetravector

⟨CD⟩4 = e1234. (1.78)

1.3.4 Invertibility

We call a vector n a unit vector if it squares to 1 with the geometric product:

n2 = nn = n · n = 1. (1.79)
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We are all used to reading this with respect to the scalar product - but the geometric product is more
powerful than that. Most importantly, it is associative. If we multiply n onto an arbitrary multivector
M ,

Mn, (1.80)

we can reverse this operation by multiplying n on top of it again:

(Mn)n =Mnn =M(nn) =M. (1.81)

Therefore, we can define the vector inverse for unit vectors:

n−1 = n, (1.82)

or for arbitrary vectors a:

a−1 =
a

a2
. (1.83)

We can see that this is an inverse of a by calculating:

aa−1 = a
a

a2
=

a2

a2
= 1 (1.84)

This is the true power of the geometric product - we can form the inverse and hence divide by
vectors.

We can even form inverses for higher-grade k-vectors. For instance, the bivector e12 squares to:

(e12)
2 = e12e12 = e1212 = −e1221 = −e11 = −1. (1.85)

Therefore, its inverse is (e12)
−1 = −e12.

1.3.5 Interior and exterior product revisited

Previously, we defined the interior and exterior product for k-vectors of arbitrary grade and then combined
them to form the geometric product. However, we can also do this the other way around. For a k-vector
X and an l-vector Y with k ≥ l, we define:

• The interior product X · Y is the lowest possible grade achievable by the geometric product XY :

X · Y = ⟨XY ⟩k−l (1.86)

• The exterior product X ∧Y is the highest possible grade achievable by the geometric product XY :

X ∧ Y = ⟨XY ⟩k+l (1.87)

For instance, for two vectors a,b, we’d define:

a · b = ⟨ab⟩ (1.88)

a ∧ b = ⟨ab⟩2 . (1.89)

For a bivector B and a vector a, we’d define:

B · a = ⟨Ba⟩1 (1.90)

B ∧ a = ⟨Ba⟩3 . (1.91)
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These definitions provide us with a much easier way to evaluate the interior product: Instead of
shuffling around the order of the basis k-vectors and then rearranging the parentheses, we can just
calculate the geometric product between them and then pick out the k − l grade.

There is also another way: We look at whether the grade operations are commutative or anticommu-
tative. We already know that for two vectors a and b, the inner product commutes:

a · b = b · a, (1.92)

and the wedge product anticommutes:

a ∧ b = −b ∧ a. (1.93)

Therefore, we can tell that for two vectors:

a · b =
1

2
(ab+ ba) (1.94)

a ∧ b =
1

2
(ab− ba). (1.95)

Relations of this type are going to be very useful in the future.

1.4 The two-dimensional geometric algebra Cl(2)

A geometric algebra is the algebra of multivectors with the geometric product as its operation. We
can build a geometric algebra by specifying its basis vectors and their squares. For instance, the three-
dimensional euclidean geometric algebra is built from the basis vectors e1, e2, e3 that all square to 1,

(e1)
2 = (e2)

2 = (e3)
2 = 1. (1.96)

We denote a geometric algebra with p + q basis vectors of which p square to 1 and q square to -1 as
Cl(p, q). If all the basis vectors square to 1, the space is euclidean and we denote its geometric algebra
as Cl(p). If there are also vectors that square to −1, the space is hyperbolic. A prominent example of
such a space is spacetime from special relativity, with one vector that squares to 1 and three others that
square to −1. The spacetime algebra is denoted as Cl(1, 3).

But for now, we are going to treat a much easier example: The two-dimensional geometric algebra
Cl(2). It has two basis vectors:

e1, e2. (1.97)

The only higher-grade k-vector we can construct from these vectors is the bivector e12. Therefore,
we only have four basis k-vectors:

• one scalar 1

• two vectors e1, e2

• one bivector e12.

This makes the 2D geometric algebra Cl(2) particularly simple. In mathematical language, we can write
this as:

Cl(2) = span{1, e1, e2, e12} (1.98)

In the following, we are going to examine its properties.
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1.4.1 The even subalgebra Cl+(2) and complex numbers

The even subalgebra Cl+(p, q) of some geometric algebra Cl(p, q) is defined as the subalgebra that only
contains k-vectors of even grade. For instance, the even subalgebra Cl+(2) is composed only of the scalar
and the bivector. Thus, any element z ∈ Cl+(2) can be written as

z = a+ be12. (1.99)

The unit bivector e12 squares to −1:

(e12)
2 = e1212 = −e1221 = −e11 = −1. (1.100)

This is familiar to us - these elements z look just like complex numbers! Complex numbers are
composed of scalars and “imaginary units”,

z = a+ bi (1.101)

where i squares to −1:

i2 = −1. (1.102)

All complex numbers commute with each other. At first glance, it looks like this nice analogy between
C and Cl+(2) could fall apart because of that - after all, we have seen that the geometric product is not
necessarily commutative. But in fact, we realize that:

• Scalars commute with themselves and with bivectors.

• The bivectors e12 commutes with itself and scalar multiples of itself.

In other words: All elements of Cl+(2) commute with each other. This means that we can in fact translate
any complex number z = a+ bi to an even multivector z = a+ be12 and do the exact same calculations
with them. And we finally get a geometric interpretation for imaginary numbers - the imaginary unit i
can be interpreted as the bivector e12. Complex numbers can be interpreted as a sum of a scalar and a
bivector.

We can do anything with even multivectors z. The analogue of complex conjugation is the multivec-
tor reverse M̃ . It reverses the order of all geometric products in the expression, but leaves it untouched
otherwise:

Multivector reverse

1̃ = 1 (1.103)

ẽi = ei (1.104)

ẽij = eji = −eij (1.105)

ẽijk = ekji = −eijk (1.106)

ẽijkl = elkji = −eijkl (1.107)

· · · (1.108)

If we apply the reverse operation on the even multivector z = a+ be12, we get:

z̃ = a+ be21 = a− be12. (1.109)

This is exactly what we’d expect from the complex conjugate.
We can take the exponential of an imaginary number:

exp(iα) = cos(α) + i sin(α). (1.110)
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This works out because the series expansion of the exponential,

exp(iα) =

∞∑
k=0

(iα)k

k!
(1.111)

splits into two parts: The even ones that are real-valued because i2n = (−1)n, and the odd ones that are
imaginary-values because i2n+1 = (−1)ni:

exp(iα) =

( ∞∑
l=0

(−1)lα2l

(2l)!

)
+ i

( ∞∑
l=0

(−1)lα2l+1

(2l + 1)!

)
(1.112)

These are the respecive series expansions for cos(α) and sin(α). And we can do exactly the same for the
bivector exponential

Bivector exponential

exp(e12α) = cos(α) + e12 sin(α). (1.113)

This bivector exponetial follows the exact same rules as the normal complex exponential:

˜exp(e12α) = exp(−e12α) (1.114)

exp(e12α) + exp(e12β) = exp(e12(α+ β)) (1.115)

1.4.2 Two-dimensional rotations

One of the primary uses of complex numbers in physics is to encode rotations through the complex plane.
For instance, we might write down the formula

x(t) = x0e
iωt (1.116)

with

x0 =

(
1
−i

)
(1.117)

to encode two-dimensional rotational motion with the angular frequency ω. The resulting expression
would then be

x(t) =

(
cos(ωt) + i sin(ωt)
sin(ωt)− i cos(ωt)

)
. (1.118)

This way of writing down oscillations is pretty ubiquitous in theoretical physics. When we do this, there
is an implicit convention to only interpret the real part as something physical and to throw the imaginary
part away. Therefore, we actually ought to write

x(t) =

(
cos(ωt)
sin(ωt)

)
. (1.119)

But what is the imaginary part, then? It is a mathematical artifact to make our calculations somewhat
easier. We’ve all gotten used to it by now, but wouldn’t it be better if we found a way to encode rotations
without having to resort to unphysical mathematical parts at all?

Luckily, the C ≃ Cl+(2) isomorphism provides us with the right tool we need to eliminate these
unphysical imaginary parts. Let v = xe1 + ye2 be a 2D vector. We can rotate it by a quarter-turn by
writing

v′ = ve12. (1.120)
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We can show this by rotating the basis vectors

e1e12 = e2 (1.121)

e2e12 = −e1. (1.122)

Note that in contrast to complex numbers, this multiplication is not commutative! As you can check
for yourself,

ve12 = −e12v. (1.123)

for all v.
If we rotate by e12 two times, we get the original vector times −1.

ve12e12 = −v (1.124)

u ue12

u⊥

ue12

u⊥

e12

−u
Figure 1.3: Applying the unit bivector e12 flips the vector u by a quarter-turn, τ

4 radians. Two quarter-
turns are equal to a sign flip u → −u. This means that we can interpret the bivector e12 as a square
root of −1.

We can also use the bivector exponential for this - if we want to rotate the 2D vector v by α degrees
in the positive sense, we write:

2D rotations of vectors

v′ = v exp(e12α). (1.125)

Again, keep in mind that we have to pay attention to the order - if we were to apply the bivector
exponential from the other side, the vector would be rotated in the negative sense.

This approach has the advantage that contrary to complex numbers, it distinguishes between vectors
and the objects rotating the vectors. This confusion ultimately is what led to the aforementioned problem
with unphysical imaginary parts.

Also, the bivector e12α is our first example of a so-called rotation bivector - a bivector whose
orientation defines the plane we are rotating along, and whose magnitude defines the angle of the rotation.
In two dimensions, there is only one possible plane we can rotate along, so all 2D rotation bivectors can be
written e12α. In three dimensions, however, this will be more interesting, as we will see in the following
chapter.

This rotation formula works only for vectors, and only in two dimensions. In the next chapter,
we are going to learn about rotors and the rotor transformation law - they work for arbitrary
multivectors and arbitrary dimensions.
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Chapter 2

Geometric algebra of space

Chapter summary

• The geometric algebra of space Cl(3) describes objects in three-dimensional space.

• There is only one trivector in 3D: e123. We call it the pseudoscalar.

• Every axial vector corresponds to a bivector. We call bivectors pseudovectors.

• The cross product has several undesirable properties. We can fully replace it with the wedge product
and bivectors.

• We can perform 3D rotations by sandwiching two reflections. The resulting objects performing the
rotation are called rotors.

• Rotation bivectors describe the plane and angle of a rotation. Rotors are formed by exponentiating
rotation bivectors.

• Quaternions are left-handed 3D bivectors.

• We can perform infinitesimal rotations with the commutator brackets.

2.1 Overview

The geometric algebra of space Cl(3) is the geometric algebra describing three-dimensional space.
Its vector basis consists of the three unit vectors

e1, e2, e3. (2.1)

This gives us the following possible basis k-vectors:

• 1 scalar

• 3 vectors e1, e2, e3

• 3 bivectors e12, e23, e31,

• 1 trivector e123.
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1

e1 e2 e3

e23 e31 e12

e123
Figure 2.1: The multivector pyramid of the space algebra.

2.1.1 3D pseudoscalars

Now that we have three dimensions instead of two, the maximum grade of our algebra is 3 - we get
trivectors like e123. They represent volume elements. There is only one possible orientation for trivectors,
so every trivector we can write down will be proportional to e123. For this reason, 3D trivectors are called
pseudoscalars. We define the 3D unit pseudoscalar

I = e123. (2.2)

The exact order 123 is a matter of convention - we could’ve also defined I ′ = e132 − I to be the unit
pseudoscalar. By choosing either I or −I, we choose an orientation for our space - conventionally, we use
right-handed coordinates, so we choose I. A left-handed space would have −I as its unit pseudoscalar.

Just like in two dimensions, the unit pseudoscalar I squares to −1:

I2 = e2123 (2.3)

= e123123 (2.4)

= e112323 (2.5)

= e2323 (2.6)

= −e2233 (2.7)

= −e33 (2.8)

= −1. (2.9)

The 3D pseudoscalar trivially commutes with scalars and with itself, but also with vectors and bivectors:

eiI = Iei (2.10)

eijI = Ieij (2.11)

We have seen how to replace complex numbers with the even subalgebra of Cl(2). This works just
as well with the scalar-pseudoscalar subalgebra Cl1,I(3) of the geometric algebra of space - that is, the
subalgebra composed only of elements of the form

z = a+ be123 = a+ bI. (2.12)

It largely depends on the context which one of these replacements is better suited. If we want to
replace complex numbers with no geometric meaning, for instance in the context of complex analysis, we
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· =

Figure 2.2: The equation Ie3 = e12 visualized.

often choose the Cl(2) scalar-pseudoscalar method. However, in other fields, complex numbers do carry
geometric significance - for instance, in electromagnetism, we will replace the imaginary unit with the
four-dimensional spacetime pseudoscalar.

The next thing we notice when taking a look at the multivector pyramid (Figure 2.1) is that there are
just as many bivectors as vectors now. In two dimensions, there was only one possible orientation for an
area element, but now, there are three - we can write an arbitrary bivector B as the linear combination

B = ae12 + be23 + ce31. (2.13)

This means that there is a one-to-one correspondence between vectors v and bivectors B - for every
vector v = viei, there is a corresponding bivector B = Iv. For instance, the bivector corresponding to
the vector e3 would be

Ie3 = e123e3 = e12. (2.14)

The bivector Iv describes the area orthogonal to the vector e3 (see Figure 2.2). If we want to obtain the
original vector from the bivector, we simply premultiply by I−1 = −I:

I−1e12 = −Ie12 = −e123e12 = −e11232 = −e232 = e223 = e3, (2.15)

or, more generally:

−IB = −I(Iv) = v. (2.16)

One might therefore ask why we need 3D bivectors at all, if the information of a bivector can also be
encoded in a vector. In fact, this is the stance that most physicists implicitly take - in traditional vector
algebra, areas are always described by their normal vectors. However, there is one important caveat here:
Strictly speaking, 3D bivectors do not correspond to vectors - they correspond to axial vectors1. Axial
vectors normally behave like normal vectors, but once reflections and parity flips are involved, things get
messy.

For instance, the angular momentum axial vector L = x×p describes the circular motion of a rotating
object. In order to find out which direction of rotation a given L describes, we use the right-hand rule:
We point the thumb of our right hand in the direction of L and form a fist with the four other fingers.

Now, imagine that the whole scene is being reflected in a mirror parallel to the axis of rotation. While
the plane of rotation described by the bivector IL = x∧p behaves as we’d expect under this reflection, but
the axial vector L = x× p includes an extra sign flip. Figure 2.3 shows this for the example IL = Le12.

In mathematical terms, axial vectors are defined via their behaviour under parity flips. A parity flip
P is the operation that flips the sign of all vectors:

Parity flip

P (x) = −x (2.17)

1In traditional math, the terms “axial vector” and “pseudovector” are used synonymously. We call vectors that perform
an extra sign flip under a reflection or parity flip “axial vectors”, and bivectors “pseudovectors”.
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e1
e2

e3

e′1

e′2

e′3

L = x × p

reflection

IL = x ∧ p

Figure 2.3: The behaviour of angular momentum under reflections. Evidently, it makes much more sense
to use bivectors instead of axial vectors to describe rotational motion.
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If we combine this parity flip with a rotation by 180◦, we get a reflection as shown in Figure 2.3. Axial
vectors c, however, do not flip their sign under parity transforms. They just stay the same - which makes
no sense at all, if you ask me. Hence, in geometric algebra, we generally banish all axial vectors like L in
favour of bivectors like IL = IL. For this reason, we also refer to 3D bivectors as pseudovectors. The
reason why bivectors do not flip their sign under P is very intuitive -

P (a ∧ b) = P (a) ∧ P (b) (2.18)

= (−a) ∧ (−b) (2.19)

= a ∧ b. (2.20)

On the other hand, the pseudoscalar I will flip its sign:

P (I) = P (e1 ∧ e2 ∧ e3) (2.21)

= P (e1) ∧ P (e2) ∧ P (e3) (2.22)

= (−e1) ∧ (−e2) ∧ (−e3) (2.23)

= −e1 ∧ e2 ∧ e3 (2.24)

= −I. (2.25)

In other words - after a parity flip, our space goes from right-handed (I) to left-handed (−I).

2.1.2 Eliminating the cross product

Now that we have vowed to drive out all axial vectors of physics, the next logical step is to banish the
cross product - the appearance of axial vectors in the cross product is unavoidable. In Figure 2.3, we
have seen that

vector× vector = axial vector. (2.26)

We can deduce that

axial vector× vector = vector (2.27)

vector× axial vector = vector (2.28)

axial vector× axial vector = axial vector. (2.29)

The cross product between two regular vectors a × b gives us the axial vector normal to the plane
spanned by a and b. In geometric algebra language, this means that we want to find the vector orthogonal
to the bivector a ∧ b:

a× b = −I(a ∧ b). (2.30)

But since we have decided that we want to replace all axial vectors v with their bivector counterparts,
we are going to write:

Replacement for the cross product between two vectors

a ∧ b = I(a× b). (2.31)

But what if one operand of the cross product is an axial vector c = IC? In that case, we have to
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rewrite the cross product in terms of the bivector C, such that it becomes::

b = a× c (2.32)

= −I(a ∧ c) (2.33)

= −I(a ∧ (IC)) (2.34)

= −1

2
I(aIC − ICa) (2.35)

= −1

2
I(IaC − ICa) (2.36)

=
1

2
(aC − Ca) (2.37)

= a · C. (2.38)

The cross product between a vector and an axial vector translates to the interior product between a
vector and the bivector corresponding to the cross product.

Replacement for the cross product between a vector and an axial vector

a× c = a · C (2.39)

Similarly,

c× a = C · a = −a · C (2.40)

When we cross-multiply two axial vectors c = IC,d = ID, we get the axial vector:

c× d = −I(c ∧ d) (2.41)

= −1

2
I((IC) ∧ (ID)) (2.42)

= −1

2
I(ICID − IDIC) (2.43)

= −1

2
I(I2CD − I2DC) (2.44)

=
1

2
I(CD −DC), (2.45)

which corresponds to the bivector

Replacement for the cross product between two axial vectors

I(c× d) =
1

2
(DC − CD) = ⟨DC⟩2 (2.46)

One can geometrically imagine this product as follows: In 3D space, two bivectors will always intersect
along a line. The line can be defined by a unit vector n. This means that C and D can be described as
the wedge between n and some other vectors x,y orthogonal to n:

C = xn (2.47)

D = yn (2.48)
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n
a

Projn(a)

Rejn(a)

Figure 2.4: The projection and rejection of a vector a with respect to n

The product ⟨DC⟩2 can be described as:

⟨DC⟩2 = ⟨ynxn⟩2 (2.49)

= −⟨ynnx⟩2 (2.50)

= −⟨yx⟩2 (2.51)

= x ∧ y. (2.52)

These substitution rules allow us to fully eliminate the cross product from physics - and we will do so in
GA. The widespread adoption of the concepts of axial vectors and the cross product was a grave mistake
we intend to correct. This becomes particularly obvious in the field of electromagnetism.

2.2 Transformations

One of the main applications of the cross product is the mathematical description of rotational movement.
Therefore, we are now going to investiage how to describe rotations.

The outline of this section is as follows: First, we will define the projection and rejection operations.
Then, we will use them to define the reflection operation, which we will in turn use to define rotations
and rotors.

2.2.1 Projection and rejection

Let a be some vector and n a normal vector, n2 = 1. We can decompose a into a parallel and orthogonal
part with respect to n by writing:

a = an2 (2.53)

= ann (2.54)

= (a · n+ a ∧ n)n (2.55)

= (a · n)n+ (a ∧ n)n (2.56)

The interior product a · n measures how much a and n coincide, such that (a · n)n is the projection of
a onto the line defined by n. Similarly, a ∧ n measures the “orthogonality” of a with respect to n, such
that (a ∧ n)n is the part of a that is orthogonal to n. This is depicted in Figure 2.4. We call the former
the projection and the latter the rejection and denote them as

Projection and rejection

Projn(a) = (a · n)n (2.57)

Rejn(a) = (a ∧ n)n. (2.58)
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2.2.2 Reflections

We now turn to the description of reflections by a mirror plane, like the one we have performed in Figure
2.3. We know this type of reflection from everyday life - it’s what we see when we look in the mirror.
This is why we are used to think about it as a reflection “by a mirror plane”. But let’s take a look at
what actually happens with the vector coordinates when we perform this reflection, for instance by the
y-z plane:

x = (x1, x2, x3) → (−x1, x2, x3). (2.59)

Only the sign of the component of e1 is flipped, while the two components associated with the plane
we were reflecting by are unchanged. That seems a bit odd. In fact, it turns out that describing these
reflections gets a lot easier if we do not think of them as reflections by a plane, but as reflections along
the normal vector of the plane. For instance, we will now think about (2.59) as a reflection along the
x-axis.

Let n be the normal vector of the plane of reflection, and a the vector we want to reflect along n.
Using the language of the previous section, we can split up a as follows:

a = Projn(a) + Rejn(a) (2.60)

If we now want to reflect a along n, we simply flip the sign of the projection:

a′ = −Projn(a) + Rejn(a) (2.61)

Inserting the respective definitions, we get

a′ = −(a · n)n+ (a ∧ n)n (2.62)

= (−a · n+ a ∧ n)n (2.63)

= (−n · a− n ∧ a)n (2.64)

= −nan. (2.65)

This is the formula for reflections along a vector.

Reflection of a vector along a vector

a′ = −nan (2.66)

In fact, it works very similarly for higher grades, and not just for vectors. For instance, a bivector
B = ab would reflect like

B′ = a′b′ = (−nan)(−nbn) = nannbn = nabn = nBn. (2.67)

2.2.3 Rotations

Now, we want to describe rotations. The first thing to realize is that every rotation can be decomposed
into two successive reflections.

Two successive reflection along the same axis n do nothing to a vector a:

a′′ = −na′n = −n(−nan)n (2.68)

= n2an2 (2.69)

= a. (2.70)
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θ
2
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a

a′′
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Figure 2.5: A rotation along an angle of θ can be performed by performing a double reflection along n
and m. The angle between these two vectors has to be θ/2.

However, if we first reflect along n, and then along another unit vector m, we get:

a′ = −nan (2.71)

a′′ = −ma′m (2.72)

= mnanm. (2.73)

A single reflection is an orthonormal transformation i.e. an element of the group O(3). It has determinant
−1. Two successive reflections, however, have determinant (−1)2 = 1 - they are special orthogonal
transformations in SO(3). Special orthogonal transformations in 3D are always rotations.

Taking a look at Figure 2.5, we can see that this double reflection is indeed a rotation. To be specific,
it is a rotation along the plane defined by the bivector n ∧m. The angle a is rotated by twice the angle
between n and m. To make our life easier, we are going to define the so-called rotor

Constructing rotors from vectors

R = nm, (2.74)

that describes this rotation. Then, the formula for a rotation is:

Rotor law

a′′ = R̃aR. (2.75)

The tilde R̃ denotes the multivector reverse.
Analogously to the 2D case, we know that the interior and exterior products nm are equal to:

n ·m = cos(θ/2) (2.76)

n ∧m = sin(θ/2)B (2.77)

where

B =
n ∧m√
−(n ∧m)2

(2.78)

is the unit bivector along which the rotation is performed. We can therefore say that

R = cos(θ/2) +B sin(θ/2). (2.79)
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This should look vaguely familiar - it looks a bit like the formula for complex exponentials,

exp(iθ/2) = cos(θ/2) + i sin(θ/2). (2.80)

This formula arises because the polynomial expansion for the exponential splits up into a real and an
imaginary part:

exp(iθ/2) =

∞∑
k=0

ik(θ/2)k

k!
(2.81)

=

∞∑
l=0

i2l(θ/2)2l

(2l!)
+

∞∑
l=0

i2l+1(θ/2)2l+1

(2l + 1)!
(2.82)

=

∞∑
l=0

(−1)l(θ/2)2l

(2l!)
+ i

∞∑
l=0

(−1)l(θ/2)2l

(2l + 1)!
(2.83)

= cos(θ/2) + i sin(θ/2). (2.84)

This derivation relied on the fact that i2 = −1. And we will in fact see that all 3D unit bivectors square
to -1 too! For instance, B = e31 describes the rotation along the zx plane:

(e31)
2 = e3131 = −e3311 = −1 (2.85)

So we can write:

R = exp(Bθ/2) = cos(θ/2) +B sin(θ/2), (2.86)

the rotor that performs a rotation along the zx plane by an angle of θ.
This is an extremely useful fact. Given a rotation bivector Θ (capital theta) whose orientation

describes the plane of rotation and whose magnitude describes the angle of rotation, we can simply find
the corresponding rotor by calculating:

Constructing rotors from bivector exponentials

R = exp(Θ/2). (2.87)

Both conceptually and practically, this is a lot simpler than the Euler angle approach we had to take
for rotation matrices. For instance, it doesn’t suffer from gimbal locking.

There is also an added benefit from using bivectors to describe rotations: In classical vector algebra,
we use so-called “Euler” or “rotation vectors” to describe the axis and angle of the rotation we want to
perform. For instance, a counterclockwise rotation around the z axis by a quarter-turn would correspond
to the rotation “vector”

θ =
τ

4
e3. (2.88)

It suffers from the same problems as other axial vectors. We will thus instead use rotation bivectors
Θ = Iθ. The above rotation would be represented by the bivector

Θ =
τ

4
e12. (2.89)

Thus, in geometric algebra, we do not talk about rotations “around an axis”, but rather about “rotations
along a plane” - for instance, a rotation along the xy plane.
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2.2.4 Some facts about rotors

Given a rotor R = exp(Θ/2), the reverse operation evaluates to

R̃ = exp(−Θ/2). (2.90)

We can thus directly see that for any rotor,

RR̃ = R̃R = 1. (2.91)

The rotor law M → RMR̃ is valid for any multivector grade. For instance, a bivector D = ab would
rotate like

D′ = a′b′ = R̃aRR̃bR = R̃abR = R̃DR. (2.92)

If we want to perform two successive rotations R1, R2, we just multiply the two rotors together:

Rtotal = R1R2. (2.93)

There is something important to note: Given a specific rotation R, the rotor R′ = −R has the exact
same effect on vectors:

(−R̃)x(−R) = R̃xR. (2.94)

To understand this better, we take a look at the simplest pair of rotors where this peculiarity arises -
R = +1 and R′ = −1. Obviously, R = 1 corresponds to a rotation by an angle of zero, exp(0) = 1. The
second rotor, R′ = −1 however, corresponds to a rotation by τ = 360◦:

R′ = exp

(
B

2
τ

)
= cos(τ/2) +B sin(τ/2) (2.95)

= −1. (2.96)

If we were to rotate by 2τ = 720◦, we would obtain the original rotor again:

exp

(
B

2
2τ

)
= cos(2τ/2) +B sin(2τ/2) (2.97)

= 1. (2.98)

This is a very interesting fact - in the rotor formalism, a rotation by 0◦ is not the same as a rotation by
360◦. They correspond to two different rotors, but because of the geometric two-sided transformation
law, they have the same effect on vectors. This is not some weird mathematical artifact of geometric
algebra. It corresponds to an elementary geometric fact about rotations: The 3D group of rotations
SO(3) is not simply connected. This means that if we trace out a path starting and ending at the
same rotational state, it’s not guaranteed that we will be able to smoothly deform this path into a point.
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To elaborate on this, imagine a three-dimensional sphere S2. If we draw a loop on its surface,
we can always continuously shrink it into a point. On a 3D torus T 3, however, this is not always
possible - if the loop makes one turn around the torus, we cannot deform it into a point without
tearing it apart. We say that S2 is simply connected, but T 3 isn’t.
Doing the same thought experiment for elements of SO(3) - 9-dimensional matrices with some
constraints - can be pretty difficult. Luckily, there is a trick devised by Paul Dirac to visualize
this very intuitively - the so-called Dirac belt trick. In this trick, we use a belt to visualize a
path we might take through SO(3). The two ends of the belt represent the start and end of our
path through SO(3). The cross-section of the belt at any point can be pictured as a vector that
represents the current state of rotation. If the orientation of both ends is the same, the belt
describes a loop through SO(3). If the belt is just a straight line without twists, it describes a
point in SO(3). Continuous deformations amount to shifting and twisting the belt around, while
keeping the orientation of both ends fixed. You can check for yourself that if there is one τ twist
in the belt, it is not possible to deform it back into a straight line with these costraints - but if
there are two τ twists in the belts, it is possible.

2.2.5 A short note on quaternions

Quaternions are the go-to solution of many physicists and engineers to describe rotations without gimbal
locking. They are an associative algebra of three complex numbers i, j, k satisfying

i2 = j2 = k2 = ijk = −1. (2.99)

They are something rather abstract normally, but with geometric algebra, they just translate to the unit
bivectors:

i = e12 (2.100)

j = e23 (2.101)

k = −e31. (2.102)

Therefore, rotors can be formulated in quaternion algebra too. (In quaternion lingo, rotors are called
“versors”).

The even subalgebra Cl+(3) only contains scalars and bivectors. Therefore, the even subalgebra of
Cl(3) is isomorphic to the space of quaternions H - we can translate any quaternion

z = a+ bi+ cj + dk (2.103)

to an element of the even subalgebra:

z = a+ be12 + ce23 − de31. (2.104)

This is starting to look a lot like the isomorphism between complex numbers and the even subalgebra
Cl+(2). In two dimensions, we had one possible rotation and one bivector (e12) that generated it. This
bivector could be translated to the imaginary unit i. Now, in three dimensions, we have three rotations
and three bivectors generating them (e12, e23, e31). They can be translated to the unit quaternions
i, j,−k2.

However, both the complex numbers and the quaternions share the same issues: Neither has a concept
of “vectors” in the proper sense. The object performing the rotation (the rotor, or “versor” in quaternion
lingo) consists of the same basis elements as the object being rotated. This is very confusing, and it doesn’t
help that the quaternions themselves do not have any geometric interpretations. Instead, authors often

2In fact, this is how Quaternions originally arose - Hamilton was asking himself how the rotation math of complex
numbers could be generalized to three dimensions.
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resort to projective geometry black magic to explain them, and as a result, no one really understands
quaternions. Luckily, we can now see that they are just bivectors, and get a geometric intuition for them!

Also, you might have asked yourself why k translates to −e31 instead of e31. This is because the
definition ijk = −1 is wrong - it should have been ijk = 1. The former definition results in a left-handed
space. These peculiarities smash all hopes of doing any halfway sensible geometry with quaternions. So
let’s turn our back on them and just use vectors and bivectors instead.

2.2.6 Infinitesimal rotations

We now investigate infinitesimal rotations - rotations whose angle very small, such that we can neglect
second-order terms.

Let Θ be a rotation bivector. Its angle should be much smaller than one - |Θ| ≪ 1. We can then
approximate the bivector exponential as

R = exp(Θ/2) ≈ 1 + Θ/2. (2.105)

This means that the infinitesimal rotor transformation law is

M ′ = R̃MR = (1−Θ/2)M(1 + Θ/2) (2.106)

≈M +M
Θ

2
− Θ

2
M (2.107)

=M +

[
M,

Θ

2

]
(2.108)

This is the infinitesimal rotor transformation law for a multivector,

Infinitesimal rotor transformation law

R̃MR ≈M +

[
M,

Θ

2

]
(2.109)

If M is a vector, M = x, this commutator can also be expressed as:[
x,

Θ

2

]
=

1

2
(xΘ−Θx) = x ·Θ. (2.110)

We are going to use the commutator notation [x, B/2] when we want to emphasize that we are dealing
with an infinitesimal rotation - it is independent of the grade of the object being rotated. For instance,
if we wanted to rotate a bivector C, we can equivalently write

C ′ = C +

[
C,

Θ

2

]
. (2.111)

The translation of this commutator would be:[
C,

Θ

2

]
= ⟨CΘ⟩2 , (2.112)

the bivector grade of the geometric product CΘ. Draw a grade diagram - you will see that the geometric
product between two bivectors will result in a scalar, bivector and tetravector grade. We use the interior
product C · Θ to get the scalar grade and the exterior product C ∧ Θ to get the tetravector grade. We
don’t have any shorthand notation for the bivector grade though, so we have to write ⟨CΘ⟩2.

The dot notation x · Θ for rotating vectors is primarily useful when we want to think about the
geometric details - from our geometric intuition, we can directly tell that:
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• The value of x ·Θ is maximal if x fully lies in the plane of Θ. This makes intuitive sense - a vector
will change fastest if it lies in the plane of rotation.

• The value of x ·Θ is zero if x is orthogonal to the plane of Θ. This also makes intuitive sense - x
will not change at all under the rotation if if is orthogonal to the plane of rotation.

In the language of commutation relations, we say that:

• If x lies in the plane of Θ, then x and Θ anticommute:

xΘ = −Θx (2.113)

• If x is orthogonal to the plane of Θ, then x and Θ commute:

xΘ = Θx (2.114)

This means that the bivector exponential R = exp(Θ/2) will behave as follows: If x lies in Θ, we have

xR = x exp(Θ/2) = exp(−Θ/2)x = R̃x, (2.115)

while if x is orthogonal to Θ, we have

xR = Rx. (2.116)

In the second case, the rotor transformation law simply reduces to

R̃xR = R̃Rx = x. (2.117)

The vector is unchanged by a rotation along the plane orthogonal to it. In the first case, however, we
get:

R̃xR = xRR = xR2 = x exp(Θ). (2.118)

We know this - this is the rotation law from the two-dimensional geometric algebra! This makes intuitive
sense - in 2D, all vectors lie inside the plane of all bivectors, so we can always simplify the full two-sided
rotor law into a one-sided one.

2.2.7 Angular velocity

The rotor R = exp(Θ/2) describes a rotation along the direction and with the magnitude of Θ. Now, we
can ask ourselves how we can describe a rotational motion, i.e. a motion where the angle depends on the
time t. With geometric algebra, this is as simple as

R(t) = exp(Θ(t)/2). (2.119)

The change in time of this rotor is:

Ṙ(t) =
˙Θ(t)

2
exp(Θ(t)/2) = exp(Θ(t)/2)

Θ̇(t)

2
. (2.120)

This is just the standard formula for taking the derivative of exponentials. Note that Θ and R commute.
Commonly, the derivative of the angle bivector Θ(t) is called the “angular velocity bivector”:

Ω(t) = Θ̇(t) (2.121)

If the angular velocity is constant, the above equations simplify to

R(t) = exp(Ωt/2) (2.122)

Ṙ(t) = exp(Ωt/2)
Ω

2
=

Ω

2
exp(Ωt/2). (2.123)
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Now suppose we start with a vector x0 and use the rotor R(t) to rotate it around. We obtain the
vector

x(t) = R̃(t)x0R(t). (2.124)

If we take the time derivative, we get:

ẋ = (R̃x0R)
· (2.125)

= ˙̃Rx0R+ R̃x0Ṙ (2.126)

= − Θ̇

2
R̃x0R+ R̃x0R

Θ̇

2
(2.127)

=

[
R̃x0R,

Θ̇

2

]
, (2.128)

=

[
x,

Ω

2

]
(2.129)

We can therefore say that the velocity of an object at coordinate x being rotated with angular velocity
Ω around the origin is

Rotation velocity

ẋ =

[
x,

Ω

2

]
(2.130)

This formula should make perfect intuitive sense - the angular velocity bivector represents an in-
finitesimal rotation after an infinitesimal time (think dΘ = dΩ dt), so it can be viewed as a generator
acting on x.

We can even go one step further and find the centripetal acceleration by taking another time
derivative:

ẍ =

[
ẋ,

Ω

2

]
(2.131)

=

[[
x,

Ω

2

]
,
Ω

2

]
(2.132)

=
1

4

(
xΩ2 − ΩxΩ− ΩxΩ+ Ω2x

)
(2.133)

The quantity Ω2 is a negative scalar. Therefore, it commutes with everything, and we can write:

Centripetal acceleration

ẍ =
1

2

(
Ω2x− ΩxΩ

)
(2.134)

If x lies inside the plane of the angular velocity Ω, they anticommute. In this case, we can write
ΩxΩ = −Ω2x, and the above formula becomes particularly simple:

ẍ = Ω2x (2.135)

In 3D, bivectors square to negative values, i.e. Ω2 = −ω2. This automatically tells us that the centripetal
force has to pull the object into the center. If we multiply with m, we thus get the well-known formula
for the centripetal force:

F = mẍ = −mω2x. (2.136)
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2.3 Differential operators

The operator ∂i is defined as the partial derivative of some value by the coordinate i:

∂ia :=
∂a

∂xi
. (2.137)

In traditional vector calculus, we use it to define the gradient operator

∇ =

∂1∂2
∂3

 . (2.138)

When we apply this operator to a scalar field a, it gives us the direction of the steepest increase of the
field ∇a.

If we want to apply ∇ to a vector field v, we could take the dot product between them to obtain the
divergence:

∇ · v = ∂1v
1 + ∂2v

2 + ∂3v
3, (2.139)

or the cross product to obtain the curl:

∇× v =

∂2v3 − ∂3v
2

∂3v
1 − ∂1v

3

∂1v
2 − ∂2v

1

 . (2.140)

Needless to say, these expressions do not generalize to higher dimensions like 4D spacetime or behave
sensibly under parity flips.

2.3.1 The geometric derivative

Instead, we define the so-called geometric derivative or vector derivative3

Geometric derivative

∂ = ei∂i. (2.141)

This derivative is an element of the geometric algebra Cl(3) - it is a differential operator-valued vector.
It is very versatile: When we apply it to a scalar field a, it acts like the gradient operator:

∂a = ei∂ia. (2.142)

Things start to get interesting once we apply it to a vector field v = viei:

∂v = ei∂iv
jej (2.143)

= eiej∂
ivj (2.144)

Note that the order of the vectors ei, ej needs to stay fixed. The objects ∂i, v
j are scalars, so we can

commute them around as we like.
The product between ∂ and v is the normal geometric product. It consists of the interior product

and the exterior product. We call ∂ · v the interior derivative and ∂ ∧ v the exterior derivative:

∂ · v = (ei · ej)∂ivj = ∂iv
i (2.145)

∂ ∧ v = (ei ∧ ej)∂ivj =
1

2
(∂ivj − ∂jvi)ei ∧ ej (2.146)

3Also denoted as ∇ instead of ∂.
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v

∂ ∧ v

∇× v

Figure 2.6: A sample vector field with its curl and exterior derivative.

These derivatives can be applied to any multivector field. The grade of the exterior derivative is one
higher than the original field, and the grade of the interior derivative one lower.

When applied to a vector, the interior derivative does what the classical divergence does, and the
exterior derivative does what the curl does. However, the curl was an axial vector - and the exterior
derivative of a vector field is the bivector corresponding to that axial vector. Figure 2.6 illustrates this.

There is something important to note when taking the exterior and interior derivative of vector fields.
Suppose we have an axial “vector” field b, which corresponds to a bivector field B = Ib. Then, the curl
∇×b would translate to the interior derivative ∂ ·B, and the divergence ∇ ·b would correspond to the
exterior derivative ∂ ∧B.

Two successive applications of the interior derivative or the exterior derivative on any multivector are
always zero:

Double interior and exterior derivatives

∂ · (∂ ·M) = 0 (2.147)

∂ ∧ ∂ ∧M = 0 (2.148)

The second identity is quite easy to prove:

∂ ∧ ∂ ∧M = ei∂i ∧ ej∂jM (2.149)

= ∂i∂j(e
i ∧ ej)M (2.150)

The wedge product ei ∧ ej is antisymmetric. However, partial derivatives commute - ∂i∂j = ∂j∂i. This
means that the term is identically zero.

We can’t quite prove the first identity yet without having to resort to a plethora of confusing
(−1)n(n−k)k factors of the sort differential form advocates like to use to feel superior over us muggles.
The good news is that we are going to develop the right tools for this proof in the next chapter, so stay
tuned.

2.3.2 Identities involving the geometric derivative

The geometric derivative ∂ consists of the sum of the interior and exterior derivative:

∂ = ∂ ·+ ∂∧ (2.151)

It might seem like an unnecessary complication to sum them together. After all, don’t we need the inner
and outer derivative for two completely different purposes?
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It turns out that this does indeed make sense - the geometric derivative ∂ϕ “inherits” its associativity
from the geometric product. Associativity gives us a lot more flexibility. For instance, suppose we have
found a physical law saying that the geometric derivative of some multivector field M is always zero:

∂M = 0. (2.152)

When we premultiply both sides with another ∂, we can directly deduce:

∂2M = 0 (2.153)

The operator ∂2 is a scalar. It is commonly known as the Laplacian ∆ = ∇2. In traditional vector
calculus, it would’ve been very difficult to deduce this identity at this level of generalization. This
associative way of handling geometric derivatives will prove to be very useful in electrodynamics and
quantum field theory.

The associativity is also very useful for some other purposes. For instance, let’s try to decompose ∂2

into its constituents:

∂2M = (∂ ·+ ∂ ∧)(∂ ·+ ∂ ∧)M (2.154)

= ∂ · ∂ ·M + ∂ · (∂ ∧M) + ∂ ∧ (∂ ·M) + ∂ ∧ ∂ ∧M (2.155)

The double-interior and double-exterior derivatives are zero:

∂2M = ∂ · (∂ ∧M) + ∂ ∧ (∂ ·M) (2.156)

This is simple enough - a double geometric product decomposes into four parts, of which two are zero.
Now let’s assume that M is a vector field, i.e. M = v. Then:

∂2v = ∂ · (∂ ∧ v) + ∂ ∧ (∂ · v). (2.157)

The rightmost term is the exterior derivative of the scalar ∂ · v. Scalars have grade 0, so the interior
derivative of a scalar is always zero. Therefore, the exterior derivative of ∂ · v is equal to its geometric
derivative - aka its gradient, in conventional vector calculus. The exterior derivative ∂ ∧ v is a bivector,
which would normally be an axial vector resulting from the curl. The subsequent interior derivative
would also be translated as the curl, as it is being applied on a bivector field. Therefore, in conventional
vector calculus, this identity reads:

∇2v = −∇× (∇× v) +∇(∇ · v). (2.158)

This identity is well-known from conventional vector calculus. However, our formulation (2.156) is both
easier to derive and valid for all multivector grades instead of just vectors.

2.3.3 Product rule

The product rule is valid for the derivative. However, we have to be careful - the geometric derivative ∂
is not commutative, so we cannot just write

∂(AB) = (∂A)B +A(∂B) (INCORRECT!) (2.159)

Instead, we have do introduce overdot notation: In the second term in the above formula, ∂ should
still stand before A, but only act on B. We will denote this with an overdot over ∂ and the part of the
expression ∂ is acting on:

Product rule for the geometric derivative

∂(AB) = ∂̇ȦB + ∂̇AḂ. (2.160)
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The dots mark which part of the multivector expression the operator is acting on. Written out, this
would look like

ei∂i(AB) = ei(∂iA)B + eiA∂iB. (2.161)

The reason for this confusing change is simple: Previously, when we read an expression like a∂ib, we
were used to the order indicating which part the differential acts on. But in multivector expressions,
the order indicates the geometric product order - therefore, we need a new way to indicate the order of
differentials, i.e. the overdots.

This might seem like a complication, but in fact, it gives us far greater liberty - for instance, we could
also write down a “backwards derivative”

Ȧ∂̇ = (∂iA)e
i. (2.162)

This newfound freedom will prove especially useful in the area of geometric calculus. For instance, we
have seen how we can write the interior and exterior product between vectors as the symmetric and
antisymmetric part of the geometric product:

a · b =
1

2
(ab+ ba) (2.163)

a ∧ b =
1

2
(ab− ba) (2.164)

If we want to write the interior and exterior derivative this way, we need to use the overdot notation:

∂ · a =
1

2

(
∂a+ ȧ∂̇

)
(2.165)

∂ ∧ a =
1

2

(
∂a− ȧ∂̇

)
. (2.166)

2.4 Pauli matrices

In quantum mechanics, we define the Pauli matrices,

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (2.167)

In practically all quantum mechanics courses, they just fall out of the sky. However, with geometric
algebra, we’re able to understand the understand the reasoning behind them. We first note that they all
square to 1:

σ2
1 = 1 (2.168)

σ2
2 = 1 (2.169)

σ2
3 = 1 (2.170)

They anticommute with each other:

σiσj = −σjσi for all i ̸= j. (2.171)

This looks familiar - the basis vectors ei of the geometric algebra of space behave exactly the same way.
The matrix product between Pauli matrices takes the role of the geometric product. Mathematically,
we say that the Pauli matrices σi are a representation of the geometric algebra of space Cl(3) - any
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calculation we can perform in Cl(3) can also be done with Pauli matrices if we make the substitutions

1 →
(
1 0
0 1

)
(2.172)

ei → σi (2.173)

eij → σiσj (2.174)

e123 → σ123 =

(
i 0
0 i

)
. (2.175)

Adding and multiplying these matrices yields the same result as adding and multiplying the underlying
multivectors. We can even form matrix exponentials - for instance, a rotor generated by the rotation
bivector

Θ = Θ12e12 +Θ23e23 +Θ31e31 (2.176)

would have the Pauli matrix representation

R = exp
(
Θ12σ1σ2 +Θ23σ2σ3 +Θ31σ3σ1

)
(2.177)

= exp

(
iΘ12 iΘ23 +Θ31

iΘ23 −Θ31 −iΘ12

)
(2.178)

The representation of the reverse M̃ of a multivector M is just the hermitean conjugate of its represen-
tation M†. It leaves the scalar and the basis vectors invariant, but it flips around the order of the matrix
product. This is exactly what we want.

The matrix representation of a vector v would be:

v = viσi =

(
v3 v1 − iv2

v1 + iv2 −v3
)

(2.179)

You can check for yourself that the matrix representation of the rotor law,

v′ = R†vR (2.180)

(reading all the symbols as matrices representing multivectors) yields the same result as the proper
multivector equation

v′ = R̃vR. (2.181)

All of this might come as a bit of an epiphany - we have been doing three-dimensional geometric
algebra with the Pauli matrices all the time! However, at the same time, we have left some important
questions unanswered: The main application of Pauli matrices are spinors (aka spin states). How do
they fit into all of this? What does it mean to write

si = ⟨ψ|σi |ψ⟩ , (2.182)

for instance? Stay tuned - we are going to answer these questions in the chapter about spinors.
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Chapter 3

Tensor notation

A tensor is something that transforms like a
tensor

Ancient theoretical physics proverb

Chapter summary

• Tensor notation is not the same as matrix representation.

• We can denote k-vectors as fully antisymmetric rank k tensors. Every fully antisymmetric rank k
tensor is a bivector.

• Multivectors can’t be denoted that way because the rank of a tensor is fixed.

• We can write the wedge product by using the antisymmetrization brackets [· · · ] on tensors.

• We can write the interior product by forming sandwich contractions between tensors.

• The antisymmetric rank-2 tensors representing bivectors can be written as matrices. If we expo-
nentiate such a matrix, we get the rotation matrix corresponding to the rotor generated by the
bivector.

3.1 Overview

Geometric algebra is a very nice tool, but it has its limits. Sometimes, it can be preferable to use
conventional tools like matrices or tensors to do a calculation. In addition, practically all physics literature
right now is written in conventional maths. Therefore, it would be nice to have the tools to fluently switch
between tensor notation and geometric algebra notation.

3.1.1 Tensor notation is not the same as matrix representation

First of all, a warning: Previously, we have introduced the Pauli matrix representation for Cl(3).

However, matrix representation and tensor notation are two completely different things.

In particular:

• A matrix representation maps every multivector onto a matrix. However, tensor notation can only
depict pure k-vectors.
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• In matrix representation, we always work with matrices. In tensor representation, we work with
tensors of arbitrary rank - and the rank-2 ones just happen to be matrices, too.

• In matrix representation, we can multiply two matrices to get the geometric product between the
two multivectors. In tensor representation, we cannot denote the geometric product.

• In tensor notation, the indices of our tensors are vector indices - they run over basis vectors. In
matrix notation, the indices of our tensors are spinor indices - they run over basis spinors. You will
find out what that means in the spinor chapter.

3.1.2 Fully antisymmetric rank k tensors

The fundamental principle of converting geometric algebra experssions to tensors is the basis represen-
tation of k-vectors. We already know that we can write an arbitrary k-vector as a linear combination of
basis k-vectors:

Tensor notation for a k-vector

X =
1

k!
Xi1i2···ik ei1 ∧ ei2 ∧ · · · ∧ eik (3.1)

The collection of components Xi1i2···ik is a rank-k tensor. It is fully antisymmetric. This means
that it flips sign if we exchange any two indices:

Xi1i2···ik = −Xi2i1···ik . (3.2)

This is because the basis bivectors also flip sign when we exchange two indices because of the wedge
product antisymmetry. This antisymmetry implies that all indices i1, i2, · · · , ik need to be distinct from
each other - if there is a duplicate index, the component is zero:

Xi1i1···ik = −Xi1i1···ik = 0 (3.3)

This equivalence always holds: Fully antisymmetric rank-k tensors correspond to k-vectors, and vice
versa.

Fully antisymmetric rank-k tensors ↔ k-vectors. (3.4)

3.1.3 Vectors, bivectors and trivectors

The easiest example is the vector - we can write any arbitrary vector v as:

v = viei. (3.5)

Remember that vectors vi are rank-1 tensors. Similarly, a bivector B can be written as

B =
1

2!
Bijei ∧ ej =

(
B12e12 +B23e23 +B31e31

)
. (3.6)

For bivectors only, we can also denote their components in matrix form:

Bij =

B11 B12 B13

B21 B22 B23

B31 B32 B33

 (3.7)

=

 0 B12 −B31

−B12 0 B23

B31 −B23 0

 (3.8)
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You are probably wondering why we used a factor of 1/k! to define the basis decomposition. The
reason is simple - take the above bivector decomposition with its 1/2! factor as an example. The Einstein
summation convention in this formula will sweep across both cyclic and anticyclic indices - for instance,
somewhere in the sum, ij would assume the value 23, and then 32 a bit later. Because ei ∧ ej = −ej ∧ ei,
we needed to define

Bij = −Bji. (3.9)

Then, the 23 and 32 parts of the sum would resolve to:

B23e23 +B32e32 = 2B23e23 (3.10)

We see that by summing over all possible combinations of ij, we “overcount” the basis bivectors twice,
because there are two possible permutations for every ij index pair. Similarly, there are 6 = 3! permu-
tations for every index triple ijk, so in order to write down a trivector in terms of its components, we’d
need to write

T =
1

3!
T ijkei ∧ ej ∧ ek (3.11)

in order to get the normalization right. The expression T ijk might raise some eyebrows - after all, we
are working in three dimensions, so all possible index triples ijk without duplicates are permutations of
123. The even permutations of 123 will all be equal to some t ∈ R, and the odd permutations will be −1
times the even permutations:

T ijk =


t if ijk is an even permutation of 123

−t if ijk is an odd permutation of 123

0 if ijk has duplicate indices.

(3.12)

.
This should look somewhat familiar - the Levi-Civita symbol in three dimensions, ϵijk is defined as:

ϵijk =


1 if ijk is an even permutation of 123

−1 if ijk is an odd permutation of 123

0 if ijk is not a permutation of 123.

(3.13)

. We can conclude that the tensor T ijk denoting a trivector T in three dimensions must always be a
multiple of ϵijk:

T ijk = tϵijk (3.14)

The Levi-Civita symbol itself denotes the unit pseudoscalar:

1

3!
ϵijkei ∧ ej ∧ ek =

1

3!
3! e123 = e123. (3.15)

Therefore, it is absolutely valid to refer to the Levi-Civita symbol as the pseudoscalar symbol.
In geometric algebra, we always work with an orthonormal metric. In the three-dimensional case, our

metric is just δij , so we can pull indices up and down however we please. We could therefore also write
B as

B = Bije
i ∧ ej . (3.16)

This will change though as soon as we treat the spacetime algebra, where the metric ηµν is nontrivial.
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3.1.4 Extracting components

Now, we should investigate how to extract the tensor components of a given k-vector algebraically. For
vectors v, this is simple: We just take the interior product between the vector and the basis vector in
question:

vi = v · ei = ⟨vei⟩ . (3.17)

Intuitively, we might expect that this extends to arbitrary k-vectors. For instance, for bivectors, we
might try to write

Bij = B · (ei ∧ ej) =
〈
B(ei ∧ ej)

〉
(INCORRECT!). (3.18)

But if we do this, we run into a problem: The bivectors eij square to −1, so for instance, for a bivector
B = e12, we’d obtain the components B12 = −B21 = e12 · e12 = −1, the opposite of what we want.

The solution is to dot the bivector with the inverse of the basis bivectors:

(eij)
−1 = −eij . (3.19)

Note that the inverse operation (· · · )−1 implicitly swaps upstairs and downstairs indices.
Hence, we obtain the correct tensor components by writing

Bij = B · (eij)−1 =
〈
B(ei ∧ ej)−1

〉
(3.20)

The generalized formula for the components of a k-vector X of arbitrary grade is:

Tensor components of a k-vector

Xi1i2·ik =
〈
X (ei1 ∧ ei2 ∧ · · · ∧ eik)−1

〉
. (3.21)

For 3D vectors (3.17), the fact that we had to use the inverse · · ·−1 does not matter - for every i,
we have e2i = 1 and thus (ei)

−1 = ei. However, it will matter as soon as we treat special relativity and
spacetime algebra.

3.1.5 Some examples

Whenever we see a fully antisymmetric tensor in conventional math, it is safe to translate it to a k-vector.
Common examples include:

• T1, T2, T3, the generator matrices of SO(3): Matrices are rank-2 tensors, so these are actually the
bivectors e23, e31 and e12.

• As explained above, the Levi-Civita symbol ϵ actually is the unit pseudoscalar.

• The electromagnetic field tensor Fµν actually is a bivector in the geometric algebra of spacetime -
more on that in the Electrodynamics chapter.

• The Riemann tensor Rµνρσ from general relativity is antisymmetric in its first two and in its last
two indices. Thus, it is a linear map from bivectors to bivectors.

3.2 Operations in tensor notation

Now that we have seen how we can write k-vectors as tensors, the next logical step is to ask ourselves
how to perform operations like the addition on them.
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3.2.1 Linear operations

Linear operations on k-vectors in tensor notation are pretty simple and work as we’d intuitively expect.
For instance, if we want to add two k-vectors, we just need to add their tensor notations together
componentwise:

(B + C)ij = Bij + Cij . (3.22)

Scalar multiplication works similarly easy:

(λB)ij = λBij . (3.23)

However, you may have already noticed the important caveat here: In tensor notation, we can only add
k-vectors of even grade. It is not possible to denote mixed-grade multivectors in tensor notation. Hence,
it is not possible to denote the geometric product - it inherently produces mixed-grade multivectors. It
is possible though to denote the interior and exterior product in tensor notation. But first, we will have
to introduce some new notation.

3.2.2 Symmetric and antisymmetric parts

Let Zi1i2···ik be a rank-k tensor that is not necessarily symmetric or antisymmetric. First of all, we define
the symmetrization of Z as:

Symmetrization of a tensor

Z(i1i2···ik) =
1

k!

(
Zi1i2···ik + all permutations of i1i2 · · · ik.

)
(3.24)

We are averaging over all possible permutations. The resulting tensor is completely symmetric, as
all antisymmetries have been “leveled out” by the sum over all permutations. If we were two swap two
indices, the result would be exactly the same. For instance, the symmetrization of a rank-3 tensor Zijk

would read

Z(ijk) =
1

3!

(
Zijk + Zkij + Zjki + Zkji + Zjik + Zikj

)
. (3.25)

In contrast, the antisymmetrization of a tensor Zi1i2···ik is defined as:

Antisymmetrization of a tensor

Z [i1i2···ik] =
1

k!

(
Zi1i2···ik + all other even permutations− all odd permutations

)
(3.26)

Now, we are not simply taking the average over all possible permutations - we are adding the even ones
and subtracting the odd ones. This means that Z [i1i2···ik] is fully antisymmetric - whenever we exchange
two indices, the perviously even permutations will become odd, and the previously odd permutations will
become even. We can say that we have “averaged out” all symmetric parts of the tensor. For instance,
the antisymmetrization of a rank-3 tensor would read

Z [ijk] =
1

3!

(
Zijk + Zkij + Zjki − Zkji − Zikj − Zjik

)
(3.27)

If the tensor denotes a k-vector (i.e. if the tensor already is fully antisymmetric), the antisymmetriza-
tion operation will have no effect on the tensor. For instance, for a trivector T ijk:

T [ijk] = T ijk. (3.28)
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3.2.3 Interior product

Now, we are equipped to understand the expressions for the interior and exterior product. We start by
investigating the interior product. We already know the simplest case - the interior product between two
vectors v, w:

v · w = viwi. (3.29)

We simply form the contraction of their indices. Similarly, for bivectors and trivectors,

(B · v)i = Bijvj (3.30)

(T · v)ij = T ijkvk, (3.31)

or from the other side:

(v ·B)i = vjB
ji (3.32)

(v · T )ij = vkB
kij (3.33)

The general formula involving a k-vector X and a vector v is:

Interior product between a k-vector and a vector

(X · v)i1i2···ik−1 = Xi1i2···ik−1jvj (3.34)

(v ·X)i1i2···ik−1 = vjX
ji1i2···ik−1 . (3.35)

Now, we can ask ourselves how we can dot together k-vectors of arbitrary rank. We already know
that if the k-vectors are in basis form, we can rewrite the inner product between them as a series of inner
products of k-vectors with vectors. For instance, the inner product e123 · e23:

e123 · e23 = (e123 · e2) · e3 (3.36)

We are free to reorder the k-vector we are splitting up. For instance:

e123 · e23 = e123 · (−e32) = −(e123 · e3) · e2. (3.37)

Thus, to calculate such a interior product, we could näıvely try writing down a sandwich contraction
like

(T ·B)i = T ijkBkj . (INCORRECT!) (3.38)

We run into an issue here. When we work in geometric algebra notation like in (3.36) and (3.37), we
choose a specific ordering for the vectors we are dotting onto the trivector. However, in (3.38), we sum
over all index pairs jk, so we include all possible orderings of the bivector. Hence, the correct formula
has to divide by l!, where l is the number of dummy indices. The previous example therefore correctly
translates to

(T ·B)i =
1

2!
T ijkBkj . (3.39)

Let’s consider the general interior product between a k-vector X and a l-vector Y , where k > l. The
resulting grade is k − l. The general sandwich contraction formula is:

Interior product between a k-vector and an l-vector

(X · Y )i1···ik−l =
1

l!
Xi1···ik−lj1j2j3j4···jlYjl···j4j3j2j1 . (3.40)
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Proof of double interior derivative identity

Now, we are ready to prove the identity

∂ · (∂ ·M) = 0. (3.41)

First of all, because the double interior derivative is linear, we can assume that M is a pure k-vector
without loss of generality. We can thus denote M as a tensor M i1i2···ik . The geometric derivative ∂ is
denoted by the rank-1 tensor ∂i. The first inner product is a k − 1 vector:

(∂ ·M)i2i3···ik = ∂i1M
i1i2···ik . (3.42)

The second one can be sandwiched on top of the first one:

(∂ · (∂ ·M))i3···ik = ∂i2∂i1M
i1i2i3···ik . (3.43)

M is antisymmetric over all indices. However, the two partial derivatives commute with each other.
Thus, the index contraction is equal to zero:

∂i2∂i1M
i1i2··· =

1

2
∂i2∂i1

(
M i1i2 −M i2i1

)
(3.44)

=
1

2

(
∂i2∂i1M

i1i2 − ∂i1∂i2M
i2i1
)

(3.45)

We now rename the indices in the second term - we can do that because they are dummy indices:

=
1

2

(
∂i2∂i1M

i1i2 − ∂i2∂i1M
i1i2
)

(3.46)

= 0. (3.47)

Thus, we have proven the identity ∂ · (∂ ·M) = 0. Also, in general, we can remember that if we contract
something symmetric with something antisymmetric, the result will always be zero.

3.2.4 Exterior product

Let’s say we want to take the exterior product between the vectors v = e1 and w = e2, resulting in the
bivector v ∧ w = e12. The only nonzero components of the tensors vi and wi are v1 = 1 and w2 = 1,
respectively, and the only two nonzero components of (v∧w)ij are (v∧w)12 = −(v∧w)21 = 1. Therefore,
our first impulse might be to write something like

(v ∧w)ij = viwj (INCORRECT!) (3.48)

This tensor would have the component v1w2 = 1, but the other one is missing, v2w1 = 0. It is not
antisymmetric. We could therefore try to antisymmetrize the tensor:

(v ∧w)ij = v[iwj] (INCORRECT!) (3.49)

However, the antisymmetrization brackets [· · · ] average over the components, so the above tensor has
the components

v[1w2] = v[2w1] =
1

2
(3.50)

half of what we want. This is because the component v1w2 has been “smeared out” over the 2! = 2 index
pairs 12 and 21. We therefore need to premultiply this expression with 2!. We obtain the correct result,

(v ∧w)ij = 2! v[iwj]. (3.51)
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This generalizes to arbitrarily long exterior products of k-vectors. For instance:

(a ∧ b ∧ c)ijk = 3! a[ibjck]. (3.52)

The general formula for the exterior product of l vectors a(1), · · · ,a(l) is:

(a(1) ∧ · · · ∧ a(l))
i1i2···il = l! a

[i1
(1)a

i2
(2) · · · a

il]
(l). (3.53)

The next thing to ask ourselves is how to calculate the exterior product between a k-vector X and
an l-vector Y . Looking at (3.53), we could naively try to write

(X ∧ Y )i1···ik+l = (k + l)! X [i1···ikY ik+1···ik+l] (INCORRECT!) (3.54)

But then, we run into a similar problem as we did in (3.38). The formula (3.53) refers to the exterior
product of a specific ordering of vectors. However, a k-vector like Xi1···ik contains all k! possible orderings
of the cross product. The formula (3.54) would therefore overcount the product by k! times l! times. We
can thus see that the correct formula is:

Exterior product betweeen a k-vector and an l-vector

(X ∧ Y )i1···ik+l =
(k + l)!

k! l!
X [i1···ikY ik+1···ik+l] (3.55)

An important special case is the exterior product between a vector and a k-vector:

Exterior product between a vector and a k-vector

(a ∧X)i1i2···ik+1 = (k + 1) a[i1Xi2···ik+1] (3.56)

(X ∧ a)i1i2···ik+1 = (k + 1) X [i1···ikaik+1] (3.57)

3.3 Differential forms

Almost every one of us will already have encountered differential forms and exterior algebra. Geo-
metric algebra and exterior algebra are very similar in principle, but there are some important differences.
Broadly speaking, differential forms put a focus on mathematical naturalness and abstract beauty, while
geometric algebra puts a focus on practicability and geometric intuition. In other words, exterior algebra
is for physics gods, and geometric algebra is for mortals like us.

The most important difference is that there is no metric or interior product in exterior algebra - it
is not possible to pull indices up and down as we please. Because we have a metric in GA, it does not
matter whether our vectors are covariant or contravariant. In exterior algebra, however, we always work
with covariant vectors. The basis covariant vectors, also called one-forms, are denoted

dx1, dx2, · · · , dxn. (3.58)

In our notation, they are just the basis vectors with raised indices:

e1, e2, · · · , en. (3.59)

In exterior algebra, k-vectors are called k-forms. For instance, the bivector

B = e1 ∧ e2 (3.60)
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is equivalent to the 2-form

B = dx1 ∧ dx2. (3.61)

In differential geometry, pseudoscalars are called top-forms. The exterior derivative ∂ ∧X is denoted

dX (3.62)

in exterior algebra. The commonly given definition for dX,

dXi1i2···ik+1 = (k + 1) ∂[i1Xi2···ik+1], (3.63)

is just the tensor notation for the expression ∂ ∧X.
The greatest problem with differential forms is their lack of an interior product, and, as a con-

sequence, a lack of an interior derivative. To remedy this, exterior algebra defines the so-called Hodge
dual ∗X. It turns a k-vector X into an n − k-vector ∗X, where n is the number of dimensions. Its
definiton is:

(∗X)i1i2·in−k
=

1

k!
ϵ

in−k+1in−k+2···in
i1i2···in−k

Xin−k+1in−k+2···in . (3.64)

This definition seems pretty intimidating, and the standard way of teaching it is completely devoid of
any geometric intuition. This is part of the problem - there are good abstract mathematical reasons to
define the Hodge dual the way we do, but they are only accessible to the initiates of expert differential
geometry. Everyone else mostly just learns this definition by heart and hopes to never have to use it
again.

Luckily, we have geometric algebra now. Let us take a step back and think about which parts of this
definition we know already. The pseudoscalar symbol ϵ is the tensor notation for the pseudoscalar I, so
it looks a bit like we’re taking the interior product between the pseudoscalar I and the k-vector X. But
that’s not quite it yet - the index contractions in (3.64) are not in sandwich order like in (3.55).

But luckily, X is totally antisymmetric, so we can rearrange them into sandwich order. The first
index of X we are pulling to the left will take (k − 1) permutations. The next one will take (k − 2)
permutations. This goes on until we have performed

(k − 1) + (k − 2) + · · ·+ 2 + 1 =
k(k − 1)

2
(3.65)

permutations, and the expression for the Hodge dual reads:

(∗X)i1i2·in−k
= (−1)

k(k−1)
2

1

k!
ϵ

in−k+1in−k+2···in
i1i2···in−k

Xin···in−k+2in−k+1
. (3.66)

This looks exactly like the interior product in tensor notation (with lowered indices). We can now
translate the definition of the Hodge dual of a k-vector into GA:

Hodge dual in GA

∗X = (−1)
k(k−1)

2 IX. (3.67)

If we are careful with the signs, we can construct a kind of “interior product surrogate” with the Hodge
dual, as we will see in the electrodynamics chapter when translating the differential form electrodynamic
equations. However, in general, we have no reason to use the Hodge dual - everything gets a lot easier
with a metric.
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3.4 Transformation matrices

In the last chapter, we have seen how we can describe rotations with rotation bivectors Θ, rotors

R = exp(Θ/2), (3.68)

and the rotor law

v′ = R̃vR. (3.69)

The normal formalism is somewhat different. Instead of rotors, we use rotations matrices M =M i
j .

They are linear maps mapping vectors to other vectors:

v′i =M i
j v

j . (3.70)

Those matrices can also be written as matrix exponentials:

M = exp
(
Tiθ

i
)
, (3.71)

where

T1 =

0 0 0
0 0 1
0 −1 0

 (3.72)

T2 =

0 0 −1
0 0 0
1 0 0

 (3.73)

T3 =

 0 1 0
−1 0 0
0 0 0

 (3.74)

are the generators of SO(3) and θi are the components of the rotation “vector”. For a specific θi, this
results in the generator matrix

Tiθ
i =

 0 θ3 −θ2
−θ3 0 θ1

θ2 −θ1 0

 (3.75)

Now, let’s try to make sense of this with geometric algebra. The first thing we note is that the rotation
axial vector is actually a bivector Θ = Iθ:

Θ = θ3e12 + θ1e23 + θ2e31 (3.76)

Its tensor components are:

Θ12 = −Θ21 = θ3 (3.77)

Θ23 = −Θ32 = θ1 (3.78)

Θ31 = −Θ13 = θ2 (3.79)

So we would rewrite the above matrix as

Tiθ
i =

 0 Θ12 −Θ31

−Θ12 0 Θ23

Θ31 −Θ23 0

 = Θij . (3.80)

This is just the tensor notation for the rotation bivector Θ! We can see that the SO(3) generator matrices
Ti and the contraction Tiθ

i are just a really roundabout way to denote a bivector without calling it a
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bivector. Then, the rotation matrix is the matrix exponential of the tensor notation of the rotation
bivector.

We can also do this the other way around: We can obtain the rotation matrix M i
j from a rotor by

calculating

Rotation matrix corresponding to a rotor

M i
j = ei · (R̃ejR). (3.81)

We will rarely need this formula in practice - after all, we want to stop using rotation matrices. It is
still useful though to learn about how rotation matrices interlink with geometric algebra.

When we apply a rotation matrix M to a vector v, it transforms like

v′ =Mv, (3.82)

or in index notation:

v′i =M i
j v

j . (3.83)

Vectors are rank-1 tensors. The above transformation law is a special case of the tensor transformation
law. In general, rank (k, l) tensors transform like

Tensor transformation law

T ′i1i2···ik
ik+1···ik+l

=M i1
j1
M i2

j2
· · ·M ik

jk

(
M−1

) jk+1

ik+1
· · ·
(
M−1

) jk+l

ik+l
T ′j1j2···jk

jk+1···jk+l
,

(3.84)

one rotation matrix for every index. Upstairs (contravariant) indices transform with the normal
rotation matrix, and downstairs (contravariant) indices transform with the inverse rotation matrix. For
instance, if we were to rotate a trivector T ,

T ′ = R̃TR (3.85)

would transform like

T ′ijk =M i
lM

j
mM

k
nT

lmn, (3.86)

the tensor transformation law for a rank (3, 0) tensor. However, if we pulled down one of the indices
(T ij

k ), we’d have use the inverse for it:

T ′ij
k =M i

lM
j
m

(
M−1

) n

k
T lm

n . (3.87)
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Chapter 4

Geometric algebra of spacetime

There is quite a large number of quotes
falsely attributed to me. Sadly, people
misattribute quotes to me almost as often as
they misattribute quotes to Albert Einstein.

Confucius

Chapter summary

• Special relativity unifies 1D time and 3D space into 4D spacetime.

• Four-vectors are constructed by combining one timelike quantity and one spacelike quantity.

• The geometric algebra of spacetime, or spacetime algebra (STA) consists of four basis vectors γµ.
The timelike basis vector γ0 squares to (γ0)

2 = +1, and the spacelike basis vectors γi to (γi)
2 = −1.

• Lorentz boosts are just a special kind of rotation - hyperbolic rotations. In this context, we call
normal rotations “circular rotations”.

• The Dirac gamma matrices are a matrix representation of the spacetime algebra.

• The acceleration four-vector is always orthogonal to the velocity four-vector. We can use the
bivector a = AU to handle the resulting mathematical difficulties.

• Relativistic angular momentum decomposes into circular momentum (what we’re used to), and
hyperbolic momentum (a new kind of angular momentum).

• The space-time split links together non-relativistic and relativistic physics.
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4.1 Basics

4.1.1 Foundations of special relativity

Special relativity is often perceived as an arcane science only accessible to geniuses - and it doesn’t exactly
help that many physics curriculae prioritize other topics over relativity, for instance electromagnetism or
quantum mechanics. We, however, want to show the reader that relativity doesn’t need to be feared at
all. Even though the historical development of relativity can be very complex and confusing, it becomes
very simple to grasp its axiomatic foundations if one uses geometric algebra.

The basic axioms of special relativity can be summarized as follows:

• In addition to the three usual spatial dimensions x, y and z, we add in time t as the fourth (or
zeroth) dimension. Vectors now do not consist of three, but of four elements.

• Normally, the three spatial unit vectors square to +1. We redefine them to square to −1. The unit
vector pointing in the time direction squares to +1.

Based on these axioms, we are going to build the so-called spacetime algebra (STA). It is okay if you
do not understand them yet - we are going to explain them in the next few subsections.

4.1.2 Four-vectors

Previously, the basis vectors of our geometric algebra space were

e1, e2, e3.

Now, to construct the geometric algebra of spacetime, we add in a zeroth basis vector to represent
time:

γ0, γ1, γ2, γ3.

An arbitrary four-vector xµ can be written as

x = xµγµ (4.1)

in this formalism, analogously to the three-dimensional space algebra.
However, this comes with a catch. In the space algebra, all the basis vectors square to one (e2i = 1),

but in spacetime algebra, we define

STA basis vector squares

(γ0)
2 = 1 (4.2)

(γ1)
2 = (γ2)

2 = (γ3)
2 = −1. (4.3)

This means that an arbitrary vector a = aµγµ will square to:

a2 = (a0)2(γ0)2 + (a1)2(γ1)
2 + (a2)2(γ2)

2 + (a3)2(γ3)
2 (4.4)

= (a0)2 −
∑
i

(ai)2. (4.5)

In space algebra, non-zero vectors always square to positive values (a2 > 0). In STA, however, we have
to distinguish between three cases:

• a2 > 0: In this case, a is called a timelike vector. In this case, T =
√
a2 is called the proper

time of a1

1Proper time is normally called τ in the literature, but since we use τ = 2π, we call it to T to avoid confusion.
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• a2 < 0: In this case, a is called a spacelike vector. In this case, s =
√
−a2 is called spacelike

separation.

• a2 = 0: In this case, a is called a lightlike or null vector.

4.1.3 Natural units

The most important example of a four-vector is the time-position vector x. It describes the time and
location of an event - its time component specifies at what time an even takes place, and its three space
component specifies the location of the event:

x = tγ0 + xiγi (4.6)

= xµγµ. (4.7)

We will also write four-vectors as a combination of a time component and a spatial vector:

Time-position vector

x = (t,x) (4.8)

For instance, to describe the first nuclear explosion in history, we would write:

x = (July 16, 1945;Trinity Site, New Mexico, Earth). (4.9)

However, please don’t picture this as a combination of two quantities, but rather as a single point in
a four-dimensional space. The way we humans have evolved has led us to perceive time and space
fundamentally differently, but the core point of special relativity is that there is not that much of a
difference - they are both dimensions of spacetime.

This should raise some eyebrows. The time component has the unit “second”, while the space compo-
nent has the unit “meters”. How are we supposed to add meters onto seconds? The answer is simple: In
special relativity, meters and seconds are just two different units for the same quantity - “time-length”,
which measures distances in spacetime. The difference between seconds and meters really just is like the
difference between meter and feet. Just like there is a conversion factor to convert feet into meters,

1 foot

1 meter
= 0.3048 (4.10)

there is a conversion factor to convert seconds and meters into each other:

Natural units

1 second

1 meter
= 299 792 458 (4.11)

This number is better known as the speed of light. The reason for this is simple: In special relativity,
the speed of light is 1 by definition. When we measure it with our backwards units of seconds and meters,
we obtain:

c := 1 = 299 792 458 m/s (4.12)

In order for this to work out, the conversion ratio s/m needs to be 299 792 458.
It is somewhat inconvenient to have two separate units for the same thing. Just like the civilized world

got rid of feet, special relativity got rid of seconds. Instead, we measure time in meters. For instance,
instead of saying “The bus is going to arrive in three minutes”, we would calculate c · 180s = 54Gm and
say “The bus is going to arrive in 54 gigameters”.
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4.1.4 Examples of four-vectors

We are now going to take a look at various four-vectors to get a feeling for them. We start with the
time-position four-vector.

Events

We have already given an example of a so-called absolute event four-vector:

x = (July 16, 1945; Trinity Site, New Mexico, Earth). (4.13)

We call this vector “absolute” because it describes a specific point in spacetime. In contrast, relative
event four-vectors describe space-time separations between two events. From everyday life, we are already
familiar with some types of them:

Purely temporal relative four-vectors describe time separation. For instance, suppose we were standing
at the bus stop with the bus arriving in three minutes. There are two relevant absolute four-vectors here:
The current event

x0 = (now, here), (4.14)

and the event of the bus arriving

x1 = (now + 3 minutes, here). (4.15)

The relative2 four-vector describing the separation between these two events is

x = x1 − x0 = (3 minutes,0) = (54 · 109, 0, 0, 0) m. (4.16)

If we square this vector, we find that we get a positive result:

x2 = (54 · 109)(γ0)2 = (54e9)2 > 0. (4.17)

This is the reason for why we call vectors x with x2 > 0 “timelike” - they describe separations in time.
The quantity

√
x2 has a nice physical meaning: If an observer were to move along this vector through

space-time, it would take a subjective time of
√
x2. This quantity is called the proper time T =

√
x2. It

is called “proper” because its value is the same, no matter the coordinate system. This is also valid for
two events that are separated spatially - in that case, the observer has to move through space.

In contrast, let’s suppose that we are late to the bus stop, and the bus is still departing while we still
are 100m away from the bus stop along the x-axis. This separation four-vector would look like

x = (0, 100m, 0, 0). (4.18)

This vector would square to something negative:

x2 = (100m)2(γ1)
2 = −(100m)2 < 0 (4.19)

This is why we call vectors x with x2 < 0 “spacelike” - they describe separations in space. The quantity√
−x2 describes the normal, spatial distance between two points we are used to from classical physics.

This is also valid for points that do not happen at the same time coordinate - in this case,
√
−x2 describes

why
The physical difference between timelike, lightlike and null vectors is perhaps best understood by

looking at a spacetime diagram where the time axis is depicted geometrically alongside one or two3 space
axes - see Figure 4.1.

If a four-vector U = Uµγµ describes the velocity of an object, the three cases respectively have the
following physical meanings:

2It should be noted that the vectors we call “absolute” are actually relative too - the time component is defined relative
to an arbitrary moment in time, and the space component is defined relative to Earth. However, in curved spaces like in
general relativity, this does not work out anymore - then, absolute points in spacetime and relative vectors are two distinct
mathematical concepts.

3We’d have a hard time drawing full 1+3D spacetime diagrams, so we usually ignore one or two space axes.
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γi

γ0

Future

Past

Past

timelike
spacelike
lightlike

Figure 4.1: A simple spacetime diagram showing the difference between timelike, spacelike, and lightlike
vectors. The dashed lines represent the path of a light pulse emitted or absorbed at the origin. The wavy
line represents the path a moving object might take.

• timelike U : U describes a massive object moving slower than the speed of light.

• lightlike U : U describes a massless object moving at the speed of light.

• spacelike U : U describes an object moving faster than the speed of light. Currently, no such objects
(“tachyons”) are known.

Spacelike vectors are mostly used to describe spacelike separations between two events - i.e. the
separation between two events occuring at the same time.

Four-velocity

The next type of four-vector we are going to examine is the velocity four-vector U = Uµγµ. Its components
tell us how much the time-position of an object changes per unit of proper time. This is related, but not
identical to the concept of classical velocity v:

The time component U0 of describes how fast the time coordinate of the object changes per proper
time of the object. For instance, if we watch a spaceship flying past Earth with near the speed of light,
its passengers would experience time a lot more slowly than we do. The factor γ by which the astronauts
experience time more slowly than we is given by

γ =
1√

1− v2
(4.20)
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where v is the classical velocity of the spaceship. Remember that since meters and seconds are just
different units for the same thing, v is dimensionless4. We can thus write that

U0 = γ. (4.21)

The classical velocity v measures how fast the space coordinates change per unit of time coordinate.
Therefore, to obtain the spatial parts of the four-velocity U , we need to write:

U i = γvi. (4.22)

The full four-velocity is:

Four-velocity

U = (γ, γv). (4.23)

A still-standing object with v = 0 only moves through time:

U = (1,0). (4.24)

In general, U always squares to 1:

U2 = 1. (4.25)

For this reason, we call these U timelike. This relation has a physical interpretation: U describes
spacetime separation per unit of proper time.

√
U2 describes the proper time an observer moving along

U experiences. But since U precisely describes separation per proper time,
√
U2 = 1. Therefore, U2 = 1.

However, the story looks different for objects moving at the speed of light. Objects moving at the
speed of light do not experience time (for v → 1, γ → ∞). Therefore, we cannot define a four-velocity of
light.

Four-momentum

The four-momentum unites the classical concepts of energy and momentum. For massive objects, it is
given by:

Four-momentum

p = mU (4.26)

where m is the mass of the object. Its time component describe the energy of the object, while its
space components describe the momentum:

p = (E,p). (4.27)

For a still-standing object, the four-momentum is given by:

p = (m,0). (4.28)

Classically, energy and momentum are two separate quantities, but in GR, they are two sides of the
same coin. Similarly, they have the same unit:

[p] = kg
m

s
∼ kg.[E] = J = kg

m2

s2
∼ kg. (4.29)

4We can obtain the dimensionless v by dividing the dimensionful v by c = 299 792 458m/s.
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We just need to insert the appropriate conversion factors. The famous equation E = mc2 actually is just
a mundane conversion formula from units of kilograms to units of joule. (And only valid for objects at
rest.)

p squares to m2:

p2 = m2U2 = m2. (4.30)

In fact, this is how mass is defined in special relativity - mass is the time-length of the momentum
four-vector m =

√
p2.

Unfortunately, there is a bad habit among physicists to refer to the energy p0 as the “mass”,
which is supposedly increasing while the object speeds up. This is not the case - the actual mass
is m =

√
p2. It does not change when we accelerate the object.

A photon with wavelength λ and wavenumber k = τ/λ has energy E = ℏk and 3-momentum p = ℏkn,
where n is some normal vector. The four-momentum of the photon then is

p = ℏ(k,nk). (4.31)

It squares to p2 = 0, just as we’d expect - photons are massless.

4.1.5 Brief recap on time in special relativity

The word “time” has two meanings in special relativity: Coordinate time and proper time.
Coordinate time describes time as measured by one specific observer. In other words, coordinate time

is the zeroth component x0 of a four-vector x. Evidently, this quantity is not invariant under spacetime
transformations - as we all know, observers moving at very high velocities measure time differently.
Therefore, when we want to specify the trajectory a particle takes, we can’t just write the position as
a function of coordinate time, x(t) - this would cause serious trouble if we were to change coordinate
systems.

What we do will do instead is parametrize paths by proper time. Proper time T is defined as the
time that has passed from the point of view of the object whose trajectory we are trying to describe.
If we parametrize the trajectory by some other parameter x(λ), the proper time passing for the object
between the points λ1, λ2 is:

T =

∫ λ2

λ1

dλ

(
dx(λ)

dλ

)2

. (4.32)

If we however parametrize the trajectory by T straightaway, i.e. x(T ), we get(
dx(T )

dT

)2

= 1 (4.33)

we can define the four-velocity U as the tangent vector of the trajectory:

U =
dx(T )

dT
. (4.34)

This way, we guarantee that U is a unit vector, i.e. U2 = 1. We also see that the time component of
the 4-velocity vector represents the amount of coordinate time that passes per unit proper time of the
object, and the spatial components the spatial distance the object transverses per unit proper time.
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1

γ0 γ1 γ2 γ3

γ10 γ20 γ30 γ23 γ31 γ12

γ012 γ023 γ031 γ123

γ0123

Figure 4.2: The multivector pyramid of the spacetime algebra.

4.1.6 STA multivectors

In space algebra, there were four grades: one scalars, three vectors, three bivectors/pseudovectors and
one trivector/pseudoscalar. Now, in STA, we have:

• 1 scalar

• 4 vectors

• 6 bivectors

• 4 trivectors/pseudovectors

• 1 tetravector/pseudoscalar.

Note that we have started calling trivectors and tetravectors pseudovectors and pseudoscalars respec-
tively. This is because there are three trivectors and one tetravector in four dimensions, so the tetravector
takes the role of the pseudoscalar and the trivector takes the role of the pseudovector. Elements of the
individual grades can be represented by fully antisymmetric tensors as follows:

• scalar a = a

• vector v = vµγµ

• bivector B = 1/2! Bµνγµν

• trivector/pseudovector T = 1/3! Tµνργµνρ

• tetravector/pseudoscalar P = 1/4! Pµνρσγµνρσ.

In general, tensor notation of multivectors works completely analogously to the Cl(3) case - we just have
to exchange Latin space indices (i, j, k, ...) for Greek spacetime indices (µ, ν, ρ, ...) and remember to use
the spacetime metric ηµν whenever we need to raise or lower an index. For instance, the bivector B
formed from the vectors a, b with the GA expression

B = a ∧ b (4.35)

would have the tensor analogue

Bµν = 2! a[µbν] = aµbν − bµaν . (4.36)
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γ1

γ2

γ1

γ0

Figure 4.3: A circular bivector γ1 ∧ γ2 and a hyperbolic bivector γ0 ∧ γ1. Note that the bivectors on the
respective sides are all equal to each other. The inscribed shapes describe what sort of transformation
the bivectors generate (more on that in the next section).

If we wanted to interior-multiply a four-vector U = Uµγµ onto this bivector, the expression

C = B · U (4.37)

would be translated to

Cµ = BµνUν = BµνηνλB
λ. (4.38)

In STA, there are six basis bivectors. They can be divided into the so-called hyperbolic bivectors

γ01, γ02, γ03,

and the circular bivectors

γ12, γ23, γ31.

The circular bivectors represent purely spatial two-dimensional areas just like in ordinary space algebra.
The hyperbolic bivectors, however, have no classical equivalent. They represent oriented areas with one
axis in the timelike light cone. The “circular”/“hyperbolic” terminology will become clear soon.
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Trivectors represent oriented three-dimensional volumes, but now, there is more than one possible
orientation. For instance, the trivector could be purely spatial (γ1 ∧ γ2 ∧ γ3) - this would represent a
conventional spatial volume that exists for an instant only. We will call such a trivector a spheroid
trivector. A trivector including a timelike axis, e.g. γ0 ∧ γ2 ∧ γ3, would represent a spatial area existing
for a finite amount of time. We will call such a trivector a hyperboloid trivector. In total, there are
four basis trivectors in STA, so every possible trivector can be interpreted as the volume orthogonal to a
vector in four dimensions. For this reason, we also call the STA trivectors pseudovectors. Specifically:

• spheroid trivectors ⇒ timelike pseudovectors (for instance T = Iγ0)

• hyperboloid trivectors ⇒ spacelike pseudovectors (for instance T = Iγ1)

Finally, there is only one tetravector in STA - for this reason, we call STA tetravectors pseu-
doscalarars. We conventionally define the unit pseudoscalar as

I = γ0 ∧ γ1 ∧ γ2 ∧ γ3. (4.39)

Note that we could in principle also have choosen a different order - for instance γ0132 = −I. Choosing
either +I or −I as the unit pseudoscalar amounts to choosing an orientation of the space we are working
with (either right-handed or left-handed).

The STA pseudoscalar anticommutes with vectors, commutes with bivectors and anticommutes with
trivectors:

Iγµ = −γµI (4.40)

Iγµν = γµνI (4.41)

Iγµνρ = −γµνρI (4.42)

4.1.7 A note on the Dirac gamma matrices

Those who have already studied the Dirac equation will have probably recognized the notation we have
introduced in this section. The Dirac gamma matrices are conventionally defined in terms of the Pauli
matrices σi as

γ0 =

(
0 12×2

12×2 0

)
(4.43)

γi =

(
0 −σi
σi 0

)
. (4.44)

They are just a matrix representation of the spacetime algebra, similar to how the Pauli matrices are a
representation of the space algebra5. Any expression composed of sums and products of Dirac matrices
can be interpreted as an STA multivector. Similarly to Wolfgang Pauli, Paul Dirac himself did not realize
the geometric significance of these matrices - this connection was made by David Hestenes.

5To be precise, they represent the complexified spacetime algebra, in which the coefficients of k-vectors are complex
number-valued. The reason for that is that Dirac fermions are naturally charged, i.e. exhibit U(1) gauge invariance - and
complex numbers are precisely what is needed to represent the U(1) group.
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4.2 Spacetime rotations

In this section, we are going to learn how to describe Lorentz transformations in geometric algebra. To
emphasize the geometric nature of them, we are going to use a slightly different terminology. Conven-
tionally, Lorentz transformations are divided into “rotations” and “Lorentz boosts”. However, we are
going to see that in spacetime algebra, Lorentz boosts are just a special type of rotation and can be
described by rotors. Hence, we will call the “normal” rotations circular rotations, and Lorentz boosts
hyperbolic rotations. Lorentz transformations in general will be referred to as spacetime rotations.

4.2.1 Circular rotations

The circular bivectors γij generate rotations just like their Cl(3) analogues eij . There is just one small
caveat: The spacelike basis vectors square to −1, so the basis bivectors in STA do not generate positive
(counterclockwise), but negative (clockwise) rotations. Consider the following example: The Cl(3) rotor

R =
1√
2
(1 + e12) (4.45)

describes a positive 90◦ rotation along the xy plane:

R̃e1R = e2. (4.46)

To translate this rotor to STA, we need to use the circular bivector γ12. A first guess for the translation
of R into STA might be

L =
1√
2
(1 + γ12) , (4.47)

but checking it reveals that

L̃γ1L =
1

2
(γ1 + γ211 + γ112 + γ21112) = −γ2 (4.48)

i.e. the rotor L performs a negative rotation along the xy plane. This is because γ1 and γ2 square to -1.6

The correct translation of R into STA thus is:

L =
1√
2
(1− γ12) . (4.49)

This is an important point, so let us emphasize it:

The STA circular bivectors γij generate negative rotations. The equivalent of the spatial bivector
eij is the STA bivector −γij = γji, which generates positive rotations.

Generally speaking, the STA equivalent of a Cl(3) rotation around some bivector eij by an angle of θ

R = exp
(eij

2
θ
)
= cos(θ/2) + eji sin(θ/2) (4.50)

is

L = exp
(
−γij

2
θ
)
= cos(θ/2)− γij sin(θ/2). (4.51)

The bivector exponential works exactly like in the Cl(3) case, because the STA circular bivectors square
to −1 as well. For instance,

(γ12)
2 = γ1212 = −γ1221 = γ11 = −1 (4.52)

Apart from this subtlety, spatial rotations in STA work just as we’d expect based on our three-
dimensional intuition. We will call the rotors and rotations generated by the circular bivectors γij
circular rotations.

6This is the reason for why we drew the swirls inside the circular bivector in Figure 4.3 in the clockwise sense.
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cosh(η) sinh(η) tanh(η)

Figure 4.4: The hyperbolic trigonometric functions.

4.2.2 Hyperbolic rotations

We have seen that the circular bivectors γij generate circular rotations. In contrast, the hyperbolic
bivectors γ0i generate hyperbolic rotations - conventionally called Lorentz boosts. We call them
hyperbolic rotations to emphasize that boosts really are nothing but rotations of the time and space
dimensions into each other. However, there are some important differences - for instance, we cannot
expect a large enough boost in one direction to return the system to its original state. In the following,
we are going to examine the differences between the circular rotations and hyperbolic rotations.

Contrary to the circular bivectors, the hyperbolic bivectors square to +1. For instance,

(γ01)
2 = γ0101 = −γ0110 = γ00 = +1 (4.53)

This means that the power expansion of a bivector exponential now resolves to

L = exp
(γ0i

2
η
)
=

∞∑
n=0

(γ0i η/2)
n

n!
(4.54)

=

∞∑
n=0

(γ0i)
n (η/2)

n

n!
(4.55)

=

( ∞∑
n=0

(η/2)2n

(2n)!

)
+ γ0i

( ∞∑
n=0

(η/2)2n+1

(2n+ 1)!

)
(4.56)

= cosh(η/2) + γ0i sinh(η/2), (4.57)

where cosh and sinh are the hyperbolic trigonometric functions (see Figure 4.4). They describe hyperbolic
rotations - Figure 4.5 shows how hyperbolic rotations describe bectors being moved along hyperbolae.

The parameter η is the hyperbolic analogue to the regular, circular angle. We call it the hyperbolic
angle. It is also called the hyperbola parameter, boost parameter, or rapidity.

Let’s consider the timelike unit vector U = γ0 (i.e. a still-standing object) being boosted by the
hyperbolic rotor

Hyperbolic rotation

L = exp
(γ03

2
η
)
= cosh(η/2) + γ03 sinh η/2. (4.58)

This is a boost along the z axis, i.e. a hyperbolic rotation in the tz plane. We obtain:

L̃γ0L = cosh(η)γ0 + sinh(η)γi (4.59)
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γi

γj

v

L̃vL

γi

γ0

v

L̃vL

Figure 4.5: The difference between circular rotations and hyperbolic rotations. The vector v might for
instance represent the 4-velocity of an object moving through spacetime. In the top diagram, the 4-
velocity is being rotated along a purely spatial plane, and in the top diagram, it is being rotated from
the time axis to the space axis. In both cases, the 4-magnitude v2 = vµv

µ stays invariant - rotations
are magnitude-preserving per definition. The mathematical way to state this is that both circular and
hyperbolic rotations are elements of the special orthogonal group SO(1, 3).

Its time component cosh(η)γ0 represents the amount of coordinate time passing per unit subjective time
of the object. The space component sinh(η)γ3 represents the amount of coordinate distance the object
moves along the z axis per unit subjective time. Therefore, the classical 3-velocity magnitude of the
boosted object is

v =
γ3 · (Lγ0L̃)
γ0 · (Lγ0L̃)

=
sinh η

cosh η
= tanh η. (4.60)

This relation describes how the hyperbolic angle relates to the velocity we boost our reference frame by.

Velocity and hyperbolic angle

v = tanh(η) (4.61)

For small velocities, v ≈ η, but once η becomes very large, v asymptotically approaches the speed of
light c = 1. In other words: The components U0, U3 of the four-velocity can get arbitrarily large, but
the classical speed v = U3/U0 a bystander would measure can’t exceed c = 1.

4.2.3 Rotations bivectors revisited

In three dimensions, rotations bivectors consisted of three components,

Θ =
1

2!
Θijei ∧ ej = Θ12e12 +Θ23e23 +Θ31e31. (4.62)

Now, in 3+1 dimensions, there are six possible bivectors - three hyperbolic and three circular - so our
new spacetime rotation bivector Ξ (uppercase xi) has six components:

Ξ =
1

2!
Ξµνγµ ∧ γν (4.63)

We can relate this STA bivector to the hyperbolic angles and classical circular rotational angles:

Ξ = ηiγ0i −
1

2!
Θijγi ∧ γj (4.64)
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Mind the minus in front of the circular part. This is because the STA circular bivectors generate negative
rotations, as discussed previously.

Our treatment of rotation matrices from the last chapter carries over 1:1 to relativistic bivectors.
Previously, we saw how the three generators Ti of SO(3) are just the matrix/tensor representations of
the bivectors. Now, we have six generators and six matrices representing them (conventionally denoted
Mµν). However, things get somewhat messy because we constantly need to raise and lower indices with
the spacetime metric ηµν . Spacetime algebra clearly is the superior formalism here.
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4.3 Relativistic dynamics

Now that we have seen how spacetime transformations work, we will learn how to do relativistic mechanics
in geometric algebra. First, we are going to examine relativistic acceleration and velocity addition. Then,
we are going to learn about the basics of relativistic kinematics and rotor mechanics. As a particularly
good example of how spacetime algebra simplifies calculations, we are going to learn about relativistic
orbital angular momentum.

4.3.1 Relative velocities

Classically, the relative velocity between two moving objects is calculated by subtracting their velocities,
but this does not work in special relativity for a simple reason: The relative velocity between two objects
is defined as the velocity of one of the objects as seen from the reference frame of the second one.
Classically, “boosting” an object to another reference frame just involves subtracting velocities, but as
we have seen, we need to perform a full hyperbolic rotation in special relativity for that.

Let U1, U2 be the 4-velocities of two observers. Now, we want to calculate the relative velocity
between them. Previously, we have seen that the circular angle θ between two unit 3-vectors a,b is given
by

a · b = cos(θ) (4.65)

a ∧ b = sin(θ)B, (4.66)

where B is the unit bivector describing the plane of rotation in which A and B lie:

B =
a ∧ b√

−(a ∧ b)2
. (4.67)

The angle θ can be reconstructed by calculating:

tan(θ)B =
a ∧ b

a · b
. (4.68)

Hyperbolic angles between two vectors work exactly like this. Given two four-velocity vectors U1, U2

with a hyperbolic angle η between them, we can write:

Hyperbolic parallelogram equations

U1 · U2 = cosh(η) (4.69)

U1 ∧ U2 = sinh(η)C, (4.70)

where

C =
U1 ∧ U2√
(U1 ∧ U2)2

(4.71)

is the hyperbolic bivector generating the boost that rotates U1 towards U2 (remember that U1 ∧ U2

squares to a positive number, so we had to flip the sign under the root). Therefore:

U1 ∧ U2

U1 · U2
=

sinh(η)

cosh(η)
C = tanh(η)C = |v|C. (4.72)

is a hyperbolic bivector whose magnitude is equal to the classical velocity. We can also write the bivector
|v|C as:

|v|C = vγ0, (4.73)
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γ1

γ0

U A dT

U ′′

A′′dT

Figure 4.6: Infinitesimal relativistic acceleration. The red hyperbola depicts all possible values the 4-
velocity vector of an object with mass can take (i.e. all vectors U with U2 = 1. If we want U to remain
on this hyperbola, we need to choose a vector A orthogonal to U . Note that in hyperbolic geometry, our
Euclidean intuition of “orthogonal” does not work anymore - in this diagram, U ′′ is orthogonal to A′′

just like U is orthogonal to A.

where v is the spatial classical velocity vector v = viγi. For simplicity, we are going to denote this
hyperbolic bivector as

v := vγ0 = |v|C. (4.74)

The formula for the relative velocity bivector now reads

Relative velocity bivector

v =
U1 ∧ U2

U1 · U2
(4.75)

such that v = |v|. Note that this v can never become larger than c = 1 - just like we’d expect. Don’t
be confused by the boldface v - it is indeed a hyperbolic bivector. We will explain why we chose this
notation soon.

4.3.2 Relativistic acceleration

If we were to deal with non-accelerated objects only, the systems we are studying would look pretty dull.
Therefore, the first problem we need to tackle to do relativistic dynamics is relativistic acceleration.

The four-acceleration A is defined as the derivation of U by the proper time of the object.

Relativistic acceleration

A = U̇ . (4.76)
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A direct consequence of this is that A and U have to be orthogonal to each other:

U2 = 1 (4.77)

⇒ d

dT
U2 = 0 (4.78)

= U̇U + UU̇ = 0 (4.79)

= AU + UA = 0 (4.80)

= U ·A = 0. (4.81)

This can be pictured as the requirement that A should only move U along the U2 = 1 hyperboloid - see
Figure 4.6 for a depiction.

We now accelerate a non-moving object U = γ0 with an acceleration A = Aiγi orthogonal to U . After
a short proper time dT , this results in:

U ′ = γ0 +AdT. (4.82)

After this infinitesimal step, U still approximately squares to one and thus is a valid 4-velocity vector:

U ′2 = (U +AdT )2 (4.83)

= U2 + 2U ·AdT︸ ︷︷ ︸
0

+A2(dT )2︸ ︷︷ ︸
O(dT 2)

(4.84)

= (γ0)
2 = 1. (4.85)

However, this scheme does not work out for faster U ′′ ̸= γ0 anymore - then, the new U ′′ and the
original A are not orthogonal anymore, so we would need to boost A into the reference frame of U ′′ = γ0
first (see Figure 4.6). Luckily, there is an easier way to achieve this.

Consider the acceleration bivector

Acceleration bivector

a := A ∧ U = AU. (4.86)

Again, don’t be irritated yet by the boldface notation - a is indeed a hyperbolic bivector. If we take
the interior product between this bivector and a velocity 4-vector, we always get the acceleration 4-vector
we need to perform an infinitesimal acceleration. For instance, for U = γ0 and A = aγ3, we have a = aγ30
and:

a · U = aγ30 · γ0 = aγ3 (4.87)

If we instead want to accelerate an already moving object, for instance

U ′′ =
1√
3
(2γ0 + γ3) , (4.88)

we would need to use the updated acceleration four-vector

A′′ = a · U ′′ =
1√
3
(γ0 + 2γ3) . (4.89)

It is easy to check that they are orthogonal to each other. The prescription A = a · U works for all U .
We now remind ourselves that an expression like a · U is basically just an infinitesimal hyperbolic

rotation along the hyperbolic bivector a = aγ30:

a · U = −
[
U,

a

2

]
, (4.90)
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Therefore, a 4-vector U infinitesimally accelerated in the direction of a for a time dT reads

U ′ = U − dT
[
U,

a

2

]
. (4.91)

This is exactly the infinitesimal rotor transformation law with a hyperbolic bivector.
Therefore, if we accelerate U for a non-infinitesimal time T with a constant acceleration a, the resulting

velocity is given by the full rotor transformation law:

U(T ) = L̃(T )UL(T ) (4.92)

with

L(T ) = exp
(
−a

2
T
)

(4.93)

= cosh
(a
2
T
)
+ γ03 sinh

(a
2
T
)
. (4.94)

The infinitesimal version of this rotor is

L(dT ) = 1− a

2
dT +O(dT 2). (4.95)

= 1 +
adT

2
γ03. (4.96)

When we apply the full rotor L(T ) to the vector γ0, we get:

U(T ) = L̃γ0L = cosh(aT )γ0 + sinh(aT )γ3. (4.97)

We can therefore conclude that the constant acceleration of an object by an acceleration A for a proper
time T is the same as boosting the object with boost parameter η = aT . We see how the speed of light
barrier plays out - both a and T can be arbitrarily large, such that the hyperbolic angle η can grow
arbitrarily large too. However, v = tanh(η) is bounded to 1 from above and −1 from below.

4.3.3 Relativistic kinematics

The relativistic 4-momentum of an object is given by its 4-velocity multiplied by its mass:

p = mU (4.98)

The time component of p represents the energy of the object, while the space components represent the
classical 3-momentum. The derivation of 4-momentum by proper time is called the 4-force, denoted by
f :

4-force

f = ṗ. (4.99)

Therefore, thinking about 4-forces as “currents” of 4-momentum flowing from one object to another is
perfectly valid. The timelike component of F represents the kinetic energy flow between them, while the
spacelike components are the classical Newtonian force (and therefore the flow of classical 3-momentum).

With these definitions, it is easy to see that the relativistic version of Newton’s third law holds:

Relativistic Newton’s third law

f = mA. (4.100)
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Relativistic angular momentum

In three dimensions, the expression for the angular momentum bivector of a system is

IL =
∑
a

x(a) ∧ p(a). (4.101)

where x and p are the position and momentum 3-vectors, respectively. With STA, we can effortlessly
generalize this expression to four dimensions:

Relativistic angular momentum

L =
∑
a

p(a) ∧ x(a) = −
∑

x(a) ∧ p(a) (4.102)

where x and p are the position and momentum 4-vectors. We can split up this L into a purely
hyperbolic bivector N = N iγi0 and a purely circular bivector IL:

L = N+ IL (4.103)

Here, the circular components IL are the conventional 3D angular momentum bivector we are used to
from classical physics. We will call this type of relativistic angular momentum circular momentum.
We had to flip the sign of x ∧ p because the circular bivectors of the STA describe clockwise and not
counterclockwise rotations.

The hyperbolic components N have no direct analogue in classical physics. We will call them hyper-
bolic momentum7. They represent the position of the center of mass of the system at the time t = 0.
To see why, we remind ourselves that the hyperbolic components of L are formed from the wedge of the
time components of x and the space components of p, and vice versa:

N i = Li0 =
∑
a

xi(a)p
0
(a) − x0(a)p

i
(a) (4.104)

For a slow (non-relativistic) object, x0 = t and p0 = m. We therefore obtain

N i = Li0 =
∑
a

m(a)x
i
(a) − tpi(a) (4.105)

We see that at t = 0, this is just the expression for the center of mass of the system multiplied by the
total mass8:

N i =M(xCoM)i =M
1

M

∑
a

m(a)x
i
(a) =

∑
a

m(a)x
i
(a) (4.106)

where M =
∑

am(a) is the total mass of the system.
However, when the total momentum of the system is not equal to zero, the center of mass will move

over time. In fact, the time derivative of MxCoM is just the total momentum of the system:

Ṅ i =MẋiCoM =
∑
a

m(a)ẋ
i
(a) =

∑
a

m(a)v
i
(a) =

∑
a

p(a). (4.107)

So in order to calculate the “original” (t = 0) center of mass, we subtract the total momentum times
the time from the current center of mass:

N i =MxiCoM,t=0 =MxiCoM − t
∑
a

pi(a) (4.108)

=
∑
a

m(a)x
i
(a) − tpi(a), (4.109)

7Sometimes, they are also referred to as the “dynamic mass moment”
8The unit of the hyperbolic momentum therefore is position times mass. In natural units, mass is energy, and energy

E = p0 is momentum in the direction of time. Thus, hyperbolic and circular momentum have the same units.
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which is just the expression for the hyperbolic momentum components N i = L[i0]. Note that this is a
conserved quantity - it doesn’t change over time. In fact, this makes perfect sense in light of Noether’s
theorem too - just like the regular circular momentum conservation is linked to the symmetry of circular
rotations, hyperbolic momentum conservation is linked to the symmetry of hyperbolic rotations.

It is important to note that when we only apply circular rotations, the hyperbolic and circular
components of L (and any other STA bivector) stay separate. However, once we apply a hyperbolic
rotation, they get mixed. For instance, consider a system of two point masses orbiting each other in the
xy plane with zero net 3-momentum and their center of mass at x = 0. The angular momentum of such
a system would be

L = |L|γ21. (4.110)

Once we apply a boost in the y direction with the hyperbolic angle η, this becomes

L = |L|(cosh(η)γ21 − sinh(η)γ01). (4.111)

We see that a part of the circular momentum has been hyperbolically rotated into the time axis. The
resulting hyperbolic momentum describes the original location of the center of mass. You are encouraged
to draw a diagram with the γ0, γ1 and γ2 axes to depict this hyperbolic rotation geometrically.9

9In traditional math, the subject of relativistic angular momentum is notorious for being extremely complicated. It is
often not taught until advanced general relativity.
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4.4 Space-time split

The conventional four-vector formalism for SR and the classical matrix-vector formalism are two wholly
separate algebras. This means that if we want to find the classical equivalent of some given physical law,
we need to manually convert the vector expressions between these two formalisms in addition to taking
the low-energy limit.

This is not the case for geometric algebra - there is a very elegant device called the space-time split,
which links the geometric algebras of space and spacetime together seamlessly. We will derive it based
on a couple of observations.

4.4.1 The even subalgebra of Cl(1, 3)

The STA even subalgebra Cl+(1, 3) is defined as the subset of Cl(1, 3) that only contains multivectors
of even grade. This means that while the full STA contains scalars, vectors, bivectors, pseudovectors and
pseudoscalars, the even subalgebra of the STA only contains scalars, bivectors and pseudoscalars. We
call this subset a “subalgebra” because it is closed - adding or multiplying even multivectors with each
other will always result in even multivectors.

As a “basis” for the even subalgebra, we define the STA bivectors10

Even subalgebra basis

σi = γiγ0. (4.112)

such that:

σi = γi0 (4.113)

σij := σiσj = −γij (4.114)

σ123 := σ1σ2σ3 = γ0123 = I. (4.115)

We see that by multiplying the σµ bivectors with each other, we can span the whole even subalgebra
Cl+(1, 3). In total, we get:

• 1 scalar

• 3 hyperbolic bivectors σi

• 3 circular bivectors σij

• 1 pseudoscalar σ123

Furthermore, the following anticommutation relation holds:

σiσj + σjσi = 2δij (4.116)

This looks familiar to us - it is exactly the structure of Cl(3). We can reinterpret the σi as the vectors
of Cl(3) and the σij as the bivectors of Cl(3), and calculate with them as if they were ei and eij . In
mathematical language, we say that Cl+(1, 3) and Cl(3) are isomorphic.

Geometrically, we can imagine this as follows: We first single out the spacelike hyperplane of spacetime
that is orthogonal to our current γ0. Hyperbolic bivectors will intersect with that hyperplane along a line
- the vector in question. Circular bivectors, on the other hand, will completely lie inside the hyperplane.
See Figure 4.7 for an intuitive visualization. This way of reinterpreting the 4D hyperbolic bivectors as
the 3D vectors and the 4D circular bivectors as the 3D bivectors is the core of the space-time split.

10They have nothing to do with the Pauli matrices - the notation just happens to be the same because of a series of
historic accidents.
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Figure 4.7: The space-time split visualized. We can see how the 4D hyperbolic bivectors are reinterpreted
as 3D vectors, and how the 4D circular bivectors are reinterpreted as 3D bivectors. Note that the
equivalent of σ12 is not γ12, but −γ12. Intuitively speaking, this is because σ12 generates positive
rotations (equivalently to e12), but γ12 generates negative rotations.
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4.4.2 Splitting bivectors

In fact, interpreting hyperbolic bivectors of the form B = biγi0 as classical 3-vectors is not new to us at
all:

• When we treated relativistic accelerations, we found that the boosts were generated by the accel-
eration bivector a = aU , where a is a purely spatial 4-vector a = aiγi. This means that we can
interpret a = aγ0 = aiσi as a classical 3-vector with the space-time split. This makes perfect sense
- the classical acceleration is a 3-vector.

• When we calculated the relative velocity between two objects, we derived the relative velocity
hyperbolic bivector

v =
U1 ∧ U1

U1 · U2
.

Now, we can see that we have actually derived the formula for the classical velocity three-vector.

• In our treatment of the relativistic angular momentum, we saw that while the circular components
of L behave like the “normal” 3D angular momentum bivector, the hyperbolic components L[i0]

behave like a classical vector indicating the center of mass at t = 0. Using the space-time split, we
can decompose L into a 3-vector and a 3-bivector:

L = N iσi +
1

2!
ILijσij

Note again that the hyperbolic and circular components of an STA bivector mix as soon as we perform
a hyperbolic rotation. Hence, the space-time split is only useful if we commit ourselves to our current
inertial frame - otherwise, we are forced to treat STA bivectors as STA bivectors instead of as the sum
of a classical 3D vector and bivector.

4.4.3 Splitting vectors

Now that we have seen how we can easily reinterpret STA bivectors as classical vectors, it is somewhat
tempting to try to do that for STA vectors too. For instance, a relativistic 4-momentum vector p = pµγµ
decomposes two parts when we go back to classical physics: the energy E = p0, and the 3-momentum
vector p. To obtain them, we calculate:

Splitting a four-vector p

pU = E + p (4.117)

where U is the 4-velocity of the observer observing the 4-vector p. Here, the interior part of the
geometric product pU represents the energy of the object in question, while the exterior part represents
the classical 3-momentum. Conventionally, we choose U to be equal to γ0 (i.e. the current observer).
Then, the split is just

pγ0 = p0 + piσi. (4.118)

This is a combination of a scalar and a hyperbolic STA bivector, with the latter being reinterpreted as
a classical 3-vector. In general, such quantities are called split vectors.

This vector space-time split perfectly showcases the connection between relativistic and classical
physics: In special relativity, we use 4-vectors, which unify one timelike and one spacelike quantity.
Examples of such pairs include:

• 4-position x = (t, xi): Time and position
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• 4-velocity U = (γ, U i): Time velocity/time dilation and spatial velocity, where γ is the Lorentz
factor

• 4-momentum p = (E, pi): Energy and momentum

• 4-force f = (P, F i): Power and force (energy current and momentum current)

• electromagnetic 4-potential A = (ϕ,Ai): Electric potential and magnetic vector potential

• 4-current j = (ρ, ji): Charge density and current density

• etc.

The core of special relativity is to treat those quantities as components of unified 4-vectors. Classical
physics, on the other hand, splits them up into two separate quantities. The space-time split for vectors
does exactly that: It splits up a single 4-vector, for instance the 4-momentum vector p, into a sum of a
scalar and a classical 3-vector pγ0 = E + p.

To convert back from the classical E + p to a 4-vector, we calculate:

Converting the split vector back into a 4-vector

p = (E + p) · U (4.119)

where again, U is the 4-velocity of the coordinate system in which the classical quantities E and p
were measured. For instance, if we performed the measurement in the reference frame U = γ0, we convert
the split vector E + p to a four-vector p like this:

(E + p) · γ0 = Eγ0 + p · γ0 (4.120)

= Eγ0 + piσi · γ0 (4.121)

= Eγ0 + pi
1

2
(σiγ0 − γ0σi) (4.122)

= Eγ0 + pi
1

2
(γi00 − γ0i0) (4.123)

= Eγ0 + piγi00 = Eγ0 + piγi = pµγµ = p (4.124)

This procedure allows us to seamlessly link relativistic and nonrelativistic physics in general - in
practice, we can convert a relativistic law into a nonrelativistic one by inserting γ0’s in the right places.

4.4.4 Relativistic acceleration revisited

Now, it is easy to see why we previously defined relativistic 4-acceleration the way we did. By “constant
acceleration”, we meant to say that the classical 3-acceleration a = aiσi as measured by the accelerated
object should be constant thorough the whole process. If the current 4-velocity is U , this classical
3-acceleration a is equivalent to the 4-acceleration

A = a · γ0 = aiγi. (4.125)

Hence, the rotor describing an acceleration a which lasts for a proper time T is just

Relativistic acceleration rotor

L(T ) = exp

(
−aT

2

)
. (4.126)
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In other words: The classical change in 3-velocity ∆v = aT is a 3-vector, but with the space-time
split, we can reinterpret it as an STA hyperbolic bivector. This bivector gives us the plane of hyperbolic
rotation that describes the relativistic acceleration process, and its magnitude is the hyperbolic angle of
this hyperbolic rotation.
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4.5 STA geometric derivatives

In STA, we define the geometric derivative analogously to the 3D case:

STA geometric derivative

∂ = γµ∂µ (4.127)

Is is sometimes also known as the Dirac operator in quantum field theory. It behaves exactly like
the 3D geometric derivative, except for some specialities related to the hyperbolic structure of spacetime:
Most importantly, we had to pull up the index of the γµ in (4.127) to contract it with ∂µ. This means
that the spacelike basis vectors changed sign:

γ0 = γ0 (4.128)

γi = −γi. (4.129)

Therefore, our geoemtric derivative is written:

∂ = γµ∂µ = γ0∂0 −
3∑

i=1

γi∂i. (4.130)

This might seem like a bug at first, but it is a feature - the STA geometric derivative perfectly captures
the hyperbolic structure of spacetime. For instance, if we square the geometric derivative:

∂2 = ∂µ∂µ (4.131)

This operator is known as the d’Alembertian = ∂2 in conventional maths.
The interior derivative of a vector field A = Aµγµ is:

∂ ·A = ∂µA
µ (4.132)

It is somewhat comparable to the divergence in 3D, except that it also contains changes in time. Its main
use are conservation equations. To understand this better, we first consider the space-time split version
of the geometric derivative:

Geometric derivative with spacetime split applied

∂γ0 = ∂0 − ∂ (4.133)

Now, in classical physics, the statement that a charge density ρ together with a current density
j = jiσi is conserved is written as

∂0ρ = −∂ · j (4.134)

The change of the charge density in time should be equal to the influx (negative divergence) of current
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density. We can rearrange this and substitute ρ = j0:

0 = ∂0ρ+ ∂ · j (4.135)

= ∂0j
0 +

1

2
(∂j+ j̇∂̇) (4.136)

= ∂0j
0 + ∂ij

k 1

2
(σiσk + σkσ

i) (4.137)

= ∂0j
0 + ∂ij

kδik (4.138)

= ∂0j
0 + ∂ij

i (4.139)

= ∂µj
µ (4.140)

= ∂ · j. (4.141)

Therefore, in STA, the law of current conservation states that the interior derivative of the current field
is zero:

Current conservation law

∂ · j = 0 (4.142)

Any divergence in the spatial directions must be cancelled out by a divergence in the time direction.
The exterior derivative ∂ ∧ exists too in STA. We shall see how it works in the next chapter.
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Chapter 5

Electrodynamics

Now, to make a mistake is easy and natural
to man. But that is not enough. The next
thing is to correct it: When a mistake has
once been started, it is not necessary to go
on repeating it for ever and ever with
cumulative inconvenience.

Oliver Heaviside on natural units,
Electromagnetic Theory (1893)

Chapter summary

• The electromagnetic field bivector F is the bivector denoted by the antisymmetric rank 2 electro-
magnetic tensor Fµν .

• Electric fields are the hyperbolic components of F . Magnetic fields are the circular components of
F .

• With the space-time split, we can reinterpret the E-fields as 3D vectors. However, regardless of the
space-time split, B-fields are bivectors.

• In GA, the electromagnetic equation reads ∂F = j.

• We can formulate right-chiral and left-chiral plane-wave solutions with the pseudoscalar exponential
exp(∓Ik · x), respectively.

• In electrostatics, we can find solutions by using the Green’s function approach.

• Magnetic fields generated by currents and electric fields generated by charges are two very similar
phenomena - but this is obscured by traditional maths.

• The electromagnetic force f = qF ·U is the force exerted on a charged particle by an electromagnetic
field. Hyperbolic EM fields hyperbolically rotate the particle’s velocity, while circular EM fields
circularly rotate the it.
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5.1 Overview

Electromagnetism is one of the most beautiful theories ever discovered - that is, in geometric algebra. In
this chapter, we will show how the jumble of vectors, pseudovectors, tensors, minus signs and Lorentz
transformations neatly falls into place once we translate the maths to geometric algebra.

5.1.1 Traditional formalism for electromagnetism

Traditionally, all physics students start their studies of electrodynamics by learning about the electric
and magnetic “vector” fields E,B and the famous Maxwell equations. The Maxwell equations can be
divided into the homogenous Maxwell equations, in which no charges or currents appear:

∇ ·B = 0 (5.1)

∇×E = −∂tB (5.2)

and the inhomogenous Maxwell equations, which contain the charge density ρ and the current density
j:

∇ ·E =
ρ

ϵ0
(5.3)

∇×B = µ0(j+ ϵ0∂tE). (5.4)

Later, when studying relativistic electrodynamics, we conventionally introduce natural units (c =
ϵ0 = µ0 = 0). Furthermore, we learn that E and B are not vectors anymore, but components of the
antisymmetric rank-2 electromagnetic field tensor

Fµν =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 (5.5)

which then obeys the two relativistic electrodynamic equations

∂µF
µν = jν (5.6)

3 ∂[µF νρ] = 0 (5.7)

Here, (5.6) is equivalent to the two inhomogenous Maxwell equations (5.3, 5.4). It is called the inho-
mogenous electrodynamic equation. Similarly, (5.7) is equivalent to (5.1, 5.2), and hence called
the homogenous electrodynamic equation. Normally, the factor of 3 is left out - we are using it to
foreshadow an important conclusion.

In the conventional approach, there is justification for the form of Fµν whatsoever. Instead, the
expression for Fµν is just postulated, with the post-hoc justification that (5.6, 5.7) agree with the four
Maxwell equations when all components are written out. The final tensor formalism is completely devoid
of any geometric intuition.

5.1.2 Geometric formalism for electromagnetism

In the classical EM formalism, the magnetic field B is an axial 3-vector. This means that the magnetic
field normally looks like a vector, but does an additional sign flip under a parity flip, similar to the
angular momentum axial vector. We can easily see this when considering how a current loop generating
a B-field would behave under a reflection (Figure 5.1). However, in geometric algebra, we have sworn
a sacred oath to replace the concept of axial vectors with the concept of bivectors. Hence, we will stop
talking about “magnetic field vectors B” and instead describe magnetic fields with the bivector
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e′2
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B = −Be3
j

B = Be3

j

reflection

IB = Be12

j

IB = Be12

j

Figure 5.1: The behaviour of B-fields under reflections. We see that it makes much more sense to
describe B-fields as bivectors orthogonal to the traditional magnetic “vector” B. To avoid confusion, we
will denote the B-field bivector as IB := IB.

Magnetic field bivector

IB = IB (5.8)

i.e. the bivector orthogonal to the original B-field vector.
In contrast, E-fields still are vectors. It is somewhat tempting to add E and IB to obtain the mixed

multivector

F = E+ IB (5.9)

= Eiei +
1

2!
IBijeij . (5.10)

Here, the vector grade of F is the E-field, and the bivector grade is the B-field. IBij are the components
of the bivector IB.

It might puzzle the reader why we can simply add together the electric and magnetic field into a
single quantity, even though they have two different units. It turns out that when we use natural units
in which m and s are two units for the same quantity such that c = 1, their units (V/m and T ) are the
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same. If we weren’t using natural units, we’d have to write:

F = E+ cIB. (5.11)

Previously, we have learned that we can use the space-time split to reinterpret STA hyperbolic bivec-
tors as classical vectors, and STA circular bivectors as classical bivectors. We can also do this the other
way around - we reinterpret our newly defined F as an STA bivector:

Electromagnetic field bivector

F = E+ IB (5.12)

= Eiσi +
1

2!
Bijσij (5.13)

= Eiγi0 −
1

2!
Bijγij (5.14)

Now, electric fields are hyperbolic STA bivectors, and magnetic fields are circular STA bivectors. We
can see that the components Fµν of this bivector are:

F i0 = −F 0i = Ei (5.15)

F ij = −IBij , (5.16)

or, more succinctly in matrix notation,

Fµν =


0 −E1 −E2 −E3

E1 0 −IB12 IB31

E2 IB12 0 −IB23

E3 −IB31 IB23 0

 (5.17)

=


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (5.18)

This is where the electromagnetic field “tensor” Fµν comes from. It is just the components of the STA
electromagnetic field bivector F . Its hyperbolic components are the electric fields, and its circular
components are the magnetic fields. With the space-time split, we can interpret the hyperbolic part as
a classical vector, and the circular part as a classical bivector/pseudovector.

5.1.3 The electrodynamic equation

Next, we are going to translate the electrodynamic equations into geometric algebra.
The index contraction in the inhomogenous electrodynamic equation

∂µF
µν = jν (5.19)

is the component representation of the interior product between the vector derivative ∂ and F , or in
other words, the interior derivative of F :

∂ · F = j (5.20)

with j = jµγµ. On the other hand, the index diatraction in 3 ∂[µF νρ] = 0 is the exterior derivative of F :

∂ ∧ F = 0. (5.21)
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The interior derivative ∂ ·F yields a vector, while the exterior derivative ∂ ∧F yields a trivector. We
can therefore simply combine them into a single multivector equation without losing any information:

Electrodynamic equation

∂F = j, (5.22)

the GA electrodynamic equation. This simplification of all four Maxwell equations into such a short
and beautiful statement perhaps is the main triumph of geometric algebra. And it’s not shorthand
notation - this is the form we are actually going to use for practical computations in electromagnetism.

5.1.4 A note on differential forms

In exterior calculus, the homogenous and inhomogenous electrodynamic equations read

dF = 0 (5.23)

∗d ∗ F = −j. (5.24)

The first equation is just the exterior derivative, ∂ ∧ F = 0. The second one is a bit more difficult to
translate, though: We remember the GA translation of the Hodge dual of a k-vector,

(∗X) = (−1)
k(k−1)

2 IX (5.25)

Specifically, in geometric algebra, this means that for a vector V , a bivector B, and a trivector T :

∗V = IV (5.26)

∗B = −IB (5.27)

∗T = −IT (5.28)

In GA notations, these expressions translate to

∂ ∧ F = 0 (5.29)

I∂ ∧ (−IF ) = −j (5.30)

Rewriting the latter equation reveals that:

−I∂ ∧ IF = −I 1
2
(∂̇IḞ + IḞ ∂̇) (5.31)

= −1

2
(I∂̇IḞ + I2Ḟ ∂̇) (5.32)

=
1

2
(∂̇I2Ḟ + I2Ḟ ∂̇) (5.33)

= −1

2
(∂̇Ḟ − Ḟ ∂̇) (5.34)

= −∂ · F. (5.35)

Therefore, (5.24) translates to

∂ · F = j, (5.36)

in GA, such that the two equations are equivalent to ∂F = j. However, we can directly see the problem
with them - exterior algebra does not have the concept of an interior derivative, so we have to use two
successive Hodge duals to emulate it. Also, in practical terms, the Hodge dual is very difficult to evaluate
by hand because of the abundance of minus signs in its derivation.
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∇ ·E = ρ
ϵ0

∂µF
µν = jν ∗d ∗ F = j ∂ · F = j

∂F = j
∇×B = µ0(j+ ϵ0∂tE)

∇ ·B = 0
3 ∂[µF νρ] = 0 dF = 0 ∂ ∧ F = 0

∇×E = −∂tB

Figure 5.2: The electromagnetic equation in its various formulations.

5.1.5 Gauge fields

Electromagnetism is also commonly formulated in terms of a gauge field A = Aµγµ. In literature, this
is also called the “electromagnetic four-potential” or “gauge potential”. It is the four-vector made up of
the electric potential ϕ and the magnetic vector potential A = Aiσi:

A = (ϕ+A)γ0 (5.37)

= ϕγ0 +Aiγi (5.38)

= Aµγµ. (5.39)

The electromagnetic field bivector F is derived from A by taking the exterior derivative:

Electromagnetic field bivector in terms of the gauge field

F = ∂ ∧A. (5.40)

In traditional maths, this relation is commonly known in its component form

Fµν = 2! ∂[µAν] = ∂µAν − ∂νAµ. (5.41)

The field strenght F is an unambiguous physical parameter we can measure in a lab - for instance,
we can measure is hyperbolic components with F i0 = Ei with voltmeters and its circular components
F ij = −IBij with Hall sensors. The situation is a bit more complicated for A, though. We cannot
measure e.g. the electric potential A0 = ϕ - we can just measure differences of ϕ from place to place
(these differences are called electric fields). For instance, the two electric fields ϕ(x) and ϕ′(x) = ϕ(x)+ϕ0
are physically identical.

This principle is called gauge symmetry. In its most general form, it states that if α is some scalar
field, the two gauge fields A and A′ = A + ∂α are physically identical. This can be seen by calculating
the corresponding field strengths:

F = ∂ ∧A (5.42)

F ′ = ∂ ∧A′ (5.43)

= ∂ ∧ (A+ ∂α) (5.44)

= ∂ ∧A+ ∂ ∧ ∂ ∧ α (5.45)

= ∂ ∧A = F (5.46)

because the double exterior derivative ∂ ∧ ∂∧ is always zero (remember that for a scalar, ∂α = ∂ ∧ α).
Because of the huge variety of gauge fields A representing the same physical field F , we commonly

use a procedure called gauge fixing to simplify the resulting equations. The most commoly used gauge
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fixing is the so-called covariant gauge (sometimes also called Loren(t)z gauge). It requires that our
gauge field A fulfills the condition

∂ ·A = 0, (5.47)

or ∂µA
µ = 0 in component notation. It turns out that for every gauge field A, we can find an α such

that A′ = A+ ∂α fulfills the gauge condition. Such a field A′ is referred to as gauge-fixed.
In terms of a gauge field A, the electrodynamic equation ∂F = j reads

Electrodynamic equation in terms of the gauge field

∂(∂ ∧A) = j (5.48)

Using ∂ = ∂ ·+∂∧, we can rewrite this slightly as

∂(∂ − ∂·)A = j (5.49)

= ∂2A− ∂(∂ ·A) = j (5.50)

In tensor notation, the first term reads

(∂2A)µ = ∂λ∂
λAµ (5.51)

= ∂λ∂
ληµνAν . (5.52)

The second term is the gradient of the scalar field ∂ ·A:

(∂(∂ ·A))µ = (∂(∂νAν))
µ (5.53)

= ∂µ(∂νAν). (5.54)

Now, we are ready to write (5.48) in tensor form:

(∂λ∂
ληµν − ∂µ∂ν)Aν = jµ. (5.55)

The reason for why this equation looks so complicated is that there is no easy way to express the geometric
derivative in (5.48) in tensor notation.

If we gauge-fix A to the covariant gauge ∂ ·A = 0, we know that ∂ ∧A = ∂A and hence

Gauge-fixed electrodynamic equation in terms of the gauge field

∂2A = j. (5.56)

Note that ∂2 is a fully scalar operator. It is also called the d’Alembertian operator - traditionally
denoted □ = ∂λ∂

λ.
This is a very important result - it means that we can treat the different index components of A and

j as fully separate:

∂2Aµ = jµ. (5.57)

This is very useful in the Green’s function approach to solving the differential equations. We shall soon
see why.

It should also be noted that the homogenous electrodynamic equation ∂ ∧F = 0 is automatically
fulfilled if we define F = ∂ ∧ A, because two successive exterior derivatives always yield zero.
Viewed slightly differently, the homogenous electrodynamic equation ∂ ∧ F = 0 is the statement
that there is a gauge field A corresponding to F .
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5.2 Solutions to the electromagnetic equation

Now, we are going to find solutions to the electrodynamic equation. We are first going to take a look at
wave solutions in a vacuum, and then present the Green’s function method for solving the electrodynamic
equation for an arbitrary current density.

5.2.1 Plane-wave solutions

The simplest case of the electrodynamic equation ∂F = j is the vacuum case - the case where j = 0
everywhere. The resulting equation ∂F = 0 is very easy to solve with a plane-wave approach. Normally,
imaginary numbers are used for this purpose. We are going to show that the introduction of imaginary
numbers is not necessary with GA.

But first, we have to introduce the pseudoscalar exponential exp(Iθ). Because I2 = −1, this evaluates
to:

exp(Iθ) = cos(θ) + I sin(θ). (5.58)

We are going to use this exponential to write our plane-wave solutions. We make the approach

Left-chiral plane-wave

F (x) = F0 exp(Ik · x), (5.59)

where F0 is some STA bivector to be determined and k is the 4-wavevector specifying the direction
of propagation of the light:

k = ωγ0 + kiγi. (5.60)

To check whether this is a solution, we take the geometric derivative:

∂F (x) = ∂F0 exp(Ik · x) (5.61)

= γµ∂µF0 exp(Ik · x) (5.62)

(5.63)

The basis bivector F0 is constant. The derivative of the pseudoscalar exponential is

∂µ exp(Ik · x) =
d(k · x)
dxµ

d exp(Iθ)

dθ
|θ=k·x = kµI exp(Ik · x). (5.64)

Therefore, the geometric derivative of F (x) evaluates to:

∂F (x) = γµF0∂µ exp(Ik · x) (5.65)

= γµF0kµI exp(Ik · x) (5.66)

= kF0I exp(Ik · x) (5.67)

= kIF0 exp(Ik · x) (5.68)

= kIF (x) (5.69)

Note that we could shift around the ∂µ just like we’re used to - however, the γµ had to stay in place, as
vectors do not commute with bivectors.

We now demand that the vacuum electrodynamic equation holds:

0
!
= ∂F (x) = kIF0 exp(Ik · x) (5.70)
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We now postmultiply both sides with exp(−Ik · x) to obtain:

0 = kIF0 (5.71)

= −IkF0 (5.72)

We premultiply with I:

0 = kF0. (5.73)

This already is a very tangible requirement for the basis bivector F0. But first of all, a brief detour: If
we premultiply this equation with k, we find out that:

0 = k2F0. (5.74)

k2 is a scalar quantity multiplied to F0. If we want the vacuum electrodynamic equation to be fulfilled,
either k2 or F0 should be zero. We want to describe nonzero waves, so F0 shouldn’t be zero. Therefore,
we know that k2 = 0, i.e. the wave vector has to be lightlike.

Now, we are ready to solve kF0 = 0. This equation implies that somehow both k · F0 = 0 and
k ∧ F0 = 0. Doesn’t that mean that k has to be both orthogonal and parallel to F?

Not quite! Normally, if we want to check whether two vectors a, b are orthogonal, we’d take the dot
product between them. If it is zero, a · b = 0, we’d normally say that the two vectors are orthogonal to
each other.

This scheme to determine orthogonality does not work out anymore for lightlike vectors. If k is a
lightlike vector, then k2 = k · k = 0 - even though k most certainly is parallel to k.

Therefore, the only way we can resolve the apparent contradiction k · F0 = 0 and k ∧ F0 = 0 is that
F0 needs to be of the form

F0 = kA0 (5.75)

where A0 is a vector orthogonal to k, such that F0 is a pure bivector. Then, we know that:

kF0 = k2A0 = 0. (5.76)

General plane-wave solutions

We conclude that our plane-wave approach

F (x) = F0 exp(Ik · x) (5.77)

is a solution to the vacuum electrodynamic equation ∂F = 0 if

• k is lightlike: k2 = 0

• F0 contains k: F0 = k ∧A0, with A0 another spacetime vector.

All of this might be a little bit too abstract, so let’s derive an explicit example: We want to derive
the solution of an electromagnetic wave propagating in the z direction. The corresponding wavevector is
given by:

k = ω(γ0 + γ3), (5.78)

where ω is the frequency of the wave. An example vector A0 orthogonal to this k is

V =
1

ω
γ1. (5.79)
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Figure 5.3: The structure of the derived plane-wave solution. We can see how the field starts out as
σ1 + σ13, and then starts to rotate negatively in the xy plane.

We obtain the basis bivector

F0 = k ∧A0 (5.80)

= γ10 + γ13 (5.81)

= σ1 + σ31. (5.82)

As we can see from the space-time split, this F0 represents an electric field in the x direction, plus a
magnetic bivector field in the zx direction (i.e. a magnetic vector field in the y direction). We now take
a look at what happens if we proceed by one quarter-wave (90

◦
), such that k · x = τ/4:

F (x′) = F0 exp(Ik · x) (5.83)

= F0 exp(Iτ/4) (5.84)

= F0I. (5.85)

In our case, this just means that

F (x′) = (σ1 + σ31)I (5.86)

= σ1I + σ31I (5.87)

= σ23 − σ2. (5.88)

We see that the multiplication by the pseudoscalar turns the E-field in the x direction into a B-field in
the yz direction, and the zx B-field into a −y E-field1. In other words, after one quarter-wave turn, F0

has been rotated by −90
◦
in the xy plane. The rotation continues as we’d expect - see Figure 5.3 for a

depiction. The electric and magnetic field follow an upwards spiral in the direction of the propagation.
If we stick out the thumb of our left hand into the direction of the wavevector and form a fist with the
remaining four fingers, they will point along the direction of the spiral which leads us into the direction
of propagation. It is for this reason that we refer to this type of electromagnetic radiation as left-hand
circularly polarized or left-chiral light.

In contrast, the right-chiral wave solutions are given by

Right-chiral plane wave

F (x) = F0 exp(−Ik · x). (5.89)

If we want to describe linear instead of circular polarization, we use a superposition of the two chiral
solutions. Namely,

F (x) = F0
exp(Ik · x) + exp(−Ik · x)

2
(5.90)

1This multiplication of F by I is the same as the electric-magnetic duality transform F → ∗F in differential forms
language.
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describes linear polarization along the axis of the initial electric field, and

F (x) = F0
exp(Ik · x)− exp(−Ik · x)

2
(5.91)

describes linear polarization perpendicular to the initial electric field.

It is important to note that we did not have to introduce complex numbers at all. Normally, they
are ubiquitous, with several disadvantages - for instance, when calculating the energy density and
current of the electromagnetic field, we need to explicitly remove the imaginary part.
There is a compelling reason for why we were able to remove complex numbers with such ease: The
SO(2) duality symmetry of vacuum electromagnetism. In simple terms, SO(2) duality symmetry
states that if F is a vacuum solution,

∂F = 0, (5.92)

then F ′ = FeIα is a vacuum solution too,

∂(FeIα) = 0. (5.93)

In our derivation, we repurposed this symmetry to rotate around the initial EM field bivector of
our plane wave. In traditional maths, this symmetry is expressed via the Hodge dual - we’d say
that if the 2-form F is a solution, then ∗F is a solution too. But since ∗F = IF = FI = eIτ/4,
we can see that this way only allows us to make quarter-turns in the SO(2) circle. Thus, this way
of using SO(2) duality to describe plane waves is unique to geometric algebra.

5.2.2 Electrostatics

Electrostatics is the study of electromagnetic fields and currents that are constant in time. We are first
going to solve the electrodynamic equation for constant fields in gauge field form using Green’s functions,
and then derive the corresponding electromagnetic fields.

The electrodynamic equation in gauge field form reads

∂2A = j, (5.94)

assuming the covariant gauge condition ∂ ·A = 0. In the static case, the operator

∂2 = ∂20 − ∂2 (5.95)

reduces to ∂2 = −∂2, such that the electrodynamic equation becomes the electrostatic equation:

Gauge-fixed electrostatic equation

−∂2A = j. (5.96)

As we have assumed that all fields are time-invariant, we can write

A(x) → A(x) (5.97)

j(x) → j(x) (5.98)

such that we are dealing with a purely spatial PDE

−∂2A(x) = j(x). (5.99)
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To solve this equation, we are going to take the Green’s function approach. First of all, we note that
this equation is linear - if A1 is a solution for a current j1 and A2 a solution for j2, then A1 + A2 will
be a solution for j1 + j2. Therefore, in order to solve the electrostatic equation for an arbitrary current
density j, we are first going to find solutions Gy(x) to the equation

−∂2Gy(x) = δ(3)(x− y). (5.100)

Then, the solution to j will be given by:

A(x) =

∫
d3y j(y)Gy(x) (5.101)

We can show that this is a solution by inserting it into the electrostatic equation:

−∂2A(x) =

∫
d3y j(y)(−∂2Gy(x)) (5.102)

=

∫
d3y j(y)δ(3)(x− y) (5.103)

= j(x) (5.104)

Intuitively speaking: It would be somewhat tedious to find the solutions for the electrostatic equation
for some arbitrary j. Hence, we decompose j into lots of infinitesimal and similar-looking fragments. It
is very easy to find the solution Gy(x) for these fragments and then join them together with an integral
to find the total solution for j.

Now, we just need the expression for Gy(x). We already know that the Green’s function for a
Laplacian equation is given by:

Electrostatic Greens’s function

Gy(x) =
1

2τ

1

|x− y|
. (5.105)

Therefore, the explicit expression for the solution of the electrostatic equation is given by

Solution of the electrostatic equation

A(x) =
1

2τ

∫
d3y

j(y)

|x− y|
(5.106)

If we want to find the corresponding electromagnetic field, we take the exterior derivative:

F (x) =
1

2τ

∫
d3y ∂ ∧ j(y)

|x− y|
. (5.107)

We now simplify the integrand. First, we evaluate:

d
(

1
|r|

)
dri

=
d
(

1
|r|

)
d|r|

d|r|
dri

(5.108)

=
d
(

1
|r|

)
d|r|

d
√
r2

dr2
dr2

dri
(5.109)

= − 1

r2
1

2
√
r2

2ri (5.110)

= − ri
|r|3

(5.111)
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Therefore, defining r = x− y and r = rγ0 such that r0 = 0:

∂ ∧ j(y)

|r|
= γµ ∧ ∂µ

j(y)

|r|
(5.112)

= −γµ ∧ rµ
j(y)

|r|3
(5.113)

= −r ∧ j(y)
|r|3

. (5.114)

We therefore obtain the law

Solution of the electrostatic equation in EM bivector form

F (x) = − 1

2τ

∫
d3x

r ∧ j(y)
|r|3

. (5.115)

This formula unites both the Biot-Savart law for magnetic fields generated by spacelike currents and
the corresponding law for electric fields generated by timelike currents (charges). This completely unified
description of electric and magnetic fields allows us to easily see that they are the same phenomenon. If
you’re confused by this, you may wish to ponder Figure 5.4 and 5.5.
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γ0

γ1

γ2

j

γ0

γ1

γ2

j

γ0

γ1

j

A = j
|r|

F = ∂ ∧A = − r∧j
|r|3

γ1

γ2

Figure 5.4: The electric field generated by a timelike current (aka charge). The gauge field vectors point
in the same spacetime direction as the current and falls off with 1/r. The electromagnetic field bivectors
point in the direction of the current with one axis, and away from the current with the other axis. They
fall off with 1/r2. Classically, this hyperbolic F -field is interpreted as a vector field (see lower diagram).
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γ3

γ1
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γ3

γ1
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γ3

γ1

j

A = j
|r|

F = ∂ ∧A = − r∧j
|r|3

γ1

γ3

γ3

jj

B

Figure 5.5: The magnetic field generated by a spacelike current. We can see that magnetic fields and
electric fields are two sides of the same coin - namely, circular and hyperbolic electromagnetic field vectors,
respectively. This relationship gets obscured by the fact that B-fields are conventionally mistakenly
interpreted as vectors instead of bivectors, and that the time axis is projected out in the E-field case.
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5.3 The electromagnetic force

Electromagnetic fields exert forces on charged particles. Conventionally, this force is divided in two parts:

• The electric or Coulomb force, exerted by electric fields on charged particles: F = qE

• The magnetic or Lorentz force, exerted by magnetic fields on moving particles: F = qv ×B.

In traditional math, these two expressions look like they have little in common. However, in this
section, we are going to see that the electric and magnetic forces are just two sides of the same coin.

5.3.1 Reformulation of the electric and magnetic force in STA

Conventionally, the electric force is given by

Fe = qE. (5.116)

This is a classical 3-vector expression. To build a relativistically covariant expression, we apply a reverse
space-time split and post-interiormultiply with γ0:

Fe · γ0 = qE · γ0 (5.117)

We leave the right-hand side untouched, because the electric field is supposed to be the hyperbolic
bivector

E = Eiσi = Eiγi0. (5.118)

When we resolve the product on the left-hand side, we obtain the 4-force fe = Fe · γ0 = (Fe)
iγi. We

therefore obtain the following STA expression for the electric force:

fe = qE · γ0 (5.119)

Now, to the magnetic force. In traditional vector algebra, it is given by

Fm = qv ×B. (5.120)

First of all, we need to untangle the cross product. We know that

v ×B = −I(v ∧B) (5.121)

(5.122)

The magnetic field “vector” B is given by B = −IIB. Therefore,

v ×B = −I(v ∧ (−IIB)) (5.123)

= I(vIIB − IIBv) (5.124)

= IvIIB − I2IBv (5.125)

= −vIB + IBv (5.126)

= IB · v (5.127)

We therefore arrive at the nonrelativistic magnetic force law

Fm = qIB · v. (5.128)

This already allows for a nice geometric interpretation: The magnetic field bivector IB rotates the velocity
along its own plane.
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To make this law relativistic, we again post-interiormultiply with γ0. Note that because Fm ∧γ0 = 0,
we can just postmultiply with the geometric product:

fm = Fmγ0 = q(IB · v)γ0 (5.129)

= q(IBv − vIB)γ0 (5.130)

= q(IBvγ0 − vIBγ0) (5.131)

IB does not have any time components, so it commutes with γ0:

fm = q(IBvγ0 − vγ0IB) (5.132)

= q(IBv − vIB) (5.133)

= qIB · v (5.134)

where v = viγi is the spacelike part of the non-relativistic 4-velocity. Remember that for small v = viσi,
the corresponding 4-velocity is given by:

U = γ0 + v = γ0 + viγi +O(v2) (5.135)

We can therefore conclude that we’d need to add an extra γ0 into (5.134) to obtain the four-velocity.
Luckily, we can just get this if we combine it with the electric force law to a single electromagnetic force
law:

fem = fe + fm (5.136)

= qE · γ0 (5.137)

= q(E · γ0 + IB · v) (5.138)

Now, we can use that E · v is on the order of 1/c2 and IB · γ0 = 0 to rewrite this as:

fem = q(E+ IB) · (γ0 + v) (5.139)

Inserting the relations F = E+ IB and U ≈ γ0 + v yields:

Electromagnetic force law

fem = qF · U (5.140)

This is the electromagnetic force law. Some of you might recognize it from special relativity - the
conventional tensor notation is

fµem = qFµνUν . (5.141)

Again, we see how geometric algebra gives this abstract tensor equation a geometric meaning.

5.3.2 Geometric interpretation

We can reformulate the electromagnetic force law to look like the infinitesimal rotor transformation law:

U̇ =
f

m
=

q

m
F · U (5.142)

=
[ q

2m
F,U

]
(5.143)

= −
[
U,

q

2m
F
]
. (5.144)

Viewed like this, electric fields (hyperbolic EM fields) generate hyperbolic rotations of U , and magnetic
fields (circular EM fields) generate circular rotations of U . This is exactly what we are used to:
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• electric fields accelerate, i.e. hyperbolically rotate particles,

• magnetic fields force them on circular cyclotron motion trajectories, i.e. circularly rotate them.

There’s just one small caveat: the electromagnetic force law (5.140) acts on U from the left side,
while the rotor transformation law acts on U from the right side. This is the reason for the
minus sign in (). We have to pay attention to it: If the particle is positively charged, the rotation
generated by the electromagnetic force is opposite to the rotation the bivectors F consists of
generate. See Figure 5.6 for an illustration.

Integrating (5.3.2) yields the rotor

L(T ) = exp
(
− q

2m
FT
)

(5.145)

such that the velocity of the particle after the proper time T is

U(T ) = L̃(T )U0L(T ). (5.146)

If F only has a hyperbolic part (F = E = Eiσi = Eiγi0), this will lead to uniform acceleration:

L(T ) = exp
(
− q

2m
FT
)

(5.147)

= exp
(
− q

2m
ET
)

(5.148)

= cosh
( q

2m
|E|T

)
− E

|E|
sinh

( q

2m
|E|T

)
, (5.149)

such that, if we apply this rotor to an initially still-standing (U = γ0) object:

U(T ) = L̃(T )UL(T ) (5.150)

= cosh
( q

2m
|E|T

)
γ0 + sinh

( q

2m
|E|T

) Ei

|E|
γi. (5.151)

On the other hand, if F is purely circular (F = IBijσij), the particle will be forced onto a cyclotron
motion trajectory:

L(T ) = exp
(
− q

2m
FT
)

(5.152)

= exp
(
− q

2m
IBT

)
(5.153)

= cos
( q

2m
|IB|T

)
− sin

( q

2m
|IB|T

) IB
|IB|

. (5.154)

For instance, if IB = Bσ12 and the initial object is moving along the z axis:

U =
1

3
(5γ0 + 4γ3) (5.155)

⇒ U(T ) =
1

3

(
5γ0 + 4

(
cos

(
q|IB|T
m

)
γ1 − sin

(
q|IB|T
m

)
γ2

))
, (5.156)

a spiral trajectory through spacetime. Mind the minus sign in front of the sine.
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t
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F = E = Eσ2

F = IB = Bσ12

Figure 5.6: The effects of electric and magnetic fields on a positively charged particle. Electric fields
are hyperbolic bivectors and hyperbolically rotate the four-velocity of the particle. Magnetic fields are
circular bivectors and thus circularly rotate the four-velocity of the particle.
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Chapter 6

Geometric calculus

Note: This is a preliminary version of the chapter and
needs revisions in content and style.

6.1 Curves and Surfaces

Let us take a step back and consider manifolds, one and two dimensional examples for those are already
familiar, as they are curves and surfaces in space. In physics, they also occur in the treatment of
mechanics, as a trajectory (x(t), y(t), z(t)) of some object describes a curve in three dimensional space,
which is parameterized using the time coordinate t. We can write

f : R → Cl(3) (6.1)

t 7→ f i(t)ei. (6.2)

So far, our geometric algebra treatment does not tell us much more about this function, just that it sends
some scalar parameter t into the vectors in Cl(3), or, if we generalize, Cl(n).
Going further, we can also use multiple parameters, giving us a higher dimensional manifold. By defining
a manifold (x(λ, µ), y(λ, µ), z(λ, µ)) “living” in three dimensions, which itself has the two parameters
(λ, µ), we get a surface plane. We can write

6.1.1 Tangent Vectors

Continuing with m = 2, so f defines a surface, we take the derivative with respect to λ or µ, which
enables us to investigate the change of the surface vector along the coordinate. So, we have

∂

∂λ
f i(λ, µ)ei. (6.3)

The result is a tangent vector pointing along the λ coordinate.

Going further, the space spanned by all such tangent vectors is called the tangent space, which is a
linear space. So, in turn, this linear space, generates a tangent geometric algebra, which we will just call
the tangent algebra.
Goign back to our example of a surface plane m = 2 in 3D space n = 3. This tangent algebra is spanned
by two generating vectors, which are the two tangent vectors to the surface. Thus, it is isomorphic to
Cl(2), since the tangent space to a surface is a plane, the only new elements to be added (apart from
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scalar) is the tangent bivector

∂f

∂λ
∧ ∂f

∂µ
. (6.4)

Not how the tangent bivector represents the surface at a certain point just as well as the pair of tangent
vectors does.

−2 −1
0

1
2−2

0

2

−1

0
B0

S0

ϕ

xe1
e2

e3

Figure 6.1

6.2 Geometric Calculus

We have already seen that we can understand the elements (λ, µ), coming from R2, to define the surface
f(λ, µ).
Much in the same way as we would like to study the coordinate free geometric algebra, instead of classical
vector algebra using coordinates, or row vectors, which are just a basis-dependant representation of these
vectors, we should much rather think of surfaces

6.2.1 Nabla Operator

Next, we introduce the familiar nabla operator, in geometric algebra we can treat it as a vector valued
operator, which is defined by

∂ = ei
∂

∂xi
= ei∂i. (6.5)

Applying it to some multivector valued expression F , we can take the geometric product

∂F = ei∂iF. (6.6)

This is also called the gradient of F , it generalizes the gradient of classical vector algebra, which we
would get back if F only has a scalar grade. Remembering that the geoemtric product is not necessarily
commutative, note that we could have taken the right gradient just as well

Ḟ ∂̇ = ∂iF (x)e
i, (6.7)
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where the overdot was introduces to denote the quantity that the ∂ operator acts on. Without overdots
we will just assume the default, that it acts towards its right. Also note, that since ∂i is a scalar operator,
we could pull it to the left, since scalars commute with every element of the geometric algebra. So, we
may encounter more complicated expressions, for example

∂́u̇∂̇v́, (6.8)

where we used overdots and acute accents to denote which part the ∂ operators act on. This can be read
as

ei(∂ku)ek(∂iv). (6.9)

The ei and ek vectors remain where ∂́ and ∂̇ were in expression 6.8. The partial derivates are placed
where they act on, so ∂i and ∂k are in front of v́ and ˙

u.

The simplest example for a gradient of an n dimensional vector function would be

∂x = ei∂ixje
j (6.10)

= eiej∂ixj (6.11)

= eiejδij (6.12)

= eiei = n. (6.13)

Considering a simple scalar function u(x) = a · x on the other hand, we get

∂u = ∂(a · x) (6.14)

= ei∂iajx
j (6.15)

= eiaj∂ix
j (6.16)

= eiajδ
j
i (6.17)

= eiai = a. (6.18)

Now, instead of using components, the overdot notation enables us to quickly calculate expressions in
practice, for example the gradient of r(x) = x2, using the product rule

∂r = ∂x2 (6.19)

= ∂̇(ẋ · x) + ∂̇(x · ẋ) (6.20)

= 2∂̇(ẋ · x) = 2x. (6.21)

6.2.2 Gradient, Divergence and Curl

Taking the gradient of a general vector valued function f , i.e. a vector field, gives us the geometric
product between two vector valued quantities, so the result has scalar and bivectorial components

∂f = ∂ · f + ∂ ∧ f , (6.22)

which are called the divergence and curls respectively.

Conversely, the divergence and curl can be written in terms of the geometric product as

∂ · f = 1

2

(
∂f + ḟ ∂̇

)
(6.23)

∂ ∧ f =
1

2

(
∂f − ḟ ∂̇

)
. (6.24)
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In a way, the curl tells us how much the vector field f commutes with the derivative operator ∂ and the
divergence tells us how much it anticommutes with the derivative operator ∂.
Looking at the curl, we can expand it into coordinates, which yields

∂ ∧ f = ei ∧ ∂if = ei ∧ ej∂iJj . (6.25)

In three dimensions, this gives us an expression much similar to the curl of classical vector calculus, but
it is a bivectorial expression. In fact, taking the dual returns us the axial vector

∂ × f = −I (∂ ∧ f) , (6.26)

which is the curl we are familiar with, defined using the cross product. This definition, in contrast to
the definition using the wedge product does not carry over to an arbitrary number of dimensions. So,
looking at the curl as the wedge product ∂ ∧ f makes it much easier to generalize, while fitting into our
geometric algebra treatment.

6.2.3 The Vector Differential

In vector calculus, instead of thinking of derivatives as differentiating with respect to some coordinate,
we may want to go further by asking about coordinate free differentiation. Before we can come to that,
let us see how the partial derivative is, in a way, the derivative along the coordinate frame vectors ei. So,
the cartesian coordinate chart xi also defines the coordinate frame vectors ei, using the frame vectors we
know we can just project out the partial derivatives from the ∂ operator by taking the inner product

∂

∂xi
= ∂i = ei · ∂. (6.27)

Now, what if we had a different coordinate frame? Defining this vector h to be some arbitrary vector,
we can generalize the expression to yield the directonal derivative

∂h = ∂hiei = hi∂ei (6.28)

and recognize that the directional derivative is the ei direction is exactly the partial derivative

∂ei = ∂i. (6.29)

Therefore the directional derivative is simply given by

∂h = hi∂i = h · ∂. (6.30)

We also see that this expression is linear in h, since it fulfills the properties

∂h+k = (h+ k) · ∂ = ∂h + ∂k (6.31)

and also

∂αh = αh · ∂ = α∂h. (6.32)

Looking at this expression as defining a tranformation, that is sending some vector h to the directional
derivative of f(x) along h, we call it the differential of f . It is denoted by

f ′x : h 7→ (h · ∂)f(x). (6.33)

The directional derivative oeprator h · ∂ is scalar valued, so the differential f ′x, has the same domain and
image as the original vector field f ,

Dom(f) = ⟨Cl(m)⟩1 → ⟨Cl(n)⟩1 = Im(f) (6.34)
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and the differential is thus also a vector valued function of a vector. But in contrast to f , which is not
necessarily linear, f ′x is a linear transformation. Such linear transformations, we already know how to
represent by using matrices. Therefore we try to expand the differential f ′x as a matrix by using the frame
vectors

[f ′x]ij = ei · f ′(ej). (6.35)

The matrix entries tell us how to tranform the basis vectors, plugging in ej , which is equivalent to

[0, ...

j-th entry︷︸︸︷
1, , ..., 0], we get the j-th matrix column, wehre the i-th entry is projected out by finally

taking the inner product with ei. Plugging in our definition of the differential gives us

ei·⟨((ej · ∂)f(x)⟩) (6.36)

= ei · ∂jf(x) (6.37)

= ∂jfi(x) (6.38)

and so the matrix representation of f ′x is given by

[f ′x]ij = ∂jfi(x). (6.39)

Which is the Jacobian matrix of f .

Chain Rule

Having the differential of vector functions at hand, we will often encounter compositions of such functions.
Just as in scalar calculus, we need the chain rule to tell us how to differentiate these expressions. So, say
we have the composition of vector functions f, g and h, where

h = g ◦ f. (6.40)

This indicates that the function z = h(x) is defined by evaluating f at x and g at f(x), therefore z = g(y)
and y = f(x). For the differential h′x, the chain rule then gives

h′x = g′y ◦ f ′x. (6.41)

Essentially, the differential of the compostion is given by the composition of the differentials, but we have
to be careful in defining them with respect to the right variable.
In matrix form, this composition turns into the product of the two jacobian matrices, given by

[h′x]ik = [g′y]ij [f
′
x]jk. (6.42)

Total differential

6.2.4 Coordinate Transformations

Instead of the standard cartesian coordinate chart, we might use a differt chart, that more accurately
reflects the symmetries underlying our physical system for example. Let us look at a simple case in two
dimensions at first, we can write the vector coordinates x = xe1 + ye2 in terms of a polar coordinate
system as

x = r cos θ (6.43)

y = r sin θ. (6.44)

By this, we rewrite any vector x in terms of a new basis

x = rer + θeθ, (6.45)
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the main difference to the cartesian basis being, that neither er nor eθ are constant across the two
dimensional linear space.
The first question is now how we do calculations, particularly vector derivatives, in this new curvilinear
coordinate system. We remember that the coordinate frame belonging to the new chart is given by

∂x

∂r
= cos θe1 + sin θe2 = er (6.46)

∂x

∂θ
= r(− sin θe1 + cos θe2) = eθ. (6.47)

As expected, both of them vary across r and θ, also, while we have

er · er = cos2 θ + sin2 θ = 1 (6.48)

and so er is already normalized, êr = er. The second basis vector eθ is not

eθ · eθ = r2(sin2 θ + cos2 θ) = r2. (6.49)

Therefore, we normalize it by defining

êθ =
eθ
r
. (6.50)

The contravariant reciprocal of eθ, which is denoted eθ and the covariant eθ now have to following
relationship to the normalized basis vector

eθ =
1

r
êθ eθ = rêθ (6.51)

This is important to keep in mind, because we can now decompose the vector derivative by taking

∂ = Projeθ (∂) + Projer (∂), (6.52)

this results in

∂ = eθ(eθ · ∂) + er(er · ∂) (6.53)

the terms in parenthesis are the partial derivatives with respect to θ and r and the contravariant vectors
we can replace by their normalized counterpart

∂ =
1

r
êθ∂θ + êr∂r. (6.54)

This is the expresson for the derivative operator in polar coordinates. The form of the Laplacian operator
can also be obtained by squaring the expression

∂2 =
1

r2
∂2θ + ∂2r . (6.55)

In general, this means we can calculate the form of the vector derivative in some curvilinear coordinate
system, by simply calculating the associated contravariant basis, which is

f i =
1

fi
=

f̂i
|fi|

=

∣∣∣∣ ∂x∂wi

∣∣∣∣−1

f̂θ (6.56)

Therefore expanding in the new basis,

∂ =
∑
i

Projfi∂ =
∑
i

f i
∂

∂wi
(6.57)

and the vector derivative turns into

∂ =
∑
i

∣∣∣∣ ∂x∂wi

∣∣∣∣−1
∂

∂wi
. (6.58)

multivector case vectors -¿ scalar + bivector representation

derivative on a manifold tangent maps = Jacobian jacobian determinant
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6.2.5 Fundamental Theorem of Geometric Calculus

To be able to calculate multidimensional integrals of multivector valued functions we need an integral
theorem, which will be the generalization of the Fundamental Theorem of Calculus, but as it turns out,
a large number of unrelated theorems will also emerge as special cases. Because of that, we will start by
stating the Fundamental Theorem of Geometric Calculus in its general form. LetM be an m dimensional
manifold and F a multivector valued function, then we have∫

M

Ḟ ∂̇d∧mx =

∮
∂M

Fd∧m−1x. (6.59)

Where d∧mx is an m vector valued measure, which is not the same as taking multiple scalar integrals,
because that measure would be (dx)m. The integrand term Ḟ ∂̇ is the right gradient of a multivector
valued function. This expression is but a certain form of the FT, because we have to consider that the
measures and F do not necessarily commute, on the other hand, there is no reason why they should be
written towards the right. So, more generally, the FT can be given as∫

m

L̇(d∧mx∂̇) =

∮
∂M

L(d∧m−1x). (6.60)

Here, L denotes a function that is linear in its argument, on the left hand side its dependance on x is
differentiated, but not its argument. The case with the measures to the left, we can get back from this
expression by considering L(Y ) = FY and so the integrands turn into

L(d∧m−1x) = Fd∧m−1x (6.61)

L̇(∂̇d∧mx) = Ḟ ∂̇d∧mx. (6.62)

Meaning of the Multivector Measure

We already know the notation for multiple integrals, where, for example dmx the measure for m-fold
integration. So this means, we have to take m times the scalar integral each with measure dx. Often,
this is also denoted as dA = dxdy for the two dimensional case, where we integrate over a surface or
dV = dxdydz for a three dimensional volume.

The multivectorvector measure d∧mx on the other hand, is a pseudoscalar over the tangent algebra
of the manifold. This means, that it can also encode the orientation of the tangent space. We will define
it as

d∧mx = Imd
mx (6.63)

using the gradem unit pseudoscalar Im, so |Im| = 1. By this, we can simply convert multivector measures
into scalar measures for calculaton. In order to take into account the orientation of the tangent algebra of
the manifold M and its m− 1-dimensional boundary ∂M , we can use the following relationship between
their unit pseudoscalars:

Im = n̂Im−1 (6.64)

Where n̂ is the unit normal vector, pointing out of the manifold M . Consider for example a circular
area A with positive orientation I2 = e12, since it is not curved this pseudoscalar is constant along the
surface.
Next, we see that the boudary curve ∂A has the outward pointing unit normal n̂ = cosφe1+sinφe2. The
unit pseudoscalar along the boundary is going to be a vector, since the tangent algebra along a curve is
Cl(1), so the pseudoscalar is equal to the vector grade. Inverting the expression for the unit pseudoscalar
gives us

I1 = n̂I2 = cosφe2 − sinφe1, (6.65)

which is the tangent vector to a circle, as expected.
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Line Integrals

As a first step in investigating the FT, we will apply it to the line integral case, which is the case where
the itegration manifold turns into an m = 1 dimensional curve in some space.
Let C be a curve and F a multivector field, then the FT turns into∫

C

Ḟ ∂̇dx =

∮
∂C

Fd0x. (6.66)

The right hand side turns into a degenerate case with a scalar valued d0x. By definition, we say that
this means we integrate zero times and this terms has to turn into summation. Since the boundary of a
curve ∂C consists of just two points and is in essence zero dimensional, the pseudoscalar is equal to the
scalar grade and we can only have I0 = ±1. Regardless of the orientation of the curve, if we integrate
along a to b, this means the tangent vector points along the outward normal at b and opposite to is along
a. So the right hand side becomes

I0(b)F (b) + I0(a)F (a) = F (b)− F (a) (6.67)

and the FT applied to curves becomes ∫
C

Ḟ ∂̇dx = F (b)− F (a). (6.68)

In the case that we integrate over a scalar valued field ϕ, we clearly see that the right hand side is simply
scalar valued, so we have that ∫

C

(∂ϕ) · dx = ϕ(b)− ϕ(a). (6.69)

The inner product results from the left hand side containing only a non-vanishing scalar grade, the
trivector grade necessarily being zero to fulfull the expression. For this reason, we may also call this
integral theorem the Gradient Theorem.
Futhermore, in the simplest case, we are integrating over a curve thats embedded in R, so C = [a, b] and
we get the standard Fundamental Theorem of Calculus, which tells us how to calculate the integral of
ϕ′ = dϕ

dx using its antiderivative ϕ ∫ b

a

ϕ′dx = ϕ(b)− ϕ(a). (6.70)

Divergence and Curl Theorem

Next, following the Gradient Theorem, we will derive integral theorems involving the divergence and curl
of a multivector field. They are also widely known as Gauss’ Theorem and Stokes’ Theorem.
Let F be a multivetor field of grade r, then we can take∫

M

Ḟ ∂̇ d∧mx︸ ︷︷ ︸
Imdmx

=

∮
∂M

F d∧m−1x︸ ︷︷ ︸
n̂Imdm−1x

(6.71)

and cancel the pseudoscalars Im, giving us the integration theorem with scalar measures∫
M

Ḟ · ∂̇dmx+

∫
M

Ḟ ∧ ∂̇dmx =

∮
∂M

Fn̂dm−1x, (6.72)

where we split the multivector gradient into divergence and curl, which shows us that the left hand side
consists of an r− 1 grade and r+1 grade respectively. Investigating the former component only, we also
extract the inner in the integral over the boundary, which results in the relation∫

M

Ḟ · ∂̇dmx =

∮
∂M

F · n̂dm−1x. (6.73)
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This is Gauss’ Theorem, as formulated for a multivector field F .
In the three dimensional case, we are integrating over a volume V , let E be a vector valued field and dσ
the area measure over the boundary ∂V , then Gauss’ Theorem is given by∫

V

∂ · Ed3x =

∮
∂V

E · dσ. (6.74)

To derive the second integration theorem, we consider an m − 1 grade multivector field F on our m-
dimensional manifold M , thus the scalar part of the FT reads as∫

M

(
Ḟ ∧ ∂̇

)
∗ d∧mx =

∮
∂M

F ∗ d∧m−1x, (6.75)

where the asterisk symbol denotes the scalar part of the geometric product between two multivectors
A ∗ B = ⟨AB⟩0, which is equal to the inner product if one of the multivectors is of grade one. This
theorem is now a generalized form of Stokes Theorem, in the three dimensional vector case, where we
integrate over an area A, so m = 2. The left hand sides then presents us the scalar part of the product
between two bivectors (

Ḟ ∧ ∂̇
)
∗ d∧2x. (6.76)

This expression is simply calculated from the duals vectors of the bivectors by taking

−
(
Ḟ × ∂̇

)
· d2x, (6.77)

where we take note of the minus sign, also, we see that we get the classical definition of the curl using
the cross product.
Thus, the curl theorem is given by ∫

A

(∂ × F ) · d2x =

∮
∂A

F · dx. (6.78)

Green’s Integration Theorem

For this we consider the general curl theorem in the two dimensional case, so we take the integral over
an area A in two dimensions, thus ∫

A

(
Ḟ ∧ ∂̇

)
∗ d∧2x =

∮
∂A

F ∗ dx. (6.79)

If we write the 2D vector field as F (x) = f(x, y)e1 + g(x, y)e2, the left hand side becomes∫
A

(
∂f

∂y
− ∂g

∂x

)
e12 ∗ dxdye12 =

∫
A

(
∂g

∂x
− ∂f

∂y

)
dxdy. (6.80)

For the left hand side of the divergence theorem, we considers that the vector measure dx can be decom-
posed dx = e1dx+ e2dy, so the full theorem can now be written as∫

A

(
∂g

∂x
− ∂f

∂y

)
dxdy =

∮
∂A

fdx+ gdy. (6.81)

This is Green’s Integration Theorem, which is essentially just the two dimensional case of the general
divergence theorem.
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Green’s Functions

The FT, in fact, does not only generalize vector calculus theorems, but also integration theorems of
complex analysis. Before we come to this, we will introduce Green’s functions.
Let the differential operator D be given, Green’s functions arise when we are asked to solve the inho-
mogenous d́ıfferential equation

Du(x) = f(x) (6.82)

where f is a given vector valued function.
In order to solve this differential equation, we can use the Green’s function of the operator D, that
satisfies the property

DGa(x) = δ(x− a). (6.83)

The function value f(x) can be rewritten by taking an integral over the variable a

f(x) =

∫
δ(x− a)f(a)da (6.84)

therefore we can use the Green’s function, replacing the Dirac delta

f(x) =

∫
DGa(x)f(a)da. (6.85)

The differential operator D only acts on x by definition, not on a, so we can simply pull it out of the
integral now

f(x) = D

(∫
Ga(x)f(a)da

)
(6.86)

and, by doing this, we obtain a solution u(x) to the differential equation

u(x) =

∫
Ga(x)f(a)da. (6.87)

6.2.6 Analytic Functions

Geometric Algebra enables us to generalize much of vector calculus, much in the same way this is also
possible for complex analysis. For this we need the notion of an analytic function. First, we take the GA
of the two dimensional plane Cl(2), a vector is thus given by

r = xe1 + ye2, (6.88)

the e1-axis can now be singled out as corresponding to the real axis of the complex plane by simply
taking the geoemtric product z = e1r such that now

z = x+ ye12. (6.89)

This is essentially equivalent to a complex number, since the even subalgebra Cl+(2) is isomorphic to the
complex plane. In the following we will denote the pseudoscalar simply as I = e12, representing that the
pseudoscalar takes onthe role of the imaginary unit by fulfilling I2 = −1.

z = x+ Iy (6.90)

The reverse z†, then takes the role of the complex conjugate, which is thus defined by z† = re1.

z† = x− Iy (6.91)
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On this even subalgebra we can now investigate certain types of functions, let ψ = ψ(z(x, y)) be such a
complex field. We take its vector derivative

∂ψ =

(
∂u

∂x
− ∂v

∂y

)
e1 +

(
∂v

∂x
+
∂u

∂y

)
e2. (6.92)

The bracketed terms vanish, if ψ fulfills the Cauchy-Rieman equations, so ψ being holomorphic is equiv-
alent to

∂ψ = 0. (6.93)

We can also introduce the complex partial derivatives, which have the following properties

∂z

∂z
= 1,

∂z†

∂z
= 0. (6.94)

Therefore, we see that the holomorphic function ψ is independent of z†, by taking

∂ψ

∂z†
=
∂ψ

∂z

∂z

∂z†
= 0 (6.95)

Also, in terms of the vector derivate, the complex derivatives can be expressed by

∂

∂z
=

1

2

(
∂

∂x
− I

∂

∂y

)
=

1

2
ẽ1∂ (6.96)

∂

∂z†
=

1

2

(
∂

∂x
+ I

∂

∂y

)
=

1

2
e1∂ (6.97)

Let us look at some examples for analytic functions, the easiest function we can try is simply the identity
f(z) = z. We calculate its gradient

∂z = 2e1
∂

∂z†
z = 0, (6.98)

which vanishes, so this functions is indeed analytic. In fact we can therefore conclude that the expression
∂(z − a)n vanishes as well, by considering the product rule

∂(z − a)n = n(z − a)n−1∂(z − a) = 0. (6.99)

Cauchy’s Integral Formula

Finally, from what we have gathered, we will derive Cauchy’s Integral formula. The Cauchy kernel in
complex form is given by

1

z − a
=

1

e1(z− e1a)
(6.100)

=
1

r− a

1

e1
=

r− a

(r− a)2
e1, (6.101)

which enables us to switch between the two. Take the integral∮
∂A

f(z)

z − a
dz, (6.102)

which we now know how to convert into an integral along a vector curve ∂A∮
∂A

f(r)
r− a

(r− a)2
e1e1dr. (6.103)
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This expression we convert to an integral along the area A by using the Fundamental Theorem of Calculus∫
A

f(r)
˙r− a

(r− a)2
∂̇Idxdy (6.104)

=

∫
A

f(r)τδ(r− a)Idxdy (6.105)

= τIf(a) (6.106)

Evaluating the delta function integral gives us the solution to the complex path integral, so we can finally
write out Cauchy’s Integral formula

f(a) =
1

τI

∮
∂A

f(z)

z − a
dz. (6.107)

In the n-dimensional case, the derivation can be followed analogously, the Green’s function for the vector
derivative is then given by

Gy(x)
1

σn

x− y

|x− y|n
. (6.108)

The factor σn in front being the surface area of the n-hypersphere and the Green’s function satisfies the
property

∂Gy(x) = δ(x− y). (6.109)

The fundamental theorem is given by∮
∂V

GdSψ =

∫
V

(
Ġ∂̇ψ +G∂̇ψ̇

)
dV, (6.110)

here the second part vanishes since ψ is analytic, ans we are left with∫
V

Ġ∂̇ψdV, (6.111)

which turns into the integral over the delta function again∫
V

σnδ(x− y)ψ(x)dV = σnψ(y)I. (6.112)

Therefore, Cauchy’s Integral formula in its n-diemnsional form can written as

ψ(y) =
1

σnI

∮
∂V

x− y

|x− y|n
dSψ(x). (6.113)
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Chapter 7

Spinors

No one fully understands spinors. Their
algebra is formally understood but their
general significance is mysterious. In some
sense they describe the “square root” of
geometry and, just as understanding the
square root of 1 took centuries, the same
might be true of spinors.

Michael Atiyah (1929-2019), expert on
spinors

7.1 Matrix representations

In the last couple of chapters, we have encountered two examples of matrix representations: The
Pauli matrix representation, which represents the geometric algebra of space Cl(3), and the Dirac matrix
representation, which represents the geometric algebra of spacetime Cl(1, 3).

At first, it looks like the concept of matrix representation is just a neat trick to “emulate” geometric
algebra with matrix algebra. However, as we will see in this chapter, the concept of matrix representations
is central to describing quantum-mechanical spin and spinors.

First of all, we should become a little more concrete about what we mean by “matrix representation”.
Representation theory is a rather complicated branch of mathematics that deserves a lecture of its own.
Luckily, we don’t have to do all of it - we only need complex matrix representations.

Definition of a complex matrix representation

Mathematically, an n-dimensional complex matrix representation is defined as a bijection that
assigns a complex n× n matrix to every multivector:

ρ : Cl(p, q) 7→ Mat(n× n,C) (7.1)

This bijection should be an isomorphism - this means that adding and multiplying these matrices
should be equivalent to adding and multiplying their underlying multivectors:

ρ(A+B) = ρ(A) + ρ(B) (7.2)

ρ(AB) = ρ(A)ρ(B) (7.3)
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The unit scalar 1 in the geometric algebra is always mapped to the identity matrix:

ρ(1) = In×n. (7.4)

Generally, we can specify the rest of the representation by specifying what matrices the basis vectors
of the geometric algebra map to.

7.1.1 Pauli representation

For instance, the Pauli representation is an isomorphism ρ between Cl(3) and Mat(2× 2,C). The basis
vectors e1, e2, e3 are mapped to the Pauli matrices:

Pauli matrix representation

ρ : Cl(3) → Mat(2× 2,C) (7.5)

ρ(e1) =

(
0 1
1 0

)
(7.6)

ρ(e2) =

(
0 −i
i 0

)
(7.7)

ρ(e3) =

(
1 0
0 −1

)
(7.8)

Using the isomorphism property, we can determine the matrices belonging to the other basis k-vectors:

ρ(e12) = ρ(e1)ρ(e2) =

(
i 0
0 −i

)
(7.9)

ρ(e23) = ρ(e2)ρ(e3) =

(
0 i
i 0

)
(7.10)

ρ(e31) = ρ(e3)ρ(e1) =

(
0 1
−1 0

)
(7.11)

ρ(I) = ρ(e1)ρ(e2)ρ(e3) =

(
i 0
0 i

)
(7.12)

The multivector reverse M̃ can be performed by taking the hermitean conjugate of the corresponding
matrix:

ρ(M̃) = ρ(M)†. (7.13)

This makes perfect sense - the hermitean conjugate of a matrix product reverses its order, and the
matrices ρ(ei) representing the basis vectors are all hermitean. Therefore, for instance:

(ρ(e1)ρ(e2))
†
= ρ(e2)

†ρ(e1)
† (7.14)

= ρ(e2)ρ(e1) (7.15)

There is another important operation to derive: The scalar grade projection ⟨· · ·⟩. First, we notice
that the trace of the matrices representing multivectors is almost always zero:

tr(ρ(1)) = 2 (7.16)

tr(ρ(ei)) = 0 (7.17)

tr(ρ(eij)) = 0 (7.18)

tr(ρ(I)) = 2i (7.19)
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This means that we can extract the scalar grade of a multivector by:

Scalar grade projection

⟨M⟩ = 1

2
Re tr(ρ(M)) (7.20)

We can now do calculations with the complex 2x2 matrices as if they were 3D multivectors. In fact,

you shouldn’t think of e.g. the bivector e12 and the matrix

(
i 0
0 −i

)
as two separate things - the matrix

is simply a different way to write the multivector e12. Therefore, once we have chosen a specific matrix
representation, we will treat a multivector M and its matrix representation ρ(M) as the same thing and
write e.g.

e3 =

(
1 0
0 −i

)
(7.21)

e12 =

(
i 0
0 −i

)
. (7.22)

We see that the Pauli matrices are just a way of doing calculations with 3D multivectors using
matrices. There is, however, an open question: In quantum mechanics, Pauli matrices are mainly used
to operate on spin states - also called spinors - like

|ψ⟩ =
(
a
b

)
, a, b ∈ C. (7.23)

How do these spin states fit in the picture? They can’t be multivectors, because they’re not 2 × 2
matrices. We shall find out soon - but first, we will take a brief look at the STA equivalent of the Pauli
representation.

7.1.2 STA representation

The geometric algebra of spacetime Cl(1, 3) has much more elements than the geometric algebra of space.
Thus, we need larger matrices to represent it. This is what the Dirac gamma matrices are for. They don’t
just represent the normal STA, but the complexified STA - the spacetime algebra where multivectors
can have complex instead of real coefficients.

Gamma matrix representation of the STA

ρ : Cl(1, 3,C) → Mat(4× 4,C) (7.24)

ρ(γ0) =


1 0
0 1

1 0
0 1

 ρ(γ1) =


0 −1
−1 0

0 1
1 0

 (7.25)

ρ(γ2) =


0 i
−i 0

0 −i
i 0

 ρ(γ3) =


−1 0
0 1

1 0
0 −1

 (7.26)
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Some authors also use a slightly different representation in which γ0 is represented by the matrix(
I2×2 0
0 −I2×2

)
(7.27)

Our representation is called the Weyl or chiral representation, while the representation using the
above matrix for γ0 is called the Dirac representation for historical reasons. (Yes, the terminology
is confusing and messy. It’s because most physicists can’t be bothered to do their jobs and find
good names for the stuff they invent.)

Again, the other basis k-vectors can be constructed by e.g.

γ12 = ρ(γ1)ρ(γ2) =


−i 0
0 i

i 0
0 −i

 (7.28)

Just as in the 3D case, we will say that the multivectors like γ12 and matrices like ρ(γ1)ρ(γ2) are just
two ways to depict the same object and use the notation γ12 for both. We will thus drop the ρ’s from
our notation again.

In the Pauli matrix representation, we could form the multivector reverse by taking the hermitean
conjugate M† of the matrix representing the multivector. This does not work as easily anymore for the
Dirac matrices. If we conjugate them, we find that:

(γ0)
† = γ0 (7.29)

(γi)
† = −γi. (7.30)

This should ring a bell. It is a parity flip with respect to the time axis γ0. The formula for conducting
such a parity flip on a multivector M is:

Pγ0
(M) = γ0Mγ0. (7.31)

Note that in four dimensions, there is more than one possible parity flip. The statement “We
leave the time coordinate invariant and flip the sign of all spatial coordinates” is dependent on
how exactly we define the time coordinate. Observers with different velocities would therefore
define parity flips differently. This is why we added the γ0 index to P here - it indicates that the
parity flip is done w.r.t γ0. In other words, the parity flip Pγ0 is the parity flip an observer moving
with the four-velocity U = γ0 would naturally dois the parity flip an observer moving with the
four-velocity U = γ0 would naturally do.

We have gotten ourselves into quite some trouble right now! We just wanted to reverse the order of
multiplication and ended up introducing an extra parity flip with the hermitean conjugate M†. Even
worse, this parity flip is not covariant! If we conduct the hermitean conjugate M† in two different
coordinate systems, we will get two different results, because the parity flip is .

The solution is surprisingly simple: M† reverses the order multiplication M̃ and does an additional
parity flip w.r.t. the current time axis:

M† = γ0M̃γ0 (7.32)

We only want the former, so we just conduct another parity flip:

M̃ = γ0M
†γ0 = γ0(γ0M̃γ0)γ0. (7.33)
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This is how we evaluate the multivector reverse when we are working with a matrix representation. But
remember - the actual definition of M̃ does not involve γ0. What we are actually doing here is cleaning
up the mess of the hermitean conjugate.

Because the hermitean conjugate behaves so weirdly for STA representations, we will avoid it from
now on as best as we can. Just remember - when you are given a matrix representing an STA multivector
and want to take its reverse, first take the hermitean conjugate, and then do another parity flip with the
current γ0 to cancel it out.

The spinors associated with the Dirac gamma matrices have four complex components:

|ψ⟩ =


a
b
c
d

 , a, b, c, d ∈ C (7.34)

They are not STA multivectors, because they aren’t 4 × 4 matrices. Again, the same question arises
- what are they? How do they fit into the picture of the Dirac matrices representing multivectors?
We can interpret multivectors geometrically, but what about spinors? How can we picture spinors,
geometrically?

7.2 Fundamenentals of spinors

To answer the central question of this chapter “what is a spinor?” - we will first have to clear up some
confusion about matrices and vectors.

7.2.1 What is a vector?

In physics, there are two types of objects that are commonly called “vectors”.

• “Vectors” in the mathematical sense: An element of a vector space, i.e. a space that has an addition
and a distributive scalar multiplication. This type of “vector” can be anything that behaves linearly
in some way - quantum-mechanical states, functions, spinors, tensors, etc. These “vectors” can be
represented by a column of numbers - for instance, spinors

|ψ⟩ =


a
b
c
d

 . (7.35)

• Vectors in the physical sense: Grade-1 elements of a geometric algebra, aka a length with an
orientation. Roughly speaking, arrows pointing through space (spacetime in STA).

The second definition is a lot more specific than the first one. So far, we have only used the second
definition in this script. To avoid confusion, we are going to rename “vectors” in the mathematical sense
to lineals and vector spaces to linear spaces. It is important to strictly distinguish between these
concepts.

If we make a change in basis U (aka a transformation), our lineals l and matrices M transform like

l → U−1l (7.36)

M → U−1lU (7.37)

The sandwich transformation law for matrices ensures that the product of a lineal and a matrix Ml
transforms like a lineal:

Ml → U−1MUU−1l = U−1(Ml). (7.38)
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7.2.2 Going beyond vector matrices and vector tensors

Matrices are linear maps acting on lineals. The first lineals we physicists encounter in our studies are
vectors, and the first matrices we encounter are vector matrices - matrices that map vectors onto
vectors. Such vector matrices describe geometric transformations like rotations, reflections, scalings,
stretchings, or projections. Similarly, all tensors we have handled so far are vector tensors - tensors
over the space of vectors. They transform under the action of vector matrices, like in (3.84).

But of course, we can easily imagine matrices acting on different kinds of lineals! We could imagine
bivector matrices acting on bivectors. Bivectors are lineals too, and the inertia tensor actually is such
a bivector matrix - it maps the angular velocity bivector onto the angular momentum bivector.

But most importantly, the spinors are lineals, too. We act on Pauli spinors with the matrices
representing Cl(3) multivectors, and we act on Dirac spinors with the matrices representing Cl(1, 3)
multivectors. Thus, we can say that multivectors are spinor matrices.

The rotor transformation law for a multivector M is:

M → R̃MR. (7.39)

Now, we remember that RR̃ = 1 for all rotors. This means that

R̃ = R−1. (7.40)

We can thus reformulate the rotor law as

M → R−1MR. (7.41)

This looks just like the matrix transformation law (7.37). On the one hand, this shouldn’t surprise us -
we’ve seen that multivectors are (can be represented as) spinor matrices, so it’s natural that they should
follow the sandwich matrix transformation law. On the other hand, this is deeply surprising - we derived
the rotor law from purely geometric considerations! Clearly, we’re onto something big here. So let’s
extend this analogy - by extension, spinors |ψ⟩ transform like

Spinor transformation law

|ψ⟩ → R−1 |ψ⟩ . (7.42)
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