Geometric Algebra for Physicists - Problem Set 2

to be handed in by TBA1

1 Pseudoaccelerations in rotating coordinate systems

In the script, we have already derived the centripetal acceleration given a position vector \mathbf{x} and an angular velocity bivector Ω :

$$
\begin{equation*}
a_{1}=\left[\left[\mathbf{x}, \frac{\Omega}{2}\right], \frac{\Omega}{2}\right]=\frac{1}{2}\left(\Omega^{2} \mathbf{x}-\Omega \mathbf{x} \Omega\right) \tag{1.1}
\end{equation*}
$$

Now, assume that on top of the rotational motion, the object can move around in the rotating coordinate system with a velocity \mathbf{v}. Use this to derive the Coriolis acceleration. Does your result translate to the conventional vector expression $a=\mathbf{v} \times \boldsymbol{\omega}$?

