https://www.physi.uni-heidelberg.de/~vhollmeier/ga4p/

Geometric Algebra for Physicists - Problem Set 1

to be handed in by ${\bf TBA1}$

1 Rotors and matrices

If we want to handle rotations in two dimensions, we normally either use complex numbers or two-by-two rotation matrices. Geometric algebra allows us to link these two concepts together. Let $\mathbf{v} = v_1 e_1 + v_2 e_2$ be some 2D vector. We want to rotate it by an angle θ . In 2D geometric algebra, we construct the even multivector

$$z = \exp(e_{12}\theta) = \cos(\theta) + e_{12}\sin(\theta) \tag{1.1}$$

We can apply it from the right to get the rotated vector.

$$\mathbf{v}' = \mathbf{v}z \tag{1.2}$$

- 1. Derive the 2×2 rotation matrix $R(\theta)$ corresponding to this rotation. Use the expression for $\mathbf{v}z$.
- 2. We might have also multiplied z from the left, $\mathbf{v} \mapsto z\mathbf{v}$. Is the result any different?
- 3. We can convert the vector \mathbf{v} to a "complex number" (even 2D multivector) by premultiplying it with e_1 , i.e. $v = e_1 \mathbf{v}$. What is the expression for v in terms of the components of \mathbf{v} ? Can we also rotate it by multiplying z? Does it matter from which side?
- 4. Could we also have chosen another vector than e_1 to convert \mathbf{v} to a complex number?

2 Pythagorean theorem

Given two orthogonal vectors \mathbf{a} and \mathbf{b} , expand the geometric product $(\mathbf{a} + \mathbf{b})^2 = (\mathbf{a} + \mathbf{b})(\mathbf{a} + \mathbf{b})$.

3 Multivector expressions

Simplify the following multivector-valued expressions. Use $e_i^2 = 1$ for all i.

1. e_{1234}^2

6. $(e_{12} + e_{23})^2$

2. $e_{12}^{-3} \wedge e_{34}$

7. $e_{123} \cdot (e_1 \wedge e_{12})$

3. $e_{41} \cdot e_{1234}$

8. $\langle (e_1 \wedge e_4)e_{13}e_2^{-1} \rangle_3$

4. $e_{12} \cdot (e_{23} \cdot e_2)$

9. $-\langle (1+e_{12})^5 \rangle_2$

5. $e_1 \wedge 1$

10. $(\cos \gamma + e_{12} \sin \gamma)^2$