Geometric Algebra for Physicists - Problem Set 1

to be handed in by TBA1

1 Rotors and matrices

If we want to handle rotations in two dimensions, we normally either use complex numbers or two-by-two rotation matrices. Geometric algebra allows us to link these two concepts together.
Let $\mathbf{v}=v_{1} e_{1}+v_{2} e_{2}$ be some 2D vector. We want to rotate it by an angle θ. In 2D geometric algebra, we construct the even multivector

$$
\begin{equation*}
z=\exp \left(e_{12} \theta\right)=\cos (\theta)+e_{12} \sin (\theta) \tag{1.1}
\end{equation*}
$$

We can apply it from the right to get the rotated vector.

$$
\begin{equation*}
\mathbf{v}^{\prime}=\mathbf{v} z \tag{1.2}
\end{equation*}
$$

1. Derive the 2×2 rotation matrix $\mathrm{R}(\theta)$ corresponding to this rotation. Use the expression for $\mathbf{v} z$.
2. We might have also multiplied z from the left, $\mathbf{v} \mapsto z \mathbf{v}$. Is the result any different?
3. We can convert the vector \mathbf{v} to a "complex number" (even 2D multivector) by premultiplying it with e_{1}, i.e. $v=e_{1} \mathbf{v}$. What is the expression for v in terms of the components of \mathbf{v} ? Can we also rotate it by multiplying z ? Does it matter from which side?
4. Could we also have chosen another vector than e_{1} to convert \mathbf{v} to a complex number?

2 Pythagorean theorem

Given two orthogonal vectors \mathbf{a} and \mathbf{b}, expand the geometric product $(\mathbf{a}+\mathbf{b})^{2}=(\mathbf{a}+\mathbf{b})(\mathbf{a}+\mathbf{b})$.

3 Multivector expressions

Simplify the following multivector-valued expressions. Use $e_{i}^{2}=1$ for all i.

1. e_{1234}^{2}
2. $\left(e_{12}+e_{23}\right)^{2}$
3. $e_{12}^{-3} \wedge e_{34}$
4. $e_{41} \cdot e_{1234}$
5. $e_{12} \cdot\left(e_{23} \cdot e_{2}\right)$
6. $e_{1} \wedge 1$
7. $e_{123} \cdot\left(e_{1} \wedge e_{12}\right)$
8. $\left\langle\left(e_{1} \wedge e_{4}\right) e_{13} e_{2}^{-1}\right\rangle_{3}$
9. $-\left\langle\left(1+e_{12}\right)^{5}\right\rangle_{2}$
10. $\left(\cos \gamma+e_{12} \sin \gamma\right)^{2}$
