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The Standard Model of Particle Physics - SoSe 2010 Assignment 6

Note: There is no tutorial on June 3 due to Fronleichnam.

(Due: June 10, 2010 )

1 Some group theory

Let G be a compact Lie group with hermitian generators Ta.

1.) From the general theory of Lie groups it follows that there exists an antisymmetric
map

[Ta, Tb] = ifabcTc, (1)

with summation over c understood, subject to the Jacobi identity

[Ta, [Tb, Tc]] + [Tb, [Tc, Ta]] + [Tc, [Tb, Ta]] = 0. (2)

Show that this implies the following property of the structure constants fabc:

fadefbcd + fbdefcad + fcdefabd = 0. (3)

2.) To give a finite-dimensional unitary representation of G one has to find a set of
N ×N hermitian matrices TRa that satisfy the defining relation (1) and act by mul-
tiplication on an N -complex dimensional vector ψi, i = 1, . . . N . N is the dimension
of the representation. In this case, the bilinear [, ] in (1) is just the commutator of
two matrices N ×N matrices.
a.) Show that the Jacobi identity (2) is a triviality when expressed in terms of the
representation TRa .
b.) Use a group theory book or any other source of your choice to revise the following
definitions: irreducible representation - simple Lie algebra - semi-simple Lie algebra.
c.) For an irreducible unitary representation one can can normalise the generators
TRa such that

tr(TRa T
R
b ) = C(R)δab, (4)

where C(R) is a constant for each representation. Use this to show that

fabc = − i

C(r)
tr([TRa , T

R
b ]TRc ) (5)

and deduce that fabc is antisymmetric in all three indices.



2 Yang-Mills theory

Consider the gauge transformation

ψi(x)→ Uij(x)ψj(x), Uij = exp(iθa(x)TRa )ij, (6)

in some representation TRa of a simple Lie group G. In the following we omit the
superscript R.

1.) The covariant derivative is a matrix valued operator defined via

Dµψ(x) = (∂µ × 1 + igTaAaµ(x))ψ(x). (7)

Show that Dµψ(x) transforms under a gauge transformation as

Dµψ(x)→ UDµψ(x) (8)

provided the gauge field Aµ ≡ (Aµ)a transforms as

T · (A)µ → UT · (A)µU
−1 +

i

g
(∂µU)U−1, (9)

where T · (A)µ = TaAaµ with summation over indices understood.
2.) The Yang-Mills field strength is defined as

T · (F )µν =
i

g
[Dµ, Dν ]. (10)

Show that in components this is

(Fa)µν = ∂µAaν − ∂νAaµ − gfabc(Ab)µ (Ac)ν . (11)

Verify the transformation law

T · (F )µν → UT · (F )µνU
−1. (12)

Use this to show that

LYM = −1

4

∫
d4x(Fa)µν(Fa)

µν + ψ̄(iγµDµ +M)ψ (13)

is gauge invariant.
Hint: Rewrite the gauge part as a trace and use the cyclic property of the trace.
3.) Derive the cubic and quartic self-interactions for the gauge fields from LYM .
4.) Work out the special case where the Lie group is G = U(1) and recover the
known expressions for QED.



3 Propagator, gauge fixing and massive U(1)s

Consider the Lagrangian for an abelian gauge theory

LU(1) = −1

4

∫
d4xFµνF

µν . (14)

a.) Show that in momentum space it reads

LU(1) =
1

2

∫
d4p

(2π)4
Ãµ(−p)Oµν(p)Ãν(p), Oµν(p) = −

(
gµν −

pµpν

p2

)
p2. (15)

b.) Consider the two operators

P T
µν = gµν −

pµpν
p2

, PL
µν =

pµpν
p2

. (16)

Show that these are generalised projection operators in the sense that

P T
µν P

T νλ = P Tν
µ , PL

µν P
Lνλ = PLν

µ , PT PL = 0, P T
µν + PL

µν = gµν . (17)

Show that PL does not couple to a conserved current Jµ.

c.) A general property of the propagator is that it is a Green’s function, i.e. it is
the inverse of the operators appearing in the quadratic terms in a lagrangian. In
momentum space this means that

∆̃µν(p)Oνλ(p) = iδλµ. (18)

For the Lagrangian (15) we have Oνλ = PT νλ, which has no inverse. This is one
way to see that a sensible definition of the quantum theory requires gauge fixing by
adding the Lagrangian multiplier

Lfix = −
∫
d4x

1

2ξ
(∂µA

µ)2. (19)

Give the resulting operator O(p, ξ) in momentum space and show that the propa-
gator is now well-defined and reads

∆̃µν(p) =
(
gµν − (1− ξ)p

µpν

p2

) −i
p2 + iε

. (20)

d.) Now consider massive U(1) theory by adding a mass term,

LU(1),massive =

∫
d4x(−1

4
)FµνF

µν +
1

2
M2

AAµA
µ. (21)



Derive the propagator in momentum space. Show in particular that it contains a

piece of the form
pµpν/M2

A

p2−M2
A+iε

.

e.) Suppose now that the massive photon couples to a conserved current Jµ. Show
that for large momenta, the relevant part of the propagator which couples to the
conserved current scales like 1

p2
as is the case for a massless U(1) propagator. In

other words, show that the piece
pµpν/M2

A

p2−M2
A+iε

does not couple to a conserved current.

This is important because it ensures that the theory remains normalisable as this
piece would scale like 1

M2
A

for large p2 and destroy renormalisable.

Note: This completes the proof that a massive abelian theory is both unitary (see
lecture) and renormalisable even though gauge invariance is broken. Note that re-
normalisability requires that Jµ is conserved and thus that there is still a global
symmetry. Both arguments break down for non-abelian gauge theories.


