Prof Dr. Ulrich Uwer/ Dr. T. Weigand 27. April 2010

The Standard Model of Particle Physics - SoSe 2010 Assignment 3

(Due: May 6, 2010 )

1 The gamma-matrices

a.) The gamma-matrices satisfy the Clifford algebra

{47} = 29" (1)

The significance of the Clifford algebra is that it induces a representation of the
Lorentz algebra as follows: Consider the set of matrices

v Z v
ot =" (2)
These satisfy the relation
0" 5% = 2 <gu60ua + greghB gl gVﬁgua> (3)

as a consequence of the Clifford algebra and thus form a representation of the Lorentz
algebra, as promised (cf. Assignment 1, Exercise 1).

Give the four-dimensional representation of the gamma-matrices introduced in the
lecture and check explicitly that they satisfy (1) as well as

=00 =00 (4)
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b.) The matrix 75 is defined as v; = i7%y1y?y3. Without using a concrete represen-

tation of the gamma-matrices, prove that

P=00 @=L =0 )



2 The Dirac spinor
a.) A Dirac spinor is defined by its properties under Lorentz transformations. Give
these properties in terms of the matrix

?

S(A) = exp(—za“”ww,). (6)
What’s the difference between the transformation of a vector and a Dirac spinor?
Optional: Show that
?

710" o = 0" (7)
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Hint: Rewrite the commutators in terms of anti-commutators.

Argue that this is the infinitesimal version of the more general relation

STHAW!STHA) = A0, (8)

b.) The Dirac equation for a spinor field of mass m is

(iv"0,, — m)y(x) = 0. 9)

Transform this equation into a new frame 2’ = Az and show that if ¢(x) satisfies
the Dirac equation in the original frame, then ¢/'(z") does so in the new frame.
Hint: Equation (8) is useful.

c.) The conjugate of a Dirac spinor is defined as
Y(x) = vl (10)
Show that the spinor bilinear
S(x) = P(x)i(x) (11)

transforms like a scalar under Lorentz transformations. Do so by showing that 1 (z)
transforms like

U'(a’) = P(AT12)STHA) (12)
under Lorentz transformations. Show similarly that
T = P(z)y"y (@) (13)

transforms like a vector.



d.) Recall the form of the plane wave solution 1 (z) = u(p)exp(—ipz) and (z) =

v(p)exp(ipx) as given in the lecture.

Show that
A0 (i - J+ m) u(p) exp(—ipr) = p® u(p)exp(—ipx),
7V (#7 - 0+ m) v(p) exp(ipr) = —p’ u(p)exp(ipz). (14)
e.) The Hamiltonian associated with the Dirac Lagrangian £ = ¢(iyd — m)i is
oL
_ 3 g 7\ L = — =7 T
H= / d x(H(O,x)w(O, 7) .c\x:(o,x)), ) = 5 = ' (15)
Use (14) to show that the mode expansion of H is
1 11
N 3 _ * _ *
H= [ s s X (0000 - 0,007, (16
where
). (17)

() =

x —
(2m)3 2E,
Discuss the consequences of the minus sign for quantisation of the theory and com-

s

/ &’ ! . Z (e_ip:cus (p)as (p) + eimvs (p)ﬁs

pare to the case of a scalar field.

3 Spin and SU(2)
a.) Consider quantum mechanics in three dimensional space R3, setting, as always,
h = 1. The angular momentum operator is defined as

L= (L), (18)

where we are not distinguishing between up and down indices as is appropriate in
R3. Show that under a rotation # — 7’ by an angle # around an axis in normalised

L; = —i €, 20,

direction 77, a wavefunction ¢ (%) transforms as
(@) = (@) = e (@), (19)

Do so by considering the infinitesimal version of this transformation.
b.) Show that the components of the angular momentum satisfy the commutation

relations
[L'i> L]] = ieijkLk- (20)



These are the commutation relations of the Lie algebra of the group SU(2), which
is the double cover of the group SO(3) of rotations in R®. Explain the appearance
of this group in view of the results of a.)

Show that the Pauli matrices

(01 (0 —i (1 0
TT=410)%27\i 0)7 o -1

satisfy the relation
0,05 = 5@' + iﬁiijk. (21)

Conclude that the matrices 10’ form a representation of SU(2) as in b.)

c.) Deduce that a spin % particle is described by a 2-component spinor x that

transforms under spatial rotations as

X — e 307y (22)
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In particular this shows that a spin 5 only comes back to itself up to a minus sign

under rotations by 27.

d.) Consider now Dirac theory in 341 dimensions. Review carefully the logic in
the lecture and argue that a Dirac spinor indeed describes a spin % particle. This
derivation is examinable!

4 Noether’s Theorem

Consider a Lagrangian L£(¢,d¢) and suppose the corresponding action is invariant
under a global symmetry transformation parametrised by the constant parameter o
whose infinitesimal form is

¢(x) = (14 da)(x). (23)
This symmetry induces a conserved current J*(z) with the property
o, J" = 0. (24)

This can be seen by promoting the parameter « in the the transformation (23) to
a spacetime-dependent quantity a(x). The action is now not invariant under (23)
any more. Since it is invariant if « is constant, the variation can only depend on Oda.
This defines the current J* via

0S = /d%J“(m) oua(z). (25)



Upon integration by parts and using that 05 = 0 for v constant, one recovers (24).

a.) Show that the quantity

Qt) = / Bz (1, 7) (26)
is conserved:
0
a@(t) =0. (27)

It is called the conserved charge associated with the symmetry (23). In particular,
(@ defines good, i.e. conserved, quantum numbers for the states of the theory.

b.) Consider now the Dirac Lagrangian

L = (iyd — m). (28)
Argue that it is invariant under
) — exp(ia)i(x). (29)

Deduce from this the existence of the conserved current

T (@) = —ed(z)y"Y (). (30)

Give the form of the associated conserved charge. Argue that Dirac theory describes
both particles and anti-particles.

c.) Use the canonical anti-commutation relations to show that
Qu(r) = (x)(@ - 1) (31)
and thus
e QY (2)e @ = eiih(x). (32)

This means that the conserved charge generates the continuous symmetry underlying
its existence.



