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1 The gamma-matrices

a.) The gamma-matrices satisfy the Clifford algebra

{γµ, γν} = 2gµν . (1)

The significance of the Clifford algebra is that it induces a representation of the
Lorentz algebra as follows: Consider the set of matrices

σµν =
i

2
[γµ, γν ]. (2)

These satisfy the relation

[σµν , σαβ] = 2i
(
gµβσνα + gνασµβ − gµασνβ − gνβσµα

)
(3)

as a consequence of the Clifford algebra and thus form a representation of the Lorentz
algebra, as promised (cf. Assignment 1, Exercise 1).

Give the four-dimensional representation of the gamma-matrices introduced in the
lecture and check explicitly that they satisfy (1) as well as

γ0 = (γ0)†, γi = −(γi)†. (4)

b.) The matrix γ5 is defined as γ5 = iγ0γ1γ2γ3. Without using a concrete represen-
tation of the gamma-matrices, prove that

γ5 = (γ5)†, (γ5)2 = 1, {γ5, γµ} = 0. (5)



2 The Dirac spinor

a.) A Dirac spinor is defined by its properties under Lorentz transformations. Give
these properties in terms of the matrix

S(Λ) = exp(− i
4
σµνωµν). (6)

What’s the difference between the transformation of a vector and a Dirac spinor?

Optional: Show that

i

4
[σµν , γρ]ωµν = ωρνγ

ν . (7)

Hint: Rewrite the commutators in terms of anti-commutators.

Argue that this is the infinitesimal version of the more general relation

S−1(Λ)γµS−1(Λ) = Λµ
νγ

ν . (8)

b.) The Dirac equation for a spinor field of mass m is

(iγµ∂µ −m)ψ(x) = 0. (9)

Transform this equation into a new frame x′ = Λx and show that if ψ(x) satisfies
the Dirac equation in the original frame, then ψ′(x′) does so in the new frame.
Hint: Equation (8) is useful.

c.) The conjugate of a Dirac spinor is defined as

ψ̄(x) = ψ†γ0. (10)

Show that the spinor bilinear

S(x) = ψ̄(x)ψ(x) (11)

transforms like a scalar under Lorentz transformations. Do so by showing that ψ̄(x)
transforms like

ψ̄′(x′) = ψ̄(Λ−1x′)S−1(Λ) (12)

under Lorentz transformations. Show similarly that

Jµ = ψ̄(x)γµψ(x) (13)

transforms like a vector.



d.) Recall the form of the plane wave solution ψ(x) = u(p)exp(−ipx) and ψ(x) =
v(p)exp(ipx) as given in the lecture.

Show that

γ0 (i~γ · ~∂ +m)u(p) exp(−ipx) = p0 u(p)exp(−ipx),

γ0 (i~γ · ~∂ +m) v(p) exp(ipx) = −p0 u(p)exp(ipx). (14)

e.) The Hamiltonian associated with the Dirac Lagrangian L = ψ̄(iγ∂ −m)ψ is

H =

∫
d3x
(

Π(0, ~x)ψ(0, ~x)− L|x=(0,~x)

)
, Π(x) =

∂L
∂ψ̇

= iψ†. (15)

Use (14) to show that the mode expansion of H is

H =

∫
d3p

1

(2π)3

1

2Ep

1

2

∑
s

(
α∗s(~p)αs(~p)− βs(~p)β∗s (~p)

)
, (16)

where

ψ(x) =

∫
d3x

1

(2π)3

1

2Ep

∑
s

(
e−ipxus(p)αs(p) + eipxvs(p)β

∗
s (p)

)
. (17)

Discuss the consequences of the minus sign for quantisation of the theory and com-
pare to the case of a scalar field.

3 Spin and SU(2)

a.) Consider quantum mechanics in three dimensional space R3, setting, as always,
~ = 1. The angular momentum operator is defined as

~L = (L)i, Li = −i εijk xj∂k, (18)

where we are not distinguishing between up and down indices as is appropriate in
R3. Show that under a rotation ~x→ ~x′ by an angle θ around an axis in normalised
direction ~n, a wavefunction ψ(~x) transforms as

ψ(~x)→ ψ′(x′) = e−i θ ~n ·
~Lψ(~x). (19)

Do so by considering the infinitesimal version of this transformation.

b.) Show that the components of the angular momentum satisfy the commutation
relations

[Li, Lj] = iεijkLk. (20)



These are the commutation relations of the Lie algebra of the group SU(2), which
is the double cover of the group SO(3) of rotations in R3. Explain the appearance
of this group in view of the results of a.)

Show that the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
satisfy the relation

σiσj = δij + iεijkσk. (21)

Conclude that the matrices 1
2
σi form a representation of SU(2) as in b.)

c.) Deduce that a spin 1
2

particle is described by a 2-component spinor χ that
transforms under spatial rotations as

χ→ e−
i
2
θ~n·~σχ. (22)

In particular this shows that a spin 1
2

only comes back to itself up to a minus sign
under rotations by 2π.

d.) Consider now Dirac theory in 3+1 dimensions. Review carefully the logic in
the lecture and argue that a Dirac spinor indeed describes a spin 1

2
particle. This

derivation is examinable!

4 Noether’s Theorem

Consider a Lagrangian L(φ, ∂φ) and suppose the corresponding action is invariant
under a global symmetry transformation parametrised by the constant parameter α
whose infinitesimal form is

φ(x)→ (1 + δα)φ(x). (23)

This symmetry induces a conserved current Jµ(x) with the property

∂µJ
µ = 0. (24)

This can be seen by promoting the parameter α in the the transformation (23) to
a spacetime-dependent quantity α(x). The action is now not invariant under (23)
any more. Since it is invariant if α is constant, the variation can only depend on ∂α.
This defines the current Jµ via

δS =

∫
d4xJµ(x) ∂µα(x). (25)



Upon integration by parts and using that δS = 0 for α constant, one recovers (24).

a.) Show that the quantity

Q(t) =

∫
d3x J0(t, ~x) (26)

is conserved:

∂

∂t
Q(t) = 0. (27)

It is called the conserved charge associated with the symmetry (23). In particular,
Q defines good, i.e. conserved, quantum numbers for the states of the theory.

b.) Consider now the Dirac Lagrangian

L = ψ̄(iγ∂ −m)ψ. (28)

Argue that it is invariant under

ψ → exp(iα)ψ(x). (29)

Deduce from this the existence of the conserved current

Jµ(x) = −eψ̄(x)γµψ(x). (30)

Give the form of the associated conserved charge. Argue that Dirac theory describes
both particles and anti-particles.

c.) Use the canonical anti-commutation relations to show that

Qψ(x) = ψ(x)(Q− 1) (31)

and thus

e−iαQψ(x)e+iαQ = eiαψ(x). (32)

This means that the conserved charge generates the continuous symmetry underlying
its existence.


