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 What we will see at the LHC…
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… and how we understand it

[Frank Krauss]

● Hard scattering
● Parton shower
● Hadronization
● Underlying event

Aspects: Tools:

● Perturbation theory
● MC-Tools like Herwig 

and Phythia
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 The perturbative part

Parton-parton scattering

● The matrix elements describing the transition ij  X 
are calculable in perturbation theory

How do we calculate the corresponding hadronic cross sections

?



  

6
 Simplified picture of the hadronic cross section

QCD improved parton model

p p

Parton distribution functions (PDF)
(non-perturbativ 

 experiment, lattice)

Partonic cross section

Specific process, i.e.
Parton ≈ constituent
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 Partonic cross section
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 Pictorial representation of amplitudes
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 Current state of the art

● Leading-order:

2  8 + n processes calculable in automated way

Drawback: matrix element evaluation and phase 
space evaluation might be slow

● Next-to-leading: 

2  3 processes feasible with current technology, no true 
2  4 process @ NLO currently available for LHC

● Next-to-next-to-leading order:

21 processes can be done, do we need NNLO for 22?

Note: many phase space points needed for good accuracy (high dim. phase space integrals)
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 Les Houches wishlist



 High demand for one-loop calculations for the LHC

[Heinrich 07]

NLO
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pp  t t + 1 Jet
@ NLO

A concrete example:
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 Motivation: Topquark as background for Higgs search

Higgs search at LHC

[Atlas]

“Weak Boson Fusion” (WBF) 

Background processes:

 Precise predictions for pp  t t + 1-Jet are important

[Alves, Eboli, Plehn, Rainwater ’04]

HW

W

W

W
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 Side remark: New physics search at the LHC

LHC-Physics = Standardmodell + X

X = LHC-Physics – Standardmodell
Experiment Theory prediction

new physics
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 Scattering amplitudes for ij  t t + 1Jet

complexe function of 
momenta and  polarisation



  

15
Methods to calculate scattering amplitudes (LO)

1. Analytically by hand on a piece of paper

2. Analytically using computer algebra

3. purely numerical

Lets take a closer look to see how it works by hand and why
we don’t want to do it that way
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 A simple example how to do it by hand

Color is not observerd  average over incoming color, sum over outgoing
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A simple example how to do it by hand (cont’d)

If spin is not observed: average over incoming sum over outgoing

Use:

Calculating the traces gives:
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A simple example how to do it by hand (cont’d)

Last step to obtain total cross section: phase space integral

The differential (partonic) cross section becomes:
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What are the problems 
when going to more 

complicated processes

?
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 A simple example how to do it by hand

Color is not observerd  average over incoming color, sum over outgoing

more diagrams, longer expressions

many terms i.e. ~16x16 = 256

more structures
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A simple example how to do it by hand (cont’d)

If spin is not observed: average over incoming sum over outgoing

Use:

Calculating the trace gives:

more complicated traces  more γ matrices

function of many variables
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A simple example how to do it by hand (cont’d)

Last step to obtain cross section: phase space integral

The differential (partonic) cross section becomes:
more particles  phase space more complicated
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 One solution: Use computer algebra

Generate diagrams

(Topologies)
[QGRAF, Feynarts]

Algebraic expressions
( Maple, Mathematica, Form)

Feynman rules

Analytic expressions for amplitudes
for specific helicty configurations

Evaluate amplitude numerically
as complex number using C/C++ or Fortran,

calculate the square numerically

explicit representation
of the spinors and ε’s
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 Another approach: Completely numerical approach

Two common approaches for amplitude calculations:

1. Feynman diagram based i.e. Madgraph,…

2. Use recurrence relation i.e. Alpgen,…

In 1. for every diagram a code is generated to 
evaluate it numerically

In 2. amplitudes are calculated from simpler
objects via recurrence relation

 some progress recently from string inspired methods

[Long, Stelzer ’94]

[Mangano et al]

Want to use it as a black box  don’t care what is inside!

We care about speed and numerical accuracy!
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 Example Madgraph
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 Example Madgraph – Output
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 Example Madgraph – Output

Input: QCD coupling
+ masses and widths
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 Example Madgraph – Output

Postscript figure also produced
by Madgraph
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 What about phase space integration ?

● High dimensional for multiparton processes (i.e. 5 for 23)

● Want to include arbitrary cuts / observables

 Do integration numerically using Monte Carlo techniques

Basic idea:

 Computer Code (F77) i.e. Vegas by Lepage

call vegas(ndim, fxn, avg, sd, chi2)

integrates fxn over [0,1]ndim
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 Missing piece: mapping [0,1]n   dLIPS

dLIPS = lorentz invariant phase space measure

RAMBO by Ellis, Kleiss, Stirling 

● Flat mapping:

SUBROUTINE RAMBO(N,ET,XM,P,WT)

● Sequential splitting

disadvantage: flat and [0,1]4n  dLIPS

[0,1]3n-4  dLIPS [Book: Byckling,Kajantie p. 273]

● Multi channel algorithms Adopt MC to structure of the integrand
by using different mappings in parallel
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 Last missing piece: Parton distribution functions

Remember:

 2 additional integration over x1,x2, no problem in MC approach

How to evaluate the PDF’s ?

 use LHAPDF, MRST/MSTW or CTEQ code

Subroutine SetCtq6 (Iset)
        Function Ctq6Pdf (Iparton, X, Q)

Cteq6Pdf-2007.fCTEQ:
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 Topquark pair production + 1 Jet (Born)

Large scale dependence
(~100%)

 we need NLO
LHC

Perturbation theory:

Born one-loop corrections

but
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 One-loop diagrams

 ~350 diagrams

Computer-Algebra numerical methods+

…
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 Diagram generation with QGRAF 

Model file (output) style file

QGRAF

File with all Feynman diagrams

Process info:
qgraf.dat
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Diagram generation with QGRAF: Input

Model file

style file
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Diagram generation with QGRAF: Output LO

Repetition of input

Output
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Diagram generation with QGRAF: Output NLO

“snail”

a1 could be suppressed by option nosnail

polarisation 
vectors

propagators,
vertices

dummy index i49

No tadpols

No corrections
On external lines
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Diagram generation with QGRAF: Output NLO

pentagon
diagram

5 propagators containing
the loop momenta

pentagon diagrams are the most complicated once
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 More on pentagon diagrams

complicated complex function of 5 variables, i.e.

loop momenta appears
in numerator  tensor integrale

loop integration needs to be done in d dimensions to
regulate UV and IR singularities
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 How to calculate the loop diagrams ?

many diagrams many topologies 

we cannot calculate every tensor integral analytically by hand

Solution:

Tensor integrals can be expressed in terms
of a small set of scalar “master integrals”

many different tensor integrals
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 Tensor reduction à la Passarino & Veltman

Passarino-Veltman

Contract with p

Scalar integrals:

Terms in red  add up to zero
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 Passarino-Veltman reduction (cont’d)

 problematic for 

General problem:

Numerical stable and efficient calculation
of tensor integrals

Analytically the limit “0/0” can be taken, numerically it might
result in severe instabilities

Basic version of Passarino-Veltman implemented in LoopTools
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 Improvement of Passarino-Veltman

● Derive special reduction formulae for problematic 
phase space regions

● Special reductions for 5- and 6-point tensor integrals

[Denner, Dittmaier and others] 

Remark about scalar integrals:

● Only 1-,2-,3-,and 4-point scalar integrals needed, 
higher point integrals can be reduced

● Evaluation of scalar integrals can be assumed as 
solved
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 Alternative reduction procedure – first step

From Schwinger or Feynman parametrization
of tensor integrals:

[Davydychev]

 Reduction of tensor integrals to scalar integrals 
with raised powers of the propagators and in 
higher dimensions!



  

45
 Alternative reduction procedure – second step

Integration-by-parts (IBP)

 Linear relation between different scalar integrals with 
raised powers of the propagators 

Problematic phase points can be studied systematically

[Chetyrkin, Kataev, Tkachov]
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 General feature of the reduction

 apart from the presence of Ii calculation is similar 
to leading-order calculation

Same techniques:

helicity basis, numerical evalualtion of spinor products,
numerical evaluation of amplitude
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 For pp  t t + 1Jet we used:

F77/C++ library to calculate  tensor integrals

1.) Impoved Passarino-Veltman reduction, Feynarts, F77
2.) 2-loop inspired techniques (IBP), QGRAF, C++

Methods completely general, also applicable to other processes
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 Real corrections

Note: Virtual corrections contain UV and IR singularities

UV singularities are cancelled via the renormalization procedure

IR singularities are cancelled by real corrections

*
x2Re +

2

∫
(n+1)-legs, real corrections

∫
divergent divergent
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 Real corrections (cont’d)

● In the real corrections the singularity is produced by the 
phase space integration over soft and collinear regions

● When we use dimensional regularization for the virtual 
corrections the same has to be done for the real 
corrections

● d dimensional integration of the phase space integrals 
in general not feasible

Solution:

Subtraction Method

[Catani,Seymour,…]
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 Real corrections: Dipole subtraction method

Add and subtract a counterterm which is easy enough 
to be integrated analytically:

Construction of subtraction for real corrections more involved,
Fortunately a general solution exists:

Dipole subtraction formalism

Can be done numerically
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 Dipole subtraction method (2)

How it works in practise:

Requirements:

in all single-unresolved regions

Due to universality of soft and collinear factorization,
general algorithms to construct subtractions exist

[Frixione,Kunszt,Signer ´95, Catani,Seymour ´96,  Nason,Oleari 98, 
Phaf, Weinzierl, Catani,Dittmaier,Seymour, Trocsanyi ´02]

Recently: NNLO algorithm [Daleo, Gehrmann, Gehrmann-de Ridder, Glover, Heinrich, Maitre]
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 Dipole subtraction method (3)

Universal structure:

Generic form of individual dipol:
Leading-order amplitudes

Vector in color space

Color charge operators,
induce color correlation

Spin dependent part,
induces spin correlation

universal

Example ggttgg: 6 different colorstructures in LO,
36 (singular) dipoles

! !Color charge operators,
induce color correlation

Spin dependent part,
induces spin correlation

Color charge operators,
induce color correlation
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 Example

For ggttgg the LO amplitude ggttg is required:

 Six component vector in color space
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 Dipole subtraction method — implementation

LO – amplitude, 
with colour information,

i.e. correlations  

List of dipoles we 
want to calculate

0

1
2
3
4

5

reduced kinematics,
“tilde momenta”

Dipole di
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 Topquarkpaar + 1-Jet-Production (NLO)

[Dittmaier, Uwer, Weinzierl, Phys. Rev. Lett. 98:262002, ‘07]

● scale dependence is improved
● tools are completely general: arbitrary infrared save 

observables are calculable (work in progress)

Tevtron LHC
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 Differential distributions

[Dittmaier, Uwer, Weinzierl 07]

 currently studied at the Tevatron

Pseudo rapidity
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