Introduction to state of the art calculations for LHC

Peter Uwer*)

Universität Karlsruhe

Helmholtz Alliance

Contents

1. Introduction - Setting the scene
2. Current state of the art
3. Example - Born approximation
4. Example - NLO approximation

What we will see at the LHC...

and how we understand it

The perturbative part

Parton-parton scattering

- The matrix elements describing the transition ij $\rightarrow X$ are calculable in perturbation theory

How do we calculate the corresponding hadronic cross sections

?

Simplified picture of the hadronic cross section

Partonic cross section

($n+1$)-legs, real corrections
$+\int_{\text {2Re }}\left(\left(00 \times{ }^{\circ}+\int_{2 R e} O-\times O\right.\right.$
$+\int|O|^{2}$

+ ...

Pictorial representation of amplitudes

1-loop approximation
Complex functions
of the kinematics

2-loop approximation

$$
=\frac{1}{\mathcal{N}} \frac{1}{2 s} \int \delta\left(p_{a}+p_{b}-\left(p_{1}+p_{2} \ldots\right)\right) \prod_{i} \frac{d^{3} p_{i}}{2 E_{i}}
$$

Phase space integral

Current state of the art

- Leading-order:
$2 \rightarrow 8+\mathrm{n}$ processes calculable in automated way
Drawback: matrix element evaluation and phase space evaluation might be slow
Note: many phase space points needed for good accuracy (high dim. phase space integrals)
- Next-to-leading:
$2 \rightarrow 3$ processes feasible with current technology, no true $2 \rightarrow 4$ process @ NLO currently available for LHC
- Next-to-next-to-leading order:
$2 \rightarrow 1$ processes can be done, do we need NNLO for $2 \rightarrow 2$?

Les Houches wishlist

Physics at TeV Colliders
 Les Houches, 11-29 June 2007

	Les Houches 07 wishlist		
	$\begin{aligned} & \text { process } \\ & (V \in\{Z, W, \gamma\}) \end{aligned}$	\# groups working on	
	1. $p p \rightarrow V V$ jet 2. $p p \rightarrow t \bar{t} b \bar{b}$ 3. $p p \rightarrow t \bar{t}+2$ jets 4. $p p \rightarrow W W W$ 5. $p p \rightarrow V V b \bar{b}$ 6. $p p \rightarrow V V+2$ jets 7. $p p \rightarrow V+3$ jets 8. $b \bar{b} b \bar{b}$ 9. $g g \rightarrow W^{*} W^{*}$ (NLO, 2 loops) 10. EW corrections to VBF 11. NNLO to VBF, $t \bar{t}, Z / \gamma+$ jet, $W+$ jet	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & ? \\ & 1 \end{aligned}$	

[Heinrich 07]
\rightarrow High demand for one-loop calculations for the LHC

A concrete example:

$$
\begin{gathered}
p p \rightarrow t \bar{t}+1 \text { Jet } \\
@ \text { NLO }
\end{gathered}
$$

Motivation: Topquark as background for Higgs search

"Weak Boson Fusion" (WBF)

Background processes:

channel	$e^{ \pm} \mu^{\mp}$	$\begin{gathered} e^{ \pm} \mu^{\mp} \\ \text { w/minijet veto } \end{gathered}$	$e^{ \pm} e^{\mp}, \mu^{ \pm} \mu^{\mp}$	$e^{ \pm} e^{\mp}, \mu^{ \pm} \mu^{\mp}$ $\mathrm{w} / \mathrm{minijet}$ veto
$70<m_{h}<300 \mathrm{GeV}$	1.90	1.69	1.56	1.39
$\mathrm{SM}, m_{h}=155 \mathrm{GeV}$	5.60	4.98	4.45	3.96
$t \bar{t}$	0.086	0.025	0.086	0.025
$t \bar{t} j$	7.59	2.20	6.45	1.87
$t \bar{t} j j$	0.83	0.24	0.72	0.21
single-top (tbj)	0.020	0.015	0.016	0.012
$b \bar{b} j j$	0.010	0.003	0.003	0.001
QCD $W W j j$	0.448	0.130	0.390	0.113
EW WW $j j$	0.269	0.202	0.239	0.179
QCD $\tau \tau j j$	0.128	0.037	0.114	0.033
EW $\tau \tau j j$	0.017	0.013	0.016	0.012
QCD $\ell \ell j j$	-	-	0.114	0.033
EW $\ell \ell j j$	-	-	0.011	0.008
total bkg	9.40	2.87	8.04	2.49
S / B	1/5.0	1/1.7	1/5.1	1/1.8
$L_{5 \sigma}^{\text {obs }}\left[\mathrm{fb}^{-1}\right]$	65	[Alves,	i, Plèhn	nwater

\rightarrow Precise predictions for pp $\rightarrow \mathrm{tt}+1$-Jet are important

Side remark: New physics search at the LHC

LHC-Physics = Standardmodell + X
 new physics

X = LHC-Physics - Standardmodell
Experiment
Theory prediction

Scattering amplitudes for $\mathrm{ij} \rightarrow \mathrm{t} \overline{\mathrm{t}}+1$ Jet

$$
d \hat{\sigma}_{i j} \sim \delta\left(p_{i}+p_{j}-\left(k_{t}+k_{\bar{t}}+k_{g}\right)\right) \frac{d^{3} k_{t}}{2 E_{t}} \frac{d^{3} k_{\bar{t}}}{2 E_{\bar{t}}} \frac{d^{3} k_{g(q)}}{2 E_{g(q)}}\left|\mathcal{A}_{i j \rightarrow t \bar{t} g(q)}\right|^{2}
$$

$$
g g \rightarrow t \bar{t} g, \quad q \bar{q} \rightarrow t \bar{t} g, \quad q g \rightarrow t \bar{t} q, \quad g \bar{q} \rightarrow t \bar{t} \bar{q}
$$

$$
\mathcal{A}_{g g \rightarrow t \bar{t} g}=
$$

$$
=\ldots=\alpha_{s}(\mu)^{3 / 2} A\left(\left\{p_{i}, \lambda_{i}\right\}\right)
$$

complexe function of momenta and polarisation

Methods to calculate scattering amplitudes (LO)

1. Analytically by hand on a piece of paper
2. Analytically using computer algebra
3. purely numerical

Lets take a closer look to see how it works by hand and why we don't want to do it that way

A simple example how to do it by hand

$$
\begin{array}{r}
\quad \frac{-i g^{\mu \nu} \delta^{a b}}{\left(k_{t}+k_{\bar{t}}\right)^{2}+i \varepsilon} \\
\quad \overline{\mathcal{v}}\left(k_{\bar{q}}\right)(-i) g_{s} \gamma_{v} T^{b} u\left(k_{q}\right) \\
=i g_{s}^{2} \frac{1}{s} \bar{u}\left(k_{t}\right) \gamma_{\mu} T^{a} v\left(k_{\bar{t}}\right) \bar{v}\left(k_{\bar{q}}\right) \gamma^{\mu} T^{a} u\left(k_{q}\right)
\end{array}
$$

Color is not observerd \rightarrow average over incoming color, sum over outgoing

$$
\begin{aligned}
& \quad \frac{1}{N \cdot N} \sum_{t \bar{t}, q, \bar{q}}\left(T^{a}\right)_{t \bar{t}}\left(T^{b}\right)_{\bar{t} t}\left(T^{a}\right)_{\bar{q} q}\left(T^{b}\right)_{q \bar{q}}=\frac{1}{N^{2}} \operatorname{Tr}\left[T^{a} T^{b}\right] \operatorname{Tr}\left[T^{a} T^{b}\right]= \\
& \frac{1}{N^{2}} \frac{1}{2} \delta_{a b} \frac{1}{2} \delta_{a b}=\frac{1}{4 N^{2}} \delta_{a a}=\frac{1}{4 N^{2}}\left(N^{2}-1\right)
\end{aligned}
$$

A simple example how to do it by hand (cont'd)

If spin is not observed: average over incoming sum over outgoing
Use:

$$
\begin{aligned}
& \sum_{s} u_{\alpha}\left(k_{t}, s\right) \bar{u}_{\beta}\left(k_{t}, s\right)=\left(k_{t}+m\right)_{\alpha \beta} \\
& \sum_{s} v_{\alpha}\left(k_{\bar{T}}, s\right) \bar{v}_{\beta}\left(k_{\bar{t}}, s\right)=\left(k_{\bar{I}}-m\right)_{\alpha \beta}
\end{aligned}
$$

$\sum|\mathcal{T}|^{2} \sim g_{s}^{4} \frac{1}{s^{2}}\left(k_{t}+m\right)_{\alpha \beta}\left(\gamma_{V}\right)_{\beta \alpha^{\prime}}\left(k_{\bar{T}}-m\right)_{\alpha^{\prime} \beta^{\prime}}\left(\gamma_{\mu}\right)_{\beta^{\prime} \alpha}\left(k_{\bar{q}}\right)_{\rho \gamma}\left(\gamma^{v}\right)_{\gamma \varepsilon}\left(k_{q}\right)_{\varepsilon \delta}\left(\gamma^{\mu}\right)_{\delta \rho}$
$=g_{s}^{4} \frac{1}{s^{2}} \operatorname{Tr}\left[\left(k_{t}+m\right) \gamma_{v}\left(k_{t}-m\right) \gamma_{\mu}\right] \operatorname{Tr}\left[k_{q} \gamma^{\nu} k_{q} \gamma^{\mu}\right]$
Calculating the traces gives:

$$
\sum|\mathcal{T}|^{2} \sim g_{s}^{4} \frac{1}{s^{2}} 4\left(2+\left(z^{2}-1\right) \beta^{2}\right) s^{2}
$$

z cosine of the scattering angle, $\beta=\sqrt{1-\frac{4 m^{2}}{s}}$ velocity

A simple example how to do it by hand (cont'd)

Last step to obtain total cross section: phase space integral

$$
\delta\left(k_{q}+k_{\bar{q}}-\left(k_{t}+k_{\bar{t}}\right)\right) \frac{d^{3} k_{t} d^{3} k_{\bar{T}}}{2 E_{t} t} 2 E_{\bar{T}}=\frac{1}{16 \pi} \beta d z
$$

The differential (partonic) cross section becomes:

$$
\begin{aligned}
d \sigma_{q \bar{q}} & =\frac{1}{2 s} \frac{1}{2 \cdot 2} \frac{N^{2}-1}{4 N^{2}} g_{s}^{4} \frac{1}{s^{2}} 4\left(2+\left(z^{2}-1\right) \beta^{2}\right) s^{2} \frac{1}{16 \pi} \beta d z \\
& =\frac{1}{9} \pi \alpha_{s}^{2} \beta\left(2+\left(z^{2}-1\right) \beta^{2}\right) d z \\
& \alpha_{s}=\frac{g_{s}}{4 \pi}, z=\cos (\theta), \beta=\sqrt{1-\frac{4 m^{2}}{s}}
\end{aligned}
$$

What are the problems when going to more complicated processes

A simple example how to do it by hand

$$
i T=\bar{u}\left(k_{t}\right)(-i) g_{s} \gamma_{\mu} T^{a} v\left(k_{\bar{T}}\right)
$$

$$
\text { more diags }=i g_{s}^{2} \bar{u}\left(k_{t}\right) \gamma_{\mu} T^{a} v\left(k_{i}\right) \bar{v}\left(k_{\bar{q}}\right) \gamma^{4} T^{a} u\left(k_{q}\right)
$$

Color is not observerd \rightarrow average over incoming color, sum over outgoing

$$
\begin{aligned}
& \frac{1}{N \cdot N} \sum_{t \bar{\tau}, q, \bar{q}}\left(T^{a}\right)_{t \bar{t}}\left(T^{b}\right)_{\bar{t} t}\left(T^{a}\right)_{\bar{x}}(\bar{r} \bar{E})_{q \bar{q}}=\frac{1}{N^{2}} \operatorname{Tr}\left[T^{a} T^{b}\right] \operatorname{Tr}\left[T^{a} T^{b}\right]= \\
& \left.\frac{1}{N^{2}} \frac{1}{2} \delta_{a b} \frac{1}{2} \delta_{a b}=\frac{1}{4 N^{2}} \delta_{\text {nofe }} \text { stry }_{4 N^{2}} \mathcal{N}^{2}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& |\mathcal{T}|^{2}=g_{s}^{4} \frac{1}{s^{2}} \bar{u}\left(k_{t}\right) \gamma_{\mu} T^{a} v\left(k_{i}\right) \bar{\eta}\left(\sigma_{x}\right) \varphi_{1}=2 \bar{\sigma}^{256} u\left(k_{q}\right)
\end{aligned}
$$

A simple example how to do it by hand (cont'd)

If spin is not observed: average over incoming sum over outgoing
Use:

$$
\begin{aligned}
& \sum_{s} u_{\alpha}\left(k_{t}, s\right) \bar{u}_{\beta}\left(k_{t}, s\right)=\left(k_{t}+m\right)_{\alpha \beta} \\
& \sum_{s} v_{\alpha}\left(k_{\bar{t}}, s\right) \bar{v}_{\beta}\left(k_{\bar{t}}, s\right)=\left(k_{\bar{I}}-m\right)_{\alpha \beta}
\end{aligned}
$$

$\sum|T|^{2}{ }_{4}^{1} \frac{1}{s}\left(k_{1}+m\right) m_{1}$

Calculating the trace gives:
z cosine of the scattering angle, $\beta=\sqrt{1-\frac{4 m^{2}}{s}}$ velocity

A simple example how to do it by hand (cont'd)

Last step to obtain cross section: phase space integral more particles \rightarrow phase spag $2 E_{t} 2 E_{i}=\frac{1}{16 \pi} \beta d z$

The differential (partonic) cross section becomes:

$$
\begin{aligned}
d \sigma_{q \bar{q}} & =\frac{1}{2 s} \frac{1}{2 \cdot 2} \frac{N^{2}-1}{4 N^{2}} g_{s}^{4} \frac{1}{s^{2}} 4\left(2+\left(z^{2}-1\right) \beta^{2}\right) s^{2} \frac{1}{16 \pi} \beta d z \\
& =\frac{1}{9} \pi \alpha_{s}^{2} \beta\left(2+\left(z^{2}-1\right) \beta^{2}\right) d z \\
& \alpha_{s}=\frac{g_{s}}{4 \pi}, z=\cos (\theta), \beta=\sqrt{1-\frac{4 m^{2}}{s}}
\end{aligned}
$$

One solution: Use computer algebra

Generate diagrams

[QGRAF, Feynarts]

(\rightarrow Topologies)

Feynman rules
Algebraic expressions
$(\rightarrow$ Maple, Mathematica, Form)

explicit representation of the spinors and ε 's
Analytic expressions for amplitudes for specific helicty configurations

evaluate $\bar{u}(k) u(k)$ numerically
Evaluate amplitude numerically as complex number using C/C++ or Fortran, calculate the square numerically

Another approach: Completely numerical approach

Two common approaches for amplitude calculations:

1. Feynman diagram based i.e. Madgraph,... [Long, Stelzer '94]
2. Use recurrence relation i.e. Alpgen,... [Mangano et al]

In 1. for every diagram a code is generated to evaluate it numerically

In 2. amplitudes are calculated from simpler objects via recurrence relation
\rightarrow some progress recently from string inspired methods
Want to use it as a black box \rightarrow don't care what is inside!
We care about speed and numerical accuracy!

Example Madgraph

uwer on ttpodo: /users/tp/uwer

(4 옹
uwerattpodo: ~>madgraph

Standard Model particles include:
Quarks: $d u s c b t d^{N} u^{\sim} s^{N} c^{\sim} b^{N} t^{N}$
Leptons: e- mu- ta- e+ mu+ ta+ ve vm vt ven $v m^{\sim} v t^{\sim}$
Bosons: gazw+w-h
Enter process you would like calculated in the form e+ e- -> a.
(<return> to exit MadGraph.)
$g \mathrm{~g} \rightarrow \mathrm{t} \mathrm{t}^{\sim} \mathrm{g}$
Attempting Process: g g \rightarrow t $\mathrm{t}^{\sim} \mathrm{g}$
Enter the number of QCD vertices between 3 and 3 (3):
The number of QFD vertices is 0
No QFD possible all QCD ok?:
Enter a name to identify process (gg_ttbg):

Generating diagrams for 5 external legs
There are 18 graphs.
Writing Feynman graphs in file gg_ttbg.ps
Reduced color matrix 1518
Writing function GG_TTBG in file gg_ttbg.f.

Example Madgraph - Output

uwer on ttpodo: /users/tp/uwer

REAL*8 FUNCTION SGG_TTBG(P1, P2, P3, P4, P5)
FUNCTION GENERATED BY MADGRAPH
C RETURNS AMPLITUDE SQUARED SUMMED/AVG OVER COLORS
C AND HELICITIES
C FOR THE POINT IN PHASE SPACE P1, P2, P3, P4, ...
FOR PROCESS : $\mathrm{g} \mathrm{g} \rightarrow \mathrm{t} \mathrm{t}^{\sim} \mathrm{g}$
IMPLICIT NONE

```
CONSTANTS
```

INTEGER NEXTERNAL, NCOMB
PARAMETER (NEXTERNAL=5, NCOMB= 32)
C
ARGUMENTS
REAL*8 P1 $(0: 3), \mathrm{P} 2(0: 3), \mathrm{P} 3(0: 3), \mathrm{P} 4(0: 3), \mathrm{P} 5(0: 3)$

LOCAL VARIABLES
INTEGER NHEL (NEXTERNAL, NCOMB) , NTRY
REAL*8 T
REAL*8 GG_TTBG
INTEGER IHEL
LOGICAL GOODHEL (NCOMB)
DATA GOODHEL/NCOMB*.FALSE./
DATA NTRY/O/
DATA (NHEL (IHEL,
DATA (NHEL (IHEL,
DATA (NHEL (IHEL, DATA (NHEL (IHEL, DATA (NHEL (IHEL, DATA (NHEL (IHEL,
DATA (NHEL (IHEL,
DATA (NHEL (IHEL,
1), IHEL $=1,5) /-1,-1,-1,-1,-1 /$
2), $\mathrm{IHEL}=1,5) /-1,-1,-1,-1,1 /$
3), $\mathrm{IHEL}=1,5) /-1,-1,-1,1,-1 /$
4), IHEL $=1,5) /-1,-1,-1,1,1 /$
5), $\mathrm{IHEL}=1,5) /-1,-1,1,-1,-1 /$
6), IHEL $=1,5) /-1,-1, \quad 1,-1,1 /$
7), IHEL $=1,5) /-1,-1,1,1,-1 /$
8), $\operatorname{IHEL}=1,5) /(-1,-1, \quad 1,1,1 /$

ПロTA (NHFI THFI, G) THFI-1 5i, -

Example Madgraph - Output

```
ARGUMENTS
REAL*8 P1(0:3),P2(0:3),P3(0:3),P4(0:3),P5(0:3)
INTEGER NHEL(NEXTERNAL)
C
LOCAL VARIABLES
INTEGER I,J
REAL*8 EIGEN_VAL(NEIGEN), EIGEN_VEC(NGRAPHS,NEIGEN)
COMPLEX*16 ZTEMP
COMPLEX*16 AMP(NGRAPHS)
COMPLEX*16 W1(6) ,W2(6) ,W3(6) ,W4(6) ,W5(6)
COMPLEX*16 W6(6), W7(6),W8(6),W9(6), W10(6)
COMPLEX*16 W11(6) , W12(6) , W13(6) ,W14(6),W15(6)
COMPLEX*16 W16(6), W17(6), W18(6), W19(6), W20(6)
COMPLEX*16 W21(6), W22(6) ,W23(6)
C
    REAL*8 GOMMON /COUPQCD/GG(2), G
    REAL*8 FMASS(12), FWIDTH(12)
Input: QCD coupling
+ masses and widths
C
COMMON /FERMIONS/ FMASS, FWIDTH
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATA & EIGEN_VAL (1 & )/ & & \(1.0416666666666660 \mathrm{D}-01\) & / \\
\hline DATA & EIGEN_VEC (1 & ,1 & )/ & \(0.0000000000000000 \mathrm{D}+00\) & / \\
\hline DATA & EIGEN_VEC (2 & ,1 & )/ & \(0.0000000000000000 \mathrm{D}+00\) & / \\
\hline DATA & EIGEN_VEC(3 & ,1 & )/ & -4.0824829046386341D-01 & / \\
\hline DATA & EIGEN_VEC (4 & ,1 & )/ & -4.0824829046386268D-01 & / \\
\hline DATA & EIGEN_VEC(5 & ,1 & )/ & -4.0824829046386313D-01 & / \\
\hline DATA & EIGEN_VEC (6 & ,1 & )/ & \(0.0000000000000000 \mathrm{D}+00\) & \\
\hline
\end{tabular}
```


Example Madgraph - Output

DATA	EI	, 6)	-1.1941938778965616D-01
DATA	EIGEN_VEC(15	,6)/	-2.3883877557931230D-01
DATA	EIGEN_VEC (16	,6)/	$2.3883877557931230 \mathrm{D}-01$
DATA	EIGEN_VEC (17	6)/	2.6099752752803979D-01
	EIGEN_VEC (18	6		

C BEGIN CODE

CALL VXXXXX(PI
CALL VXXXXX(P2
CALL OXXXXX(P3
CALL IXXXXX(P4
CAL UXXXXX(P5
CALL $V x \times x \times x(P)$
CALL FVOXXX (W3
CALL JIOXXX (W4
CALL GGGXXX (W5
CALL FVIXXX(W4
CALL JGGXXX(W5
CALL IOVXXX (W8
CALL FVOXXX (W3
CALL IOVXXX(W8
CALL FVOXXX(W6
CALL IOVXXX (W4
CAL MOVXX (W8
CALL IOVXXX(W8
CALL FVIXXX (W4
CALL JGGXXX(W5
CALL IOVXXX (W12
CALL FVOXXX (W3
CALL JIOXXX (W4
CALL GGGXXX (W5
CALL IOVXXX(W12
CALL FVOXXX(W14
CALL IOVXXX(W4
CALL IDVXXX (W1
CALL IOVXXX(W12
EALL JIOXXX(W4
CALL GGGXXX (W13
CALL GGGXXX (W1
CALL JGGXXX (W1
CALL FVIXXX(W4
CALL IOVXXX(W19
CALL FVOXXX(W3
CALL IOVXXX(W4
CALL GGGXXX(W5
CALL JGGGXX(W1
CAL IOVXXX (W4
CALL IOVXXX (W4
CALL JGGGXX(W5
CALL IOVXXX(W4
CALL JGGGXX(W2
CALL IOVXXX (W4

, $\operatorname{FMASS}(11)$, NHEL (3), 1, W3
FMASS (11), $\operatorname{NHEL}(4),-1, w 4$
ZERO, NHEL (5), 1, W5 ${ }^{-1}$,
W2

W6 , GG, ZERD ZENO, WI

,W1 ,GG, FMASSA1, FWIDTH(11),W8) ,GG,FMASS 1, , FWI , $\mathrm{G}, \mathrm{W}, \mathrm{W9}$, GG AMP (2))
GG,FMASS*P FWIDTH(11),W10)
,W2 ,GG AMP (3)))
GG,FMASS(41 , FWIDTH(11),W11)
,W5 , GG , $\operatorname{AMP}(4$,)
,GG,FMASS(11),FWIDTH(11),W12)
,G,W13)
, W13 ,GG, AMP (6))
,GG, FMASS (11), FWIDTH(11),W14) ,GG,ZERO, ZERO, W15)
,W15 , G , AMP (7,)
\qquad
,GG,FMASS(11),FWIDTH(11),W16) ,W5 ,GG, AMP (9))
,W5 ,GG,AMP(10))
,GG , ZERO, ZERO, W17)
, W17 , G , AMP (11))
, W17 ,G,AMP(11) ,G,AMP(12))
,W17 ,G18,
W18 ,GG,FMASS(11),FWIDTH(11),W19)
, W5 ,GG, AMP (13))
,GG,FMASS (11),FWIDTH(11),W20) , W5 ,GG, AMP (14))
, W18 , G , AMP (15))
,W5 ,G,W21)
,W21 ,GG, AMP(16))
,W21 , GG, AMP (16
W22 ,GG, AMP (17))
,W22 , , GG, AMP (17))
,W1 ,G23 ,GG, $\mathrm{GMP}(18))$

3
graph 4

OO-TBG = O.DO _TE NEIGEN
TEMP $=$ (O.DO,O.DO
DO $J=1$, NGRAPHS
ZTEMP $=$ ZTEMP + EIGEN_VEC (J, I) *AMP (J)
GG_TTBG $=$ GG_TTBG + ZTEMP*EIGEN_VAL $(I) * C O N J G(Z T E M P)$
NDD
CALL GAUGECHECK (AMP,ZTEMP, EIGEN_VEC, EIGEN_VAL, NGRAPHS,NEIGEN)

Postscript figure also produced by Madgraph

What about phase space integration?

- High dimensional for multiparton processes (i.e. 5 for $2 \rightarrow 3$)
- Want to include arbitrary cuts / observables
\rightarrow Do integration numerically using Monte Carlo techniques
Basic idea:

$$
\int d^{n} x f(\vec{x})=\int d^{n} x \frac{f(\vec{x})}{\rho(\vec{x})} \rho(\vec{x})=\left\langle\frac{f(\vec{x})}{\rho(\vec{x})}\right\rangle_{\rho} \approx \frac{1}{N} \sum_{i} \frac{f\left(\vec{x}_{i}\right)}{\rho\left(\vec{x}_{i}\right)}
$$

ρ with $\int d^{n} x \rho(\vec{x})=1$ can be tuned to the integrand
\rightarrow Computer Code (F77) i.e. Vegas by Lepage call vegas(ndim, fxn, avg, sd, chi2) integrates fxn over $[0,1]^{\text {ndim }}$

Missing piece: mapping $[0,1]^{n} \rightarrow$ dLIPS

dLIPS = lorentz invariant phase space measure

$$
\mathrm{dLIPS} \sim \delta\left(p_{i}+p_{j}-\left(\sum_{i} k_{i}\right)\right) \prod_{i} \frac{d^{3} k_{i}}{2 E_{i}}
$$

- Flat mapping:

RAMBO by Ellis, Kleiss, Stirling
SUBROUTINE RAMBO(N,ET,XM,P,WT) disadvantage: flat and $[0,1]^{4 \mathrm{n}} \rightarrow$ dLIPS

- Sequential splitting

- Multi channel algorithms

Adopt MC to structure of the integrand by using different mappings in parallel

Last missing piece: Parton distribution functions

Remember:

$$
\begin{aligned}
& d \sigma(p+p \rightarrow t \bar{t}+1 \text { jet }+X)= \\
& \sum_{i j} \int d x_{1} d x_{2} F_{i}\left(x_{1}, \mu^{2}\right) F_{j}\left(x_{2}, \mu^{2}\right) \\
& \quad \times d \hat{\sigma}_{i j}\left(i\left(x_{1} P_{1}\right)+j\left(x_{2} P_{2}\right) \rightarrow t \bar{t} g(q)\right)
\end{aligned}
$$

$\rightarrow 2$ additional integration over x_{1}, x_{2}, no problem in MC approach
How to evaluate the PDF's ?
\rightarrow use LHAPDF, MRST/MSTW or CTEQ code
CTEQ: Subroutine SetCtq6 (Iset) Function Ctq6Pdf (Iparton, X, Q) $\}$

Topquark pair production + 1 Jet (Born)

Large scale dependence (~100\%)
\rightarrow we need NLO

$$
\mu \frac{d \alpha_{s}(\mu)}{d \mu}=\alpha_{s}(\mu) \beta\left(\alpha_{s}(\mu)\right) \quad \text { but } \quad \frac{d \sigma}{d \mu}=0
$$

Perturbation theory:

$$
\sigma=\alpha_{s}(\mu)^{3} a_{0}+\alpha_{s}(\mu)^{4}\left(a_{1}^{0}+a_{1}^{1} \ln \left(\frac{\mu}{m}\right)\right)+\cdots
$$

One-loop diagrams

Computer-Algebra

$+$
numerical methods

Diagram generation with QGRAF

Model file

(output) style file

Process info: qgraf.dat

File with all Feynman diagrams

Diagram generation with QGRAF：Input

```
uwer on ttpodo: /...
```


uwerattpodo:include>more qcd-1.1
* propagators
[q,qb,-]
$[\mathrm{t}, \mathrm{tb},-]$
[g,g,+]
* vertices
[qb,q,g]
[tb, t,g]
[$g, g, g]$
[g,g,g,g]
uwerattpodo:include>

Model file

ㅁ uwer on ttpodo：／users／tp／uwer／projekt．．．

```
利田目目采
```

```
uwerQttpodo:include>more myform-1.0.sty
<prologue>
*
* file generated by <program>
* style-file: myform-1.0.sty
*
<prologue_loop>* <data>
<end>*
<diagram>
    <back>
l a<diagram_index>:=
(<sign><symmetry_factor>)*
<leg_loop\rangle e(<leg_momentum>,i{50+(<field_index\rangle)})*
<end\rangle\langlepropagator_loop\rangle <field\rangleprop(i{50+(<field_index\rangle)},
<back>i{50+(<dual_field_index>)},<momentum>)*
<end><vertex_loop> vrtx(<sub_loop>i{50+(<field_index\rangle)},
<back><end><back>)*
<end><back><back>;
<epilogue>
* end
<exit>
uwerGttpodo:include>
```

style file

Diagram generation with QGRAF: Output LO

uwer on ttpodo: /users/ttp/uwer/proj...
werettpodo:auto>more ggttbg.qgraf

* file generated by qgraf 2.0
* style-file: myform-1.0.sty

```
* output = './include/auto/ggttbg.qgraf' ;
```

* style $=$ './include/myform-1.0.sty ' ;
* model = './include/qcd-1.1';
* in = $g[p 1], g[p 2]$;
* out $=\mathrm{g}[\mathrm{p} 3]$, t tkq$],$ 'tb[kqb];
* loops = 0 ;
* loop_momentum = 1 ;
* options = notadp, onshell;
*

1 a1:=
(+1) *
$\mathrm{e}(\mathrm{p} 1, \mathrm{i}\{50+(-1)\}) *$
e(p2,i $\{50+(-3)\}) *$
$\mathrm{e}(\mathrm{p} 3, \mathrm{i}\{50+(-2)\}$)*
e (kq, i $\{50+(-4)\}) *$
$\mathrm{e}(\mathrm{kqb}, \mathrm{i}\{50+(-6)\}) *$
gprop $(\mathrm{i}\{50+(1)\}, \mathrm{i}\{50+(2)\}, \mathrm{kq}+\mathrm{kqb}) *$
$\operatorname{vrtx}(\mathrm{i}\{50+(-4)\}, \mathrm{i}\{50+(-6)\}, \mathrm{i}\{50+(1)\}) *$
$\operatorname{vrtx}(\mathrm{i}\{50+(-1)\}, \mathrm{i}\{50+(-3)\}, \mathrm{i}\{50+(-2)\}, \mathrm{i}\{50+(2)\})$;
1 a2:=
(+1) *
$\mathrm{e}(\mathrm{p} 1, \mathrm{i}\{50+(-1)\}) *$
$\mathrm{e}(\mathrm{p} 2, \mathrm{i}\{50+(-3)\}) *$
e(p3,i\{50+(-2)\})*
$\mathrm{e}(\mathrm{kq}, \mathrm{i}\{50+(-4)\}$)*

Repetition of input

Output
(p)

Diagram generation with QGRAF: Output NLO

a1 could be suppressed by option nosnail

Diagram generation with QGRAF: Output NLO

```
uwer on ttpodo:/users/tp/uwer/projekt..
```

```
e(kq,i{50+(-4)})*
e(kqb,i{50+(-6)})*
tprop(i{50+(1)},i{50+(2)},11)*
tprop(i{50+(3)},i{50+(4)},11-p1)*
gprop(i{50+(5)},i{50+(6)},-l1+kq)*
gprop(i{50+(7)},i{50+(8)},11-p1+kqb)*
gprop(i{50+(9)},i{50+(10)},-11+p3+kq)*
vrtx(i{50+(2)},i{50+(3)},i{50+(-1)})*
vrtx(i{50+(-4)},i{50+(1)},i{50+(5)})*
vrtx(i{50+(4)},i{50+(-6)},i{50+(7)})*
vrtx(i{50+(-2)},i{50+(6)},i{50+(9)})*
vrtx(i{50+(-3)},i{50+(8)},i{50+(10)});
l a354:=
(+1)*
e(p1,i{50+(-1)})*
e(p2,i{50+(-3)})*
e(p3,i{50+(-2)})*
e(kq,i{50+(-4)})*
e(kqb,i{50+(-6)})*
gprop(i{50+(1)},i{50+(2)},-11)*
gprop(i{50+(3)},i{50+(4)},11-p1)*
tprop(i{50+(5)},i{50+(6)},-11+kq)*
tprop (i{50+(7)},i{50+(8)},-l1+p1-kqb)*
tprop(i{50+(9)},i{50+(10)},-11+p3+kq)*
vrtx(i{50+(-1)},i{50+(1)},i{50+(3)})*
vrtx(i{50+(-4)},i{50+(5)},i{50+(2)})*
vrtx(i{50+(8)},i{50+(-6)},i{50+(4)})*
vrtx(i{50+(6)},i{50+(9)},i{50+(-2)})*
vrtx(i{50+(10)},i{50+(7)},i{50+(-3)});
* end
```

uwerattpodo: auto>
pentagon diagrams are the most complicated once

More on pentagon diagrams

$$
\begin{aligned}
& \text { loop momenta appears } \\
& \text { in numerator } \rightarrow \text { tensor integrale } \\
& \begin{aligned}
\mathcal{A}_{i}= & \int d^{d} \ell \frac{u\left(p_{1}, p_{2}, p_{3}, p_{t}, p_{\bar{t}}, \ell\right)}{\left(\ell^{2}+i \varepsilon\right)\left(\left(\ell+p_{1}\right)^{2}+i \varepsilon\right)\left(\left(\ell+p_{1}-p_{t}\right)^{2}-m_{t}^{2}+i \varepsilon\right)} \\
& \times \frac{1}{\left(\left(\ell-p_{1}+p_{\bar{t}}\right)^{2}-m_{t}^{2}+i \varepsilon\right)} \frac{1}{\left(\left(\ell-p_{2}\right)^{2}+i \varepsilon\right)}
\end{aligned}
\end{aligned}
$$

loop integration needs to be done in d dimensions to regulate UV and IR singularities
\rightarrow complicated complex function of 5 variables, i.e. $\quad s_{i j}=2 p_{i} \cdot p_{j}$

How to calculate the loop diagrams?

many diagrams many topologies

many different tensor integrals
we cannot calculate every tensor integral analytically by hand

Solution:

Tensor integrals can be expressed in terms of a small set of scalar "master integrals"

Tensor reduction à la Passarino \& Veltman

Passarino-Veltman

$$
\int d^{d} \ell \frac{\ell_{\mu}}{\left(\ell^{2}-m_{0}^{2}+i \varepsilon\right)\left((\ell+p)^{2}-m_{1}^{2}+i \varepsilon\right)}=p_{\mu} B_{1}
$$

Contract with p
Terms in red add up to zero

$$
\frac{1}{2} \int d^{d} \ell \frac{\ell^{2}+2 p \ell+p^{2}-m_{1}^{2}-\left(\ell^{2}-m_{0}^{2}\right)+m_{1}^{2}-m_{0}^{2}-p^{2}}{\left(\ell^{2}-m_{0}^{2}+i \varepsilon\right)\left((\ell+p)^{2}-m_{1}^{2}+i \varepsilon\right)}=p^{2} B_{1}
$$

$$
p^{2} B_{1}=\frac{1}{2}\left(A\left(m_{0}\right)-A\left(m_{1}\right)+\left(m_{1}^{2}-m_{0}^{2}-p^{2}\right) B_{0}\right)
$$

Scalar integrals:

$$
A(m)=\int d^{d} \ell \frac{1}{\ell^{2}-m^{2}+i \varepsilon} \quad B_{0}=\int d^{d} \ell \frac{1}{\left(\ell^{2}-m_{0}^{2}+i \varepsilon\right)\left((\ell+p)^{2}-m_{1}^{2}+i \varepsilon\right)}
$$

Passarino-Veltman reduction (cont'd)

$$
\begin{aligned}
B_{1}= & \frac{1}{2 p^{2}}\left(A\left(m_{0}\right)-A\left(m_{1}\right)+\left(m_{1}^{2}-m_{0}^{2}-p^{2}\right) B_{0}\right) \\
& \rightarrow \text { problematic for } p^{2} \rightarrow 0
\end{aligned}
$$

Analytically the limit " $0 / 0$ " can be taken, numerically it might result in severe instabilities

General problem:

Numerical stable and efficient calculation of tensor integrals

Basic version of Passarino-Veltman implemented in LoopTools

Improvement of Passarino-Veltman

[Denner, Dittmaier and others]

- Derive special reduction formulae for problematic phase space regions
- Special reductions for 5- and 6-point tensor integrals

Remark about scalar integrals:

- Only 1-,2-,3-,and 4-point scalar integrals needed, higher point integrals can be reduced
- Evaluation of scalar integrals can be assumed as solved

Alternative reduction procedure - first step

From Schwinger or Feynman parametrization of tensor integrals:

$$
\begin{aligned}
& \int d \ell \frac{\ell_{\mu_{1}} \ldots \ell_{\mu_{r}}}{\left(\left(\ell+q_{1}\right)^{2}-m_{1}^{2}\right)\left(\left(\ell+q_{2}\right)^{2}-m_{2}^{2}\right) \ldots\left(\left(\ell+q_{n}\right)^{2}-m_{n}^{2}\right)} \\
&= \sum_{\lambda, z_{1}, \ldots, z_{n}} \delta\left(2 \lambda+\sum_{i} z_{i}-r\right)\left(-\frac{1}{2}\right) z_{1}!\ldots z_{n}!\left\{g^{\lambda} q_{1}^{z_{1}} \ldots q_{n}^{z_{n}}\right\}^{\mu_{1} \ldots \mu_{r}} \\
& \quad \times I\left(d+2(m-\lambda),\left\{1+z_{i}\right\}\right)
\end{aligned}
$$

\rightarrow Reduction of tensor integrals to scalar integrals with raised powers of the propagators and in higher dimensions!

Alternative reduction procedure - second step

Integration-by-parts (IBP)

[Chetyrkin, Kataev, Tkachov]

$$
\int d^{d} \ell \frac{\partial}{\partial \ell_{\mu}} \frac{\left\{\ell^{\mu}, p^{\mu}\right\}}{\left(\ell^{2}-m_{0}^{2}+i \varepsilon\right)\left((\ell+p)^{2}-m_{1}^{2}+i \varepsilon\right) \cdots}=0
$$

\rightarrow Linear relation between different scalar integrals with raised powers of the propagators

Problematic phase points can be studied systematically

General feature of the reduction

$$
\begin{aligned}
& \int d^{d} \ell \frac{\ell^{\mu} \ell^{\nu} \ell^{\rho} \ldots}{\left(\ell^{2}+i \varepsilon\right)\left(\left(\ell+p_{1}\right)^{2}+i \varepsilon\right)\left(\left(\ell+p_{1}-p_{t}\right)^{2}-m_{t}^{2}+i \varepsilon\right)} \\
& \times \frac{1}{\left(\left(\ell-p_{1}+p_{\bar{t}}\right)^{2}-m_{t}^{2}+i \varepsilon\right)} \frac{1}{\left(\left(\ell-p_{2}\right)^{2}+i \varepsilon\right)} \\
& =\sum\left\{p_{1} p_{2} p_{t} p_{\bar{t}}\right\}_{i}^{\mu v \rho \ldots I_{i}}
\end{aligned}
$$

\rightarrow apart from the presence of I_{i} calculation is similar to leading-order calculation
Same techniques:
helicity basis, numerical evalualtion of spinor products, numerical evaluation of amplitude

For pp \rightarrow t t + 1 Jet we used:

1.) Impoved Passarino-Veltman reduction, Feynarts, F77
2.) 2-loop inspired techniques (IBP), QGRAF, C++
\rightarrow F77/C++ library to calculate tensor integrals

Methods completely general, also applicable to other processes

Real corrections

Note: Virtual corrections contain UV and IR singularities

UV singularities are cancelled via the renormalization procedure

IR singularities are cancelled by real corrections

$$
\ll \quad \sim \frac{1}{\text { divergent }} \begin{gathered}
\begin{array}{c}
(n+1) \text {-legs, real corrections } \\
\text { divergent }
\end{array} \\
\left(p_{1}+p_{2}\right)^{2}
\end{gathered}=\frac{1}{2 p_{1} p_{2}}=\frac{1}{2 E_{1} E_{2}\left(1-\cos \left(\theta_{12}\right)\right)}
$$

Real corrections (cont'd)

- In the real corrections the singularity is produced by the phase space integration over soft and collinear regions
- When we use dimensional regularization for the virtual corrections the same has to be done for the real corrections
- d dimensional integration of the phase space integrals in general not feasible

Solution:

Subtraction Method
[Catani,Seymour,...]

Real corrections: Dipole subtraction method

\rightarrow Add and subtract a counterterm which is easy enough to be integrated analytically:

$$
\begin{aligned}
& \int_{0}^{\alpha} d x \frac{1}{x} f(x) x^{\epsilon} \\
&= \int_{0}^{\alpha} d x \frac{1}{x}(f(x)-f(0)) x^{\epsilon}+\frac{1}{x} f(0) x^{\epsilon} \\
&=+\frac{1}{\epsilon} \alpha^{\epsilon}+\int_{0}^{\alpha} \frac{1}{x}(f(x)-f(0))+O(\epsilon) \\
& \text { Can be done numerically }
\end{aligned}
$$

Construction of subtraction for real corrections more involved, Fortunately a general solution exists:
\rightarrow Dipole subtraction formalism

Dipole subtraction method (2)

How it works in practise. [Frixione,Kunszt,Signer '95, Catani,Seymour '96, Nason, Oleari 98

$$
\sigma_{\mathrm{NLO}}=\int_{m+1} \sigma_{\text {real }}+\int_{m} \sigma_{\text {virt. }}+\int d x \int_{m} \sigma_{\text {fact. }}(x)
$$

$\sigma_{\mathrm{NLO}}=\underbrace{\int_{m+1}\left[\sigma_{\text {real }}-\sigma_{\text {sub }}\right]}_{\text {finite }}+\underbrace{\int_{m}\left[\sigma_{\text {virt. }}+\bar{\sigma}_{\text {sub }}^{1}\right]}_{\text {finite }}+\underbrace{\int d x \int_{m}\left[\sigma_{\text {fact. }}(x)+\bar{\sigma}_{\text {sub }}(x)\right]}_{\text {finite }}$
Requirements:

$$
\begin{aligned}
& 0=-\int_{m+1} \sigma_{\text {sub }}+\int_{m} \bar{\sigma}_{\text {sub }}^{1}+\int d x \int_{m} \bar{\sigma}_{\text {sub }}(x) \\
& \sigma_{\text {sub }} \rightarrow \sigma_{\text {real }} \text { in all single-unresolved regions }
\end{aligned}
$$

Due to universality of soft and collinear factorization, general algorithms to construct subtractions exist

Dipole subtraction method (3)

Universal structure:

$$
\sigma_{\text {sub }}=\sum_{\text {dipoles }} \mathcal{D}_{i j, k}\left(p_{i}, p_{j}, p_{k}\right)
$$

Generic form of individual dipol:

Example gg \rightarrow ttgg: 6 different colorstructures in LO, $\left(T^{a} T^{b} T^{c}\right)_{i j}$ 36 (singular) dipoles $\mathcal{D}_{\text {g1g3, }^{2}, \ldots}, \ldots$

Example

For $\mathrm{gg} \rightarrow \mathrm{ttgg}$ the LO amplitude $\mathrm{gg} \rightarrow \mathrm{ttg}$ is required:

$$
\left|p_{1}, p_{2}, p_{t}, p_{\bar{t}}, p_{3}\right\rangle=\left(\begin{array}{c}
\left(T^{a_{1}} T^{a_{2}} T^{a_{3}}\right)_{\bar{t}} A\left(p_{1}, \lambda_{1}, p_{2}, \lambda_{2}, p_{3}, \lambda_{3}, p_{t}, s_{t}, p_{\bar{t}}, s_{\bar{t}}\right) \\
\left(T^{a_{1}} T^{a_{3}} T^{a_{2}}\right)_{\bar{t} t} A\left(p_{1}, \lambda_{1}, p_{3}, \lambda_{3}, p_{2}, \lambda_{2}, p_{t}, s_{t}, p_{\bar{t}}, s_{\bar{t}}\right) \\
\vdots
\end{array}\right)
$$

\rightarrow Six component vector in color space

Dipole subtraction method - implementation

emacs@pcth188.cern.ch

```
File Edit Options Buffers Tools C++ Help
```


double ggttgg_counterterm(const vector<FourMomentum>\& nomomantar \{

static ggttg ggttgamplitude;
static Correlator correlator (ggttgamplitude);
static Dipole d[36] = \{
// FinalFinal
Dipole (2, 4, 3), Dipole (2,4,5), Dipole (2,5,3), Dipole $(2,5,4)$,
Dipole $(3,4,2)$, Dipole $(3,4,5)$, Dipole $(3,5,2)$, Dipole $(3,5,4)$,
Dipole $(4,5,2)$, Dipole $(4,5,3)$,
//FinalInitial.
Dipole $(2,4,0)$, Dipole $(2,4,1)$, Dipole $(2,5,0)$, Dipole $(2,5,1)$,
Dipole $(3,4,0)$, Dipole $(3,4,1)$, Dipole $(3,5,0)$, Dipole $(3,5,1)$,
Dipole (4, 5, 0), Dipole (4, 5, 1),
// InitialFinal
Dipole $(0,4,2)$, Dipole $(0,4,3)$, Dipole $(0,4,5)$, Dipole $(0,5,2)$,
Dipole $(0,5,3)$, Dipole $(0,5,4)$, Dipole $(1,4,2)$, Dipole $(1,4,3)$,
Dipole $(1,4,5)$, Dipole $(1,5,2)$, Dipole $(1,5,3)$, Dipole $(1,5,4)$,
// IntialIntial
Dipole $(0,4,1)$, Dipole $(0,5,1)$, Dipole $(1,4,0)$, Dipole $(1,5,0) \longrightarrow \mathcal{D} 15,0$
\};

SplittingKernels splittings(momenta, particles);
double sum $=0$.;
for (int $i=0 ; i<36 ; i++$) \{ splittings. Kernel(d[i]);
correlator. EvalfDipole (d[i]); sum $+=$ d[i]. value;
\}
return(sum);

LO - amplitude, with colour information, i.e. correlations

List of dipoles we want to calculate

reduced kinematics, "tilde momenta"

Dipole d_{i}

Topquarkpaar + 1-Jet-Production (NLO)

[Dittmaier, Uwer, Weinzierl, Phys. Rev. Lett. 98:262002, ‘07]

- scale dependence is improved
- tools are completely general: arbitrary infrared save observables are calculable (\rightarrow work in progress)

Differential distributions

$$
A_{\mathrm{FB}}^{\mathrm{t}}=\frac{\sigma\left(\eta_{t}>0\right)-\sigma\left(\eta_{t}<0\right)}{\sigma\left(\eta_{t}>0\right)+\sigma\left(\eta_{t}<0\right)}
$$

$$
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \eta_{\mathrm{t}}}\right)[\mathrm{fb}]
$$

Pseudo rapidity

\rightarrow currently studied at the Tevatron

