Introduction to state of the art calculations for LHC

Peter Uwer*)

Helmholtz Alliance

^{*)} Heisenberg Fellow of the Deutsche Forschungsgemeinschaft

Deutsche Forschungsgemeinschaft

- 1. Introduction Setting the scene
- 2. Current state of the art
- **3.** Example Born approximation
- 4. Example NLO approximation

What we will see at the LHC...

... and how we understand it

The perturbative part

Parton-parton scattering

 The matrix elements describing the transition ij → X are calculable in perturbation theory

How do we calculate the corresponding hadronic cross sections

Simplified picture of the hadronic cross section

Partonic cross section

Pictorial representation of amplitudes

$$=\frac{1}{\mathcal{N}}\frac{1}{2s}\int \delta(p_a+p_b-(p_1+p_2\ldots))\prod_i\frac{d^3p_i}{2E_i}$$

Phase space integral

- Leading-order:
 - $2 \rightarrow 8 + n$ processes calculable in automated way

Drawback: matrix element evaluation and phase space evaluation might be slow

Note: many phase space points needed for good accuracy (high dim. phase space integrals)

- Next-to-leading:
 - 2 → 3 processes feasible with current technology, no true 2 → 4 process @ NLO currently available for LHC
- Next-to-next-to-leading order:

 $2 \rightarrow 1$ processes can be done, do we need NNLO for $2 \rightarrow 2?$

Les Houches wishlist

Physics at TeV Colliders

Les Houches, 11-29 June 2007

 \rightarrow High demand for one-loop calculations for the LHC

A concrete example:

$pp \rightarrow t \bar{t} + 1 Jet$

Motivation: Topquark as background for Higgs search

Higgs search at LHC

"Weak Boson Fusion" (WBF)

Background processes:

channel	$e^{\pm}\mu^{\mp}$	$e^\pm \mu^\mp$ w/minijet veto	$e^{\pm}e^{\mp},\mu^{\pm}\mu^{\mp}$	$e^\pm e^\mp, \mu^\pm \mu^\mp$ w/minijet veto
$70 < m_h < 300 \text{GeV}$	1.90	1.69	1.56	1.39
SM, $m_h = 155 \text{ GeV}$	5.60	4.98	4.45	3.96
tī	0.086	0.025	0.086	0.025
tīj	7.59	2.20	6.45	1.87
tījj	0.83	0.24	0.72	0.21
single-top (tbj)	0.020	0.015	0.016	0.012
bībjj	0.010	0.003	0.003	0.001
QCD WW jj	0.448	0.130	0.390	0.113
EW WW j j	0.269	0.202	0.239	0.179
QCD tt j j	0.128	0.037	0.114	0.033
ΕW ττ <i>j j</i>	0.017	0.013	0.016	0.012
QCD <i>lljj</i>	-	-	0.114	0.033
EW lljj	-	-	0.011	0.008
total bkg	9.40	2.87	8.04	2.49
S/B	1/5.0	1/1.7	1/5.1	1/1.8
$\mathcal{L}_{5\sigma}^{obs}[\mathbf{fb}^{-1}]$	65	Δives Fb	82 Ni Plehn	³² Rainwater '041

 \rightarrow Precise predictions for pp \rightarrow t t + 1-Jet are important

LHC-Physics = Standardmodell + X new physics

X = LHC-Physics – Standardmodell

Experiment

Theory prediction

13

Scattering amplitudes for ij \rightarrow t t + 1Jet

strong coupling α_s

complexe function of momenta and polarisation

15

- 1. Analytically by hand on a piece of paper
- 2. Analytically using computer algebra
- **3.** purely numerical

Lets take a closer look to see how it works by hand and why we don't want to do it that way

A simple example how to do it by hand

$$i\mathcal{T} = \bar{u}(k_t) (-i) g_s \gamma_{\mu} T^a v(k_{\bar{t}})$$

$$-i g^{\mu\nu} \delta^{ab} \frac{-i g^{\mu\nu} \delta^{ab}}{(k_t + k_{\bar{t}})^2 + i\varepsilon}$$

$$\bar{v}(k_{\bar{q}}) (-i) g_s \gamma_{\nu} T^b u(k_q)$$

$$= i g_s^2 \frac{1}{s} \bar{u}(k_t) \gamma_{\mu} T^a v(k_{\bar{t}}) \bar{v}(k_{\bar{q}}) \gamma^{\mu} T^a u(k_q)$$

$$|\mathcal{T}|^{2} = g_{s}^{4} \frac{1}{s^{2}} \bar{u}(k_{t}) \gamma_{\mu} T^{a} v(k_{\bar{t}}) \bar{v}(k_{\bar{q}}) \gamma^{\mu} T^{a} u(k_{q})$$

$$\times \bar{v}(k_{\bar{t}}) \gamma_{\mu} T^{b} u(k_{t}) \bar{u}(k_{q}) \gamma^{\mu} T^{b} v(k_{\bar{q}})$$

Color is not observerd \rightarrow average over incoming color, sum over outgoing $\frac{1}{N \cdot N} \sum_{t\bar{t},q,\bar{q}} (T^a)_{t\bar{t}} (T^b)_{\bar{t}t} (T^a)_{\bar{q}q} (T^b)_{q\bar{q}} = \frac{1}{N^2} Tr[T^a T^b] Tr[T^a T^b] = \frac{1}{N^2} \frac{1}{2} \delta_{ab} \frac{1}{2} \delta_{ab} = \frac{1}{4N^2} \delta_{aa} = \frac{1}{4N^2} (N^2 - 1)$

A simple example how to do it by hand (cont'd)

If spin is not observed: average over incoming sum over outgoing

17

Use:

$$\sum_{s} u_{\alpha}(k_{t}, s) \bar{u}_{\beta}(k_{t}, s) = (\not{k}_{t} + m)_{\alpha\beta}$$

$$\sum_{s} v_{\alpha}(k_{\bar{t}}, s) \bar{v}_{\beta}(k_{\bar{t}}, s) = (\not{k}_{\bar{t}} - m)_{\alpha\beta}$$

$$\sum |\mathcal{T}|^2 \sim g_s^4 \frac{1}{s^2} (\not{k}_t + m)_{\alpha\beta} (\gamma_{\nu})_{\beta\alpha'} (\not{k}_{\bar{t}} - m)_{\alpha'\beta'} (\gamma_{\mu})_{\beta'\alpha} (\not{k}_{\bar{q}})_{\rho\gamma} (\gamma^{\nu})_{\gamma\epsilon} (\not{k}_q)_{\epsilon\delta} (\gamma^{\mu})_{\delta\rho}$$
$$= g_s^4 \frac{1}{s^2} Tr[(\not{k}_t + m)\gamma_{\nu} (\not{k}_{\bar{t}} - m)\gamma_{\mu}] Tr[\not{k}_{\bar{q}} \gamma^{\nu} \not{k}_q \gamma^{\mu}]$$

Calculating the traces gives:

$$\sum |\mathcal{T}|^2 \sim g_{ss^2}^4 \frac{1}{s^2} 4(2 + (z^2 - 1)\beta^2)s^2$$

z cosine of the scattering angle, $\beta = \sqrt{1 - \frac{4m^2}{s}}$ velocity

A simple example how to do it by hand (cont'd)

Last step to obtain total cross section: phase space integral $\delta(k_q + k_{\bar{q}} - (k_t + k_{\bar{t}})) \frac{d^3k_t}{2E_t} \frac{d^3k_{\bar{t}}}{2E_{\bar{t}}} = \frac{1}{16\pi} \beta dz$

The differential (partonic) cross section becomes:

$$d\sigma_{q\bar{q}} = \frac{1}{2s} \frac{1}{2 \cdot 2} \frac{N^2 - 1}{4N^2} g_s^4 \frac{1}{s^2} 4(2 + (z^2 - 1)\beta^2) s^2 \frac{1}{16\pi} \beta dz$$

= $\frac{1}{9} \pi \alpha_s^2 \beta (2 + (z^2 - 1)\beta^2) dz$

$$\alpha_s = \frac{g_s}{4\pi}, \ z = \cos(\theta), \ \beta = \sqrt{1 - \frac{4m^2}{s}}$$

What are the problems when going to more complicated processes

A simple example how to do it by hand

$$i\mathcal{T} = \bar{u}(k_t) (-i) g_s \gamma_{\mu} T^a v(k_{\bar{t}})$$

$$-i g^{\mu\nu} \delta^{ab} \frac{-i g^{\mu\nu} \delta^{ab}}{(k_t + k_{\bar{t}})^2 + i \epsilon_{\text{op}}} e^{\kappa \rho r} e^{\kappa \rho r} e^{\kappa \rho r} e^{\kappa \rho r} \frac{\delta^{\alpha} \sigma}{\delta^{\alpha}} \frac{\delta^{\alpha} \sigma}{\delta^{\alpha}} \frac{\delta^{\alpha} \sigma}{\delta^{\alpha}} \frac{\delta^{\alpha} \sigma}{\delta^{\alpha}} e^{\kappa \rho r} \frac{\delta^{\alpha} \sigma}{\delta^{\alpha}} e^{\kappa \rho r} e^{\kappa \rho r} e^{\kappa \rho r} \frac{\delta^{\alpha} \sigma}{\delta^{\alpha}} \frac{\delta^{\alpha} \sigma}{\delta^{\alpha}} e^{\kappa \rho r} e^{\kappa \rho r} \frac{\delta^{\alpha} \sigma}{\delta^{\alpha}} e^{\kappa \rho r} e^{\kappa \rho r} \frac{\delta^{\alpha} \sigma}{\delta^{\alpha}} e^{\kappa \rho r} e^{\kappa \rho r} e^{\kappa \rho r} \frac{\delta^{\alpha} \sigma}{\delta^{\alpha}} \frac{\delta^{\alpha} \sigma}{\delta^{\alpha}} e^{\kappa \rho r} \frac{\delta^{\alpha} \sigma}{\delta^{\alpha}} e^{\kappa \rho r} e^{\kappa \rho$$

$$|\mathcal{T}|^{2} = g_{s}^{4} \frac{1}{s^{2}} \bar{u}(k_{t}) \gamma_{\mu} T^{a} v(k_{\bar{t}}) \bar{u}(g_{\bar{t}}) \phi^{\mu} \bar{T}^{d} u(k_{q})$$

$$\times \bar{v}(k_{\bar{t}}) \gamma_{\mu} T^{b} u(k_{t}) \bar{u}(k_{q}) \gamma^{\mu} T^{b} v(k_{\bar{q}})$$

Color is not observerd \rightarrow average over incoming color, sum over outgoing $\frac{1}{N \cdot N} \sum_{t\bar{t},q,\bar{q}} (T^a)_{t\bar{t}} (T^b)_{\bar{t}t} (T^a)_{\bar{t}\bar{t}} (T^b)_{q\bar{q}} = \frac{1}{N^2} Tr[T^a T^b] Tr[T^a T^b] = \frac{1}{N^2} \delta_{ab} \frac{1}{2} \delta_{ab} = \frac{1}{4N^2} \delta_{rro} \sigma \epsilon_{4N^2} (N^2 - 1)$

A simple example how to do it by hand (cont'd)

If spin is not observed: average over incoming sum over outgoing

 $\sum_{s} u_{\alpha}(k_{t},s)\bar{u}_{\beta}(k_{t},s) = (k_{t}+m)_{\alpha\beta}$ Use: $\sum_{s} v_{\alpha}(k_{\bar{t}}, s) \bar{v}_{\beta}(k_{\bar{t}}, s) = (k_{\bar{t}} - m)_{\alpha\beta}$

$$\sum |\mathcal{T}|^{2} \sim g_{s}^{4} \frac{1}{s^{2}} (k_{t} + m)_{\alpha\beta} (\gamma_{\nu})_{\beta\alpha'} (k_{\bar{t}} - m)_{\beta} moteometrices} (k_{\bar{q}})_{\rho\gamma} (\gamma^{\nu})_{\gamma\epsilon} (k_{q})_{\epsilon\delta} (\gamma^{\mu})_{\delta\rho} = g_{s}^{4} \frac{1}{s^{2}} Tr[(k_{t} + m)_{\alpha\beta} (\gamma_{\nu})_{\beta\alpha'} (k_{\bar{t}} - m)_{\gamma\mu}] Tr[k_{\bar{q}} \gamma^{\nu} k_{q} \gamma^{\mu}]$$

Calculating the trace gives:

 $\sum |\mathcal{T}|^2 \sim g_s^4 \frac{1}{2} 4 (\max^{variables}(z^2 - 1)\beta^2) s^2$ function of $(z^2 - 1)\beta^2 s^2$ *z* cosine of the scattering angle, $\beta = \sqrt{1 - \frac{4m^2}{s}}$ velocity

A simple example how to do it by hand (cont'd)

Last step to obtain cross section: phase space integral

$$\delta(k_q + k_{\bar{q}} - (k_{\bar{q}} + s_{\bar{p}}) = \frac{\delta(k_q - k_{\bar{q}})}{2E_t} = \frac{1}{16\pi} \beta dz$$
more particles

The differential (partonic) cross section becomes:

$$d\sigma_{q\bar{q}} = \frac{1}{2s} \frac{1}{2 \cdot 2} \frac{N^2 - 1}{4N^2} g_s^4 \frac{1}{s^2} 4(2 + (z^2 - 1)\beta^2) s^2 \frac{1}{16\pi} \beta dz$$

= $\frac{1}{9} \pi \alpha_s^2 \beta (2 + (z^2 - 1)\beta^2) dz$

$$\alpha_s = \frac{g_s}{4\pi}, \ z = \cos(\theta), \ \beta = \sqrt{1 - \frac{4m^2}{s}}$$

One solution: Use computer algebra

Two common approaches for amplitude calculations:

- 1. Feynman diagram based i.e. Madgraph,... [Long, Stelzer '94]
- 2. Use recurrence relation i.e. Alpgen,... [Mangano et al]

In 1. for every diagram a code is generated to evaluate it numerically

In 2. amplitudes are calculated from simpler objects via recurrence relation

 \rightarrow some progress recently from string inspired methods

Want to use it as a black box \rightarrow don't care what is inside!

We care about speed and numerical accuracy!

Example Madgraph

Example Madgraph – Output

```
uwer on ttpodo: /users/ttp/uwer
                                                                                                                                                            |⊕||⇔||≬|⊨||┣
REAL*8 FUNCTION SGG_TTBG(P1, P2, P3, P4, P5)
      FUNCTION GENERATED BY MADGRAPH
      RETURNS AMPLITUDE SQUARED SUMMED/AVG OVER COLORS
  C AND HELICITIES
      FOR THE POINT IN PHASE SPACE P1, P2, P3, P4,...
  IC.
      FOR PROCESS : g g -> t t~ g
                IMPLICIT NONE
  С
       CONSTANTS
  С
                INTEGER
                                  NEXTERNAL,
                                                                      NCOMB
                PARAMETER (NEXTERNAL=5, NCOMB= 32)
  С
       ARGUMENTS
  IC.
                REAL*8 P1(0:3), P2(0:3), P3(0:3), P4(0:3), P5(0:3)
  С
       LOCAL VARIABLES
  C
                INTEGER NHEL(NEXTERNAL, NCOMB), NTRY
                REAL*8 T
                REAL*8 GG_TTBG
                INTEGER IHEL
                LOGICAL GOODHEL(NCOMB)
                DATA GOODHEL/NCOMB*.FALSE./
                DATA NTRY/0/
                DATA (NHEL(IHEL, 1), IHEL=1,5) / -1, -1, -1, -1, -1/
                DATA (NHEL(IHEL, 2), IHEL=1,5) / -1, -1, -1, 1/
                DATA (NHEL(IHEL, 3), IHEL=1,5) / -1, -1, -1, 1, -1/
                DATA (NHEL(IHEL, 4), IHEL=1,5) / -1, -1, -1, 1, 1/
                DATA (NHEL(IHEL, 5), IHEL=1,5) / -1, -1, 1, -1,
                                                                                                                                 -1/
                DATA (NHEL(IHEL, 6), IHEL=1,5) / -1, -1, 1, -1, 1/
                DATA (NHEL(IHEL, 7), IHEL=1,5) / -1, -1, 1, 1, -1/
                DATA (NHEL(IHEL,
                                                         8),IHEL=1,5) / -1, -1,
                                                                                                              1,
                                                                                                                          1, 1/
                                                         (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
                DATA (NUEL (TUEL
```

Example Madgraph – Output

Example Madgraph – Output

wer on ttpodo: /users/ttp/uwer	
DATA EIGEN_VEC(14 ,6)/ -1.1941938778965616D-01 / DATA EIGEN_VEC(15 ,6)/ -2.3883877557931230D-01 / DATA EIGEN_VEC(16 ,6)/ 2.3883877557931230D-01 / DATA EIGEN_VEC(16 ,6)/ 2.6099752752803979D-01 / DATA EIGEN_VEC(17 ,6)/ 2.6099752752803979D-01 / DATA EIGEN_VEC(18 ,6)/ -4.9983630310735233D-01 /	
EGIN CODE	
CALL VXXXX(P1 , ZER0,NHEL(1),-1,W1) CALL VXXXX(P2 , ZER0,NHEL(2),-1,W2) CALL OXXXX(P3 ,FMASS(11),NHEL(3), 1,W3) CALL IXXXX(P4 ,FMASS(11),NHEL(4),-1,W4) CALL VXXXX(P5 , ZER0,NHEL(5), 1,W5) CALL FV0XX(W3 ,W2 ,G6,FMASS(11),FWIDTH(11),W6) CALL FV0XXX(W4 ,W6 ,G6,ZER0 ZEN0,W7) CALL GG6XX(W5 ,W1 ,W7 ,6,MMP(1)) CALL GG6XX(W5 ,W1 ,W7 ,6,MMP(1)) CALL JG6XX(W5 ,W1 ,G6,FMASS(11),FWIDTH(11),W8) CALL JG6XXX(W8 ,W3 ,W9 ,G6(AMP(2)) CALL FV1XXX(W8 ,W3 ,W9 ,G6(AMP(2)) CALL FV0XX(W8 ,W10 ,W2 ,G6(AMP(2)) CALL FV0XX(W8 ,W10 ,W2 ,G6(AMP(3)) CALL FV0XX(W8 ,W10 ,W2 ,G6(AMP(3)) CALL FV0XX(W8 ,W10 ,W2 ,G6(AMP(4)) CALL I0VXXX(W4 ,W11 ,W5 ,G6,AMP(4)) CALL I0VXXX(W4 ,W11 ,W5 ,G6,AMP(4)) CALL FV1XX(W4 ,W2 ,G6,FMASS(11),FWIDTH(11),W12) CALL FV1XX(W4 ,W14 ,G6,ZER0,ZER0,W15) CALL FV0XX(W3 ,W1 ,G6,FMASS(11),FWIDTH(11),W14) CALL JO6XXX(W5 ,W1 ,G,M13) CALL FV0XX(W4 ,W14 ,G6,ZER0,ZER0,U15) CALL FV0XX(W4 ,W14 ,G6,ZER0,ZER0,U15) CALL GG6XXX(W5 ,W2 ,W15 ,G6,AMP(6)) CALL I0VXX(W4 ,W14 ,W3 ,G6,FMASS(11),FWIDTH(11),W14) CALL JI0XXX(W4 ,W14 ,G6,ZER0,ZER0,U15) CALL GG6XXX(W3 ,W1 ,G6,FMASS(11),FWIDTH(11),W16) CALL JI0XXX(W4 ,W14 ,G6,ZER0,ZER0,U15) CALL GG6XXX(W3 ,W1 ,G6,FMASS(11),FWIDTH(11),W16) CALL I0VXXX(W4 ,W16 ,W5 ,G6,AMP(7)) CALL GG6XXX(W3 ,W1 ,G6,FMASS(11),FWIDTH(11),W16) CALL JI0XXX(W4 ,W16 ,W3 ,G6,ZER0,ZER0,U17) CALL GG6XXX(W3 ,W2 ,G,AMP(12)) CALL GG6XX(W3 ,W2 ,G,AMP(12)) CALL GG6XX(W3 ,W1 ,W2 ,G,AMP(12)) CALL GG6XX(W3 ,W1 ,W2 ,G,AMP(12)) CALL GG6XX(W3 ,W1 ,W2 ,G,AMP(12)) CALL J0VXXX(W4 ,W18 ,G6,FMASS(11),FWIDTH(11),W19) CALL GG6XX(W3 ,W18 ,G6,FMASS(11),FWIDTH(11),W20) CALL JG6XX(W3 ,W18 ,G6,FMASS(11),FWIDTH(11),W20) CALL JGGXX(W3 ,W18 ,G6,FMASS(11),FWIDTH(11),W20) CALL GG6XX(W3 ,W17 ,W18 ,G6,AMP(15)) CALL GG6XX(W3 ,W17 ,W18 ,G6,AMP(15)) CALL JGG6XX(W3 ,W17 ,W18 ,G6,AMP(15)) CALL JGG6XX(W3 ,W17 ,W18 ,G6,AMP(15)) CALL JGG6XX(W3 ,W2 ,W5 ,G,W21)	1 toto toto toto toto toto toto toto to
CALL IOVXXX(W4 ,W3 ,W21 ,G5,HMP(16)) CALL JGGGXX(W5 ,W1 ,W2 ,G,W22) CALL IOVYXX(W5 ,W1 ,W22 ,C5,W2(47))	
CHLL IUVAAK(W4 ,W3 ,W22 ,G5,HMP(17)) CALL JGGGXX(W2 ,W5 ,W1 ,G,W23) CALL IUVXXX(W4 ,W3 ,W23 ,G6,AMP(18)) GG_TTBG = 0.D0 D0 I = 1, NEIGEN ZTEMP = (0.D0,0.D0) D0 J = 1, NGRAPHS ZTEMP = ZTEMP + EIGEN_VEC(J,I)*AMP(J) ENDD0 GG_TTBG =GG_TTBG+ZTEMP*EIGEN_VAL(I)*CONJG(ZTEMP) ENDD0	by Madgraph
	<pre>ver on ttpodo:/users/ttp/uwer DaTa EIGEN_VEC(14 , 6) / -1.1941938778965616D-01 / DATA EIGEN_VEC(14 , 6) / -2.3838877557931230D-01 / DATA EIGEN_VEC(17 , 6) / 2.383877557931230D-01 / DATA EIGEN_VEC(17 , 6) / 2.6099752752803979D-01 / DATA EIGEN_VEC(17 , 6) / 2.6099752752803979D-01 / DATA EIGEN_VEC(18 , 6) / -4.9983630310735230-01 / EGIN CODE </pre>

What about phase space integration ?

- High dimensional for multiparton processes (i.e. 5 for $2 \rightarrow 3$)
- Want to include arbitrary cuts / observables
- \rightarrow Do integration numerically using Monte Carlo techniques

Basic idea:

$$\int d^{n}x f(\vec{x}) = \int d^{n}x \frac{f(\vec{x})}{\rho(\vec{x})} \rho(\vec{x}) = \langle \frac{f(\vec{x})}{\rho(\vec{x})} \rangle_{\rho} \approx \frac{1}{N} \sum_{i} \frac{f(\vec{x}_{i})}{\rho(\vec{x}_{i})}$$
$$\rho \text{ with } \int d^{n}x \rho(\vec{x}) = 1 \text{ can be tuned to the integrand}$$

 \rightarrow Computer Code (F77) i.e. Vegas by Lepage

call vegas(ndim, fxn, avg, sd, chi2)

integrates fxn over [0,1]^{ndim}

Missing piece: mapping $[0,1]^n \rightarrow dLIPS$

dLIPS = lorentz invariant phase space measure dLIPS ~ $\delta(p_i + p_j - (\sum_i k_i)) \prod_i \frac{d^3k_i}{2E_i}$

• Flat mapping:

RAMBO by Ellis, Kleiss, Stirling SUBROUTINE RAMBO(N,ET,XM,P,WT) disadvantage: flat and $[0,1]^{4n} \rightarrow dLIPS$

Sequential splitting

 $[0,1]^{3n-4} \rightarrow dLIPS$ [Book: Byckling,Kajantie p. 273]

• Multi channel algorithms

Adopt MC to structure of the integrand by using different mappings in parallel

Last missing piece: Parton distribution functions

Remember:

$$d\sigma(p+p \to t\bar{t} + 1\text{jet} + X) =$$

$$\sum_{ij} \int dx_1 dx_2 F_i(x_1, \mu^2) F_j(x_2, \mu^2)$$

$$\times d\hat{\sigma}_{ij}(i(x_1P_1) + j(x_2P_2) \to t\bar{t}g(q))$$

 \rightarrow 2 additional integration over x_1, x_2 , no problem in MC approach

How to evaluate the PDF's ?

→ use LHAPDF, MRST/MSTW or CTEQ code

CTEQ: Subroutine SetCtq6 (Iset) Function Ctq6Pdf (Iparton, X, Q) Cteq6Pdf-2007.f

Topquark pair production + 1 Jet (Born)

Born

one-loop corrections

One-loop diagrams

→ ~350 diagrams

Diagram generation with QGRAF

File with all Feynman diagrams

Diagram generation with QGRAF: Input

] uwer on ttpodo: / ເຊືອເອີເຊີດີ	□ uwer on ttpodo: /users/ttp/uwer/projekt		
uwer@ttpodo:include>more qcd-1.1 * propagators [q,qb,-] [t,tb,-] [g,g,+] * vertices [qb,q,g] [tb,t,g] [g,g,g] [g,g,g,g] uwer@ttpodo:include>	<pre>uwer@ttpodo:include>more myform-1.0.sty <pre>{prologue> * * * file generated by <program> * * * style-file: myform-1.0.sty * <prologue_loop>* <data> <prologue_loop< prologue_loop="">* <data> <prologue_loop< prologue_loop="">* <data> <prologue_loop< prologue_loop="">* <data> <prologue_loop< prologue_loop="">* <data> <prologue_loop< pre="" prologue_loop<=""></prologue_loop<></data></prologue_loop<></data></prologue_loop<></data></prologue_loop<></data></prologue_loop<></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></data></prologue_loop></program></pre></pre>		
Model file	<pre><end><vertex_loop> vrtx(<sub_loop>i{50+(<field_index>)},</field_index></sub_loop></vertex_loop></end></pre>		
	* end <exit></exit>		
	uwer@ ttpodo: include>		

style file

Diagram generation with QGRAF: Output LO

Diagram generation with QGRAF: Output NLO

a1 could be suppressed by option nosnail

Diagram generation with QGRAF: Output NLO

pentagon diagrams are the most complicated once

More on pentagon diagrams

$$\begin{aligned} p_1 & g \xrightarrow{t} p_t \\ \ell \\ p_2 & g \xrightarrow{t} p_3 \\ p_2 & g \xrightarrow{t} p_7 \\ loop momenta appears \\ in numerator \rightarrow tensor integrale \\ \mathcal{A}_i &= \int d^d \ell \frac{u(p_1, p_2, p_3, p_t, p_{\bar{t}}, \ell)}{(\ell^2 + i\epsilon)((\ell + p_1)^2 + i\epsilon)((\ell + p_1 - p_t)^2 - m_t^2 + i\epsilon)} \\ \times \frac{1}{((\ell - p_1 + p_{\bar{t}})^2 - m_t^2 + i\epsilon)} \frac{1}{((\ell - p_2)^2 + i\epsilon)} \end{aligned}$$

loop integration needs to be done in d dimensions to regulate UV and IR singularities

 \rightarrow complicated complex function of 5 variables, i.e. $s_{ij} = 2p_i \cdot p_j$

How to calculate the loop diagrams?

Solution:

Tensor integrals can be expressed in terms of a small set of scalar "master integrals"

Tensor reduction à la Passarino & Veltman

Passarino-Veltman

$$\int d^{d}\ell \frac{\ell_{\mu}}{(\ell^{2} - m_{0}^{2} + i\varepsilon)((\ell + p)^{2} - m_{1}^{2} + i\varepsilon)} = p_{\mu}B_{1}$$

Contract with *p*

Terms in red add up to zero

$$\frac{1}{2} \int d^d \ell \frac{\ell^2 + 2p\ell + p^2 - m_1^2 - (\ell^2 - m_0^2) + m_1^2 - m_0^2 - p^2}{(\ell^2 - m_0^2 + i\varepsilon)((\ell + p)^2 - m_1^2 + i\varepsilon)} = p^2 B_1$$

$$p^{2}B_{1} = \frac{1}{2} \left(A(m_{0}) - A(m_{1}) + (m_{1}^{2} - m_{0}^{2} - p^{2})B_{0} \right)$$

Scalar integrals:

$$A(m) = \int d^{d}\ell \frac{1}{\ell^{2} - m^{2} + i\epsilon} \qquad B_{0} = \int d^{d}\ell \frac{1}{(\ell^{2} - m_{0}^{2} + i\epsilon)((\ell + p)^{2} - m_{1}^{2} + i\epsilon)}$$

$$B_1 = \frac{1}{2p^2} \left(A(m_0) - A(m_1) + (m_1^2 - m_0^2 - p^2) B_0 \right)$$

→ problematic for $p^2 \rightarrow 0$

Analytically the limit "0/0" can be taken, numerically it might result in severe instabilities

General problem:

Numerical stable and efficient calculation of tensor integrals

Basic version of Passarino-Veltman implemented in LoopTools

[Denner, Dittmaier and others]

 Derive special reduction formulae for problematic phase space regions

• Special reductions for 5- and 6-point tensor integrals

Remark about scalar integrals:

- Only 1-,2-,3-,and 4-point scalar integrals needed, higher point integrals can be reduced
- Evaluation of scalar integrals can be assumed as solved

From Schwinger or Feynman parametrization of tensor integrals:

$$\int d\ell \frac{\ell_{\mu_1} \dots \ell_{\mu_r}}{((\ell+q_1)^2 - m_1^2)((\ell+q_2)^2 - m_2^2) \dots ((\ell+q_n)^2 - m_n^2)} \\ \sum_{\lambda, z_1, \dots, z_n} \delta(2\lambda + \sum_i z_i - r) \left(-\frac{1}{2}\right) z_1! \dots z_n! \{g^{\lambda} q_1^{z_1} \dots q_n^{z_n}\}^{\mu_1 \dots \mu_r} \\ \times I(d+2(m-\lambda), \{1+z_i\})$$
 [Davydychev]

Reduction of tensor integrals to scalar integrals with raised powers of the propagators and in higher dimensions!

Alternative reduction procedure – second step

Integration-by-parts (IBP)

[Chetyrkin, Kataev, Tkachov]

$$\int d^d \ell \frac{\partial}{\partial \ell_{\mu}} \frac{\{\ell^{\mu}, p^{\mu}\}}{(\ell^2 - m_0^2 + i\varepsilon)((\ell + p)^2 - m_1^2 + i\varepsilon)\cdots} = 0$$

→ Linear relation between different scalar integrals with raised powers of the propagators

Problematic phase points can be studied systematically

General feature of the reduction

$$\int d^{d}\ell \frac{\ell^{\mu}\ell^{\nu}\ell^{\rho}...}{(\ell^{2}+i\epsilon)((\ell+p_{1})^{2}+i\epsilon)((\ell+p_{1}-p_{t})^{2}-m_{t}^{2}+i\epsilon)} \times \frac{1}{((\ell-p_{1}+p_{\bar{t}})^{2}-m_{t}^{2}+i\epsilon)} \frac{1}{((\ell-p_{2})^{2}+i\epsilon)} = \sum \{p_{1}p_{2}p_{t}p_{\bar{t}}\}_{i}^{\mu\nu\rho...}I_{i}$$

\rightarrow apart from the presence of I_i calculation is similar to leading-order calculation

Same techniques:

helicity basis, numerical evaluation of spinor products, numerical evaluation of amplitude Impoved Passarino-Veltman reduction, Feynarts, F77
 2.) 2-loop inspired techniques (IBP), QGRAF, C++

 \rightarrow F77/C++ library to calculate tensor integrals

Methods completely general, also applicable to other processes

Note: Virtual corrections contain UV and IR singularities

UV singularities are cancelled via the renormalization procedure

IR singularities are cancelled by real corrections

- In the real corrections the singularity is produced by the phase space integration over soft and collinear regions
- When we use dimensional regularization for the virtual corrections the same has to be done for the real corrections
- d dimensional integration of the phase space integrals in general not feasible

Solution:

Subtraction Method

[Catani,Seymour,...]

Add and subtract a counterterm which is easy enough to be integrated analytically:

$$\int_{0}^{\alpha} dx \frac{1}{x} f(x) x^{\epsilon}$$

$$= \int_{0}^{\alpha} dx \frac{1}{x} (f(x) - f(0)) x^{\epsilon} + \frac{1}{x} f(0) x^{\epsilon}$$

$$= +\frac{1}{\epsilon} \alpha^{\epsilon} + \int_{0}^{\alpha} \frac{1}{x} (f(x) - f(0)) + O(\epsilon)$$
Can be done numerically

Construction of subtraction for real corrections more involved, Fortunately a general solution exists:

→Dipole subtraction formalism

Dipole subtraction method (2)

Requirements:

$$0 = -\int_{m+1} \sigma_{\rm sub} + \int_m \bar{\sigma}_{\rm sub}^1 + \int dx \int_m \bar{\sigma}_{\rm sub}(x)$$

 $\sigma_{\rm sub} \rightarrow \sigma_{\rm real}$ in all single-unresolved regions

Due to universality of soft and collinear factorization, general algorithms to construct subtractions exist

Recently: NNLO algorithm [Daleo, Gehrmann, Gehrmann-de Ridder, Glover, Heinrich, Maitre]

Universal structure:

$$\sigma_{\mathsf{sub}} = \sum_{\mathsf{dipoles}} \mathcal{D}_{ij,k}(p_i, p_j, p_k)$$

Generic form of individual dipol:

Example gg \rightarrow ttgg: 6 different colorstructures in LO, $(T^a T^b T^c)_{ij}$ 36 (singular) dipoles $\mathcal{D}_{g_1g_3,t},...$ For $gg \rightarrow ttgg$ the LO amplitude $gg \rightarrow ttg$ is required:

$$|p_{1}, p_{2}, p_{t}, p_{\bar{t}}, p_{3}\rangle = \begin{pmatrix} (T^{a_{1}}T^{a_{2}}T^{a_{3}})_{\bar{t}t}A(p_{1}, \lambda_{1}, p_{2}, \lambda_{2}, p_{3}, \lambda_{3}, p_{t}, s_{t}, p_{\bar{t}}, s_{\bar{t}}) \\ (T^{a_{1}}T^{a_{3}}T^{a_{2}})_{\bar{t}t}A(p_{1}, \lambda_{1}, p_{3}, \lambda_{3}, p_{2}, \lambda_{2}, p_{t}, s_{t}, p_{\bar{t}}, s_{\bar{t}}) \\ \vdots \end{pmatrix}$$

 \rightarrow Six component vector in color space

Dipole subtraction method — implementation

54

Topquarkpaar + 1-Jet-Production (NLO)

[Dittmaier, Uwer, Weinzierl, Phys. Rev. Lett. 98:262002, '07] 6 1500 $\sigma[\text{pb}]$ $p\bar{p} \rightarrow t\bar{t}+jet+X$ $\sigma[\text{pb}]$ $pp \rightarrow t\bar{t}+jet+X$ Tevtron LHC $\sqrt{s} = 1.96 \,\mathrm{TeV}$ 5 $\sqrt{s} = 14 \,\mathrm{TeV}$ $p_{\rm T,iet} > 20 {\rm GeV}$ $p_{\rm T, jet} > 20 {\rm GeV}$ 41000 NLO (CTEQ6M) LO(CTEQ6L1)3 $\mathbf{2}$ 5001 NLO (CTEQ6M) LO(CTEQ6L1)0 0 0.1100.110 $\mu/m_{
m t}$ $\mu/m_{
m t}$ $\sigma = \alpha(\mu)^3 a_0 + \alpha(\mu)^4 (a_1^0 + a_1^1 \ln\left(\frac{\mu}{m}\right))^{\mu/m}$

- scale dependence is improved
- tools are completely general: arbitrary infrared save observables are calculable (→work in progress)

Differential distributions

Currently studied at the Tevatron

