Standard Model

- 1 -

Electroweak Theory and Higgs Mechanism

1) The electroweak Lagrangian reads

$$\mathcal{L}_{EW}(x) = -\frac{1}{4} W^a_{\mu\nu} W^{a\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \bar{\Psi}_e i \gamma^\mu D_\mu \Psi_e \,, \tag{1}$$

with $D_{\mu} = \partial_{\mu} \mathbb{1} + igW_{\mu} + ig'B_{\mu}Y$, $W_{\mu} = W^{a}_{\mu}T^{a}$, and $\Psi_{e} = (\psi_{\nu_{e}}, \psi_{e_{L}}, \psi_{e_{R}})$. The photon A_{μ} and the Z^{0} -boson are related to W^{3}_{μ} and B_{μ} with

$$W^3_{\mu} = \cos\theta_W Z^0_{\mu} + \sin\theta_W A_{\mu}, \qquad B_{\mu} = -\sin\theta_W Z^0_{\mu} + \cos\theta_W A_{\mu}. \tag{2}$$

- **a)** Compute the electromagentic current j_{em}^{μ} , and the neutral current j_{nc}^{μ} , and relate g and g' to the electric charge e and the coupling constant for j_{nc}^{μ} .
- 2) The Higgs sector of the Standard model has the Lagrangian

$$\mathcal{L}_H(x) = D_\mu \phi^\dagger D^\mu \phi - h_e \left(\bar{\psi}_{eR} \phi^\dagger \Psi_{eL} + h.c. \right) - V(\phi^\dagger \phi) , \qquad (3)$$

with Higgs potential V, and covariant derivative D_{μ} ,

$$V(\phi^{\dagger}\phi) = \mu^{2}\phi^{\dagger}\phi + \lambda(\phi^{\dagger}\phi)^{2}, \qquad D_{\mu} = \partial_{\mu}\mathbb{1} + igW_{\mu} + ig'B_{\mu}Y_{H}$$
(4)

and $W_{\mu} = W^a_{\mu} \sigma^a/2$ with Pauli matrices σ^a , and $Y_H = \frac{1}{2} \mathbb{1}_2$. The Higgs field ϕ can be parameterised as

$$\phi(x) = U(x) \left(\begin{array}{c} 0\\ \frac{1}{\sqrt{2}}(v + \rho(x)) \end{array} \right) \,, \tag{5}$$

with vacuum expectation value v, and $U(x) \in SU(2)$.

a) Show that

$$\phi_0(x) = U(x)(0, \frac{1}{\sqrt{2}}v) \tag{6}$$

is a minimum of the Higgs potential V, and prove that $\exp(i\omega(\sigma^3/2 + Y_H))$ leaves $\phi_0(x)$ invariant.

- **b)** Show that U(x) can be absorbed in a gauge transformation of gauge fields and fermions, and rewrite the Lagrangian density in terms of the gauge transformed fields, the radial field $\rho(x)$, and v.
- $\mathbf{3}^*$) Write down the one loop corrections to the Higgs mass, and estimate their size.