Standard Model - 1 -

2. Quantisation and Scattering

1) The action of a free real scalar field is given by

$$S[\phi] = \frac{1}{2} \int d^4x \left(\partial_\mu \phi(x) \, \partial^\mu \phi(x) - m^2 \phi^2(x) \right) \,. \tag{1}$$

The field operator of a real scalar field operator is given by

$$\phi(x) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{2\omega} \left\{ e^{ikx} a^{\dagger}(\vec{k}) + e^{-ikx} a(\vec{k}) \right\} , \qquad (2)$$

with $\omega = \sqrt{\vec{k}^2 + m^2}$, and annihilation/creation operators a, a^{\dagger} with

$$[a(\vec{k}), a^{\dagger}(\vec{k}')] = 2\omega(2\pi)^3 \delta(\vec{k} - \vec{k}').$$
 (3)

a) Show that the Klein-Gordon equation $(\partial_{\mu}\partial^{\mu} + m^2)\phi(x) = 0$ follows from

$$\frac{\delta S[\phi]}{\delta \phi(x)} = 0, \quad \text{with} \quad \frac{\delta \phi(y)}{\delta \phi(x)} = \delta(x - y).$$
 (4)

Show that $\phi(x)$ in (3) satisfies the Klein-Gordon equation, and show, that the canonical momentum operator $\Pi(x)$ is given by $\Pi(x) = \dot{\phi}(x)$.

b) Show with (3) that $\phi(x)$ and $\dot{\phi}(x)$ satisfy the canonical commutation relations $[\phi(\vec{x},t),\dot{\phi}(\vec{y},t)] = i\delta(\vec{x}-\vec{y}), \quad [\phi(\vec{x},t),\phi(\vec{y},t)] = [\dot{\phi}(\vec{x},t),\dot{\phi}(\vec{y},t)] = 0.$ (5)

2) Consider the scattering of one particle in the presence of an interaction Lagrangian $\mathcal{L}'(x) = -1/2V(\vec{x}) : \phi(x)\phi(x) :$, where : . : stands for normal ordering, e.g.,

$$: a_1 \cdots a_n a_1^{\dagger} \cdots a_m^{\dagger} := a_1^{\dagger} \cdots a_m^{\dagger} a_1 \cdots a_n . \tag{6}$$

With $H'(t) = -\int d^3x \,\mathcal{L}'(x)$, the time evolution in the interaction picture is given by

$$i\partial_t |t\rangle = H'(t)|t\rangle$$
. (7)

a) Show by iterating (7) in its infinitesimal form, $|t + \Delta t\rangle = (1 - iH'(t))|t\rangle$, that

$$|t\rangle = U(t, t_0)|t_0\rangle$$
, where $U(t, t_0) = Te^{-i\int_{t_0}^t dt' H'(t')}$, (8)

with time ordering $T: TH'(t_1)H'(t_2) = H'(t_1)H'(t_2)\theta(t_1-t_2) + H'(t_2)H'(t_1)\theta(t_2-t_1)$. Expand U up to the second order.

b) Show that

$$\langle \vec{k}'| : \phi(x)\phi(x) : |\vec{k}\rangle = 2\langle \vec{k}'| : \phi(x)|0\rangle\langle 0|\phi(x) : |\vec{k}\rangle, \qquad (9)$$

and compute it. This matrix element is relevant for the first order perturbation theory.