Poincaré-Transformations

The inhomogenous Lorentz-transformations of a Minkowski space vector x are given by

$$
\begin{equation*}
\mathcal{P} \ni g(\Lambda, a): x \mapsto x^{\prime}=\Lambda x+a \quad \text { mit } \quad \Lambda^{T} \eta \Lambda=\eta, \quad a \in \mathbb{R}^{4} \tag{1}
\end{equation*}
$$

This defines Poincaré-group \mathcal{P}.
a) Show, that the multipication in \mathcal{P} can be represented by

$$
\begin{equation*}
\mathcal{P} \ni g, g^{\prime}: g^{\prime} g \equiv g\left(\Lambda^{\prime}, b\right) g(\Lambda, a)=g\left(\Lambda^{\prime} \Lambda, \Lambda^{\prime} a+b\right) . \tag{2}
\end{equation*}
$$

Consider a unitary representation $D: \mathcal{P} \ni g \mapsto U_{g} \equiv U(\Lambda, a)$
b) Show that U can be decomposed as follows

$$
\begin{equation*}
U(\Lambda, a)=T(a) U(\Lambda), \quad U(\Lambda) \equiv U(\Lambda, 0) \text { und } T(a) \equiv U(\mathbb{1}, a)=\exp \left\{-i a^{\mu} P_{\mu}\right\} \tag{3}
\end{equation*}
$$

where $T(a)$ is a translation, generated by the momentum operator P^{μ}. Show that the translations are an invariant subgroup of \mathcal{P},

$$
\begin{equation*}
U(\Lambda, b) T(a) U^{-1}(\Lambda, b)=T(\Lambda a) \tag{4}
\end{equation*}
$$

The proper orthochronous Lorentz-group $\mathcal{L}_{+}^{\uparrow}$ is represented by the (4×4) matrices Λ, which leave the Minkowski space metric η invariant,

$$
\Lambda^{T} \eta \Lambda=\eta, \quad \eta=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \tag{5}\\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \quad \text { und } \quad \operatorname{det} \Lambda=1, \quad \Lambda_{0}^{0} \geq 1
$$

The proper orthochronous Lorentz-group is generated by the exponential map of the algebra

$$
\begin{equation*}
l_{+}^{\uparrow}=\left\{X \in \mathbb{R}^{4,4}: e^{t X} \in \mathcal{L}_{+}^{\uparrow}, t \in \mathbb{R}\right\} \tag{6}
\end{equation*}
$$

c) Show, that

$$
\begin{equation*}
X^{T} \eta=-\eta X \Leftrightarrow X \in l_{+}^{\uparrow} \tag{7}
\end{equation*}
$$

and hence $\operatorname{dim}_{\mathbb{R}} l_{+}^{\dagger}=6$. A basis of l_{+}^{\dagger} ist given by the 3 generators of rotations and boosts respectively,

$$
\begin{array}{ll}
i J_{1}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right), & i J_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \quad i J_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
-i K_{1}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad-i K_{2}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad-i K_{3}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) .
\end{array}
$$

d) Show that these generators satisfy the following Lie-algebra relations:

$$
\begin{array}{ll}
{\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k},} & {\left[N_{i}, N_{j}\right]=i \epsilon_{i j k} N_{k},} \\
{\left[J_{i}, K_{j}\right]=i \epsilon_{i j k} K_{k},} & {\left[N_{i}^{\dagger}, N_{j}^{\dagger}\right]=i \epsilon_{i j k} N_{k}^{\dagger},} \\
{\left[K_{i}, K_{j}\right]=-i \epsilon_{i j k} J_{k},} & {\left[N_{i}, N_{j}^{\dagger}\right]=0,}
\end{array}
$$

where we have alos introduced the basis $N_{i}=\left(J_{i}+i K_{i}\right) / 2$. These relations can be summarised in

$$
\begin{gather*}
M_{0 i}=-M_{i 0}=K_{i}, \quad M_{i j}=\epsilon_{i j k} J_{k}, \quad \text { mit } \tag{8}\\
{\left[M_{\mu \nu}, M_{\rho \sigma}\right]=-i\left(M_{\mu \rho} \eta_{\nu \sigma}-M_{\mu \sigma} \eta_{\nu \rho}-M_{\nu \rho} \eta_{\mu \sigma}+M_{\nu \sigma} \eta_{\mu \rho}\right),}
\end{gather*}
$$

and we obtain $\Lambda(\omega)=e^{\frac{i}{2} \omega^{\mu \nu} M_{\mu \nu}}$. The tensor $\omega_{\mu \nu}=-\omega_{\nu \mu}$ contains the 6 real parameters of the transformation.

A representation $D: g \mapsto U_{g}$ of a group G as a linear map in a vector space V is called irreducible, if there are no D-invariant sub-spaces of V (except the trivial ones, given by the Null vector and V itself. A sub-vector space $W \subset V$ is D-invariant, if and only if $\forall g \in G,|w\rangle \in$ $W: U_{g}|w\rangle \in W$.
e) Show that the operator $P^{2}=P_{\mu} P^{\mu}$ in an irreducible representation of the Poincaré group on V is provided by a multiple of the unit operator, $P^{2}=c_{1} \operatorname{Id}(V), c_{1} \in \mathbb{R}$.
P^{2} is called a Casimir-operator. The fact, that P^{2} is proportional to the unit operator, is a special case of Schur's (first) lemma.

The Pauli-Lubanski-vector W^{μ} is defined by

$$
\begin{equation*}
W_{\mu}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} P^{\nu} M^{\rho \sigma} . \tag{9}
\end{equation*}
$$

f) Show that it has the following properties:

$$
\begin{align*}
W^{\mu} P_{\mu} & =0, & {\left[M_{\mu \nu}, W_{\sigma}\right]=i\left(\eta_{\mu \sigma} W_{\nu}-\eta_{\nu \sigma} W_{\mu}\right), } \\
{\left[W_{\mu}, P_{\nu}\right] } & =0, & {\left[W_{\mu}, W_{\nu}\right]=i \epsilon_{\mu \nu \rho \sigma} W^{\rho} P^{\sigma} . } \tag{10}
\end{align*}
$$

The operator $W^{2}=W^{\mu} W_{\mu}$ commutates with all elements of the Poincaré-algebra (why?). It is the second Casimir operator of the Poincaré-group, and $W^{2}=c_{2} \operatorname{Id}(V), c_{2} \in \mathbb{R}$ in irreducible representations.

