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vuuccu
G

M enAVp
F )1()(
2

55

V A V A

cV, cA vector and axial-vector couplings of nucleons:

0029.02695.1VA cc PDG 2004

Careful analysis of experimental data (parity violation, neutrino helicity 

spin change in nuclear -decays, muon decay properties together w/ 

universality) finally led to the V-A theory of (nuclear) weak decays:

nucleon lepton / fund. fermion

3.3  V – A Theory

Composed objects:             

Effect of strong interaction

vuuu
G

M e
F )()( 55 11
2

Muon decay

Beta decay
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V-A coupling of leptons and quarks

LL uuuu  )1( 5

In V-A theory the weak interaction couples left-handed lepton/quark currents

(right-handed anti-lepton/quark currents) with an universal coupling strength: 

2

2

82 W

wF

M

gG

Charged weak transition appear only inside weak-isospin doublets:

uuj

uuj

uuj
e

L

L

ee

L

e

)1(.3

)1(.2

)1(.1

5

5

5

tbtb

L

cscs

L

udud

L

uuj
b

t

uuj
s

c

uuj
d

u

)1(.3

)1(.2

)1(.1

5

5

5

Lepton currents: Quark currents:

Problem:                 

Not equal to the 

mass eigenstate
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CKM matrix to describe the quark mixing

One finds that the weak eigenstates of the down type quarks entering the weak 

isospin doublets are not equal to the their mass/flavor  eigenstates:

b

s

d

VVV

VVV

VVV

b

s

d

tbtstd

cbcscd

ubusud

Cabibbo-Kobayashi-Maskawa mixing matrix

W

d u
udV

d

u

s

c

b

t

d

u

s

c

b

t

Weak eigenstates: Mass/flavor eigenstates:

Weak 

transitions
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3.4 Test of V-A structure in particle decays

ee

e

e

W

a) Muon decay

)()1()()()1()(
2

55 kvpupuku
G

M e
F

k

p
p

k

Analogous to the QED calculations of ee

one finds after a lengthy calculation: 

))((64
2

1 22
pkpkGMM F

Spins

with E’ = electron energy 

Using one obtains the

electron spectrum in the muon rest frame:

LIPS
2

1 2
dM

E
d

)
4

3(
12

22

3

2

m

E
Em

G

Ed

d F

3

522

0
192

1 mG
Ed

Ed

d F

m

Measurement of the muon lifetime 

thus provides a determination of the 

fundamental coupling GF

2-5

6

GeV10)00001.016639.1(

10)00004.019703.2(

FG

s

Fermi constant measured in muon 

decays is often called G

“incoming flux”

Applying the Feynman rules:

4-fermion interaction – ignore propagator 
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Momentum  and spin correlation of the 

decay electrons from  polarized muons

Idea:

V-A at vertex LH 

e

e

V+A at vertex RH 

e

e

Configuration w/ max e- momentum 

possible

Due to angular momentum 

conservation not possible

Test of coupling structure 

in muon decays
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Differential decay rate:

FB – Asymmetry 

w/r muon spin 

See http://www.physik.uzh.ch/~truoel/personal/nat_ges_zh08.pdf

Asymmetry 

max. for x=1

e

e



30

V-A theory confirmed  

for muon decay

90% 

C.L.

SINDRUM 

Experiment 
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b) Pion decay

e,

e,

d

u

W

ee

Naïve expectation:

Assuming the same decay dynamics 

the decay rate to e+ should be much 

larger than to + as the phase space 

is much bigger.

Measurement: (PDG)

410)004.0230.1(
)(

)( ee

Large suppression due to a dynamic 

effect.

Qualitative explanation within V-A 

theory:

ee,

0J

Angular momentum conservation 

forces the lepton into the “wrong” 

helicity state: suppressed ~ (1-v/c) 

i.e. for vanishing lepton masses the 

pion could not decay into leptons. 
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e,

e,

q
k

p

Quarks in pion are bound

Determination of decay rates:

vu
G

M F )1(
2

5

As the pion spin s =0, q is the only relevant 4-vector:

)( 2qfq

kpq

Pion form factor:

fmfqfmq )()(: 2222

vufkp
G

M F )1(
2

5

scalar particles 

Must be measured !

Effective interaction –

ignore propagator 



33

)1(
8

)(

)1(
8

)(

2

2
22

2

2

2

22
2

m

m
mmf

G
e

m

m
mmf

G

e
e

F

F

4

22

22

2

2

10275.1
)(

)(

mm

mm

m

me
ee

The prediction of the V-A theory is confirmed by the experimental observation. 

PDG
410)004.0230.1(

Matrix element:
5

222

222

2

2

1055.
)(

)(

)(

)(

mmm

mmm

M

eM
ee

)(~)( 2222

 mmmM

Phase phase:

)(~ 22

2

1
 mm

m
p e/ ~  2.4

Theoretical calculation 

with radiative corrections: 

1.2354 0.0002
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3.5 Neutrino scattering in V-A theory

e e

k p

kp

q

N

W

X

Very small cross section for N 

scattering: ( N ) E [GeV]x10-38 cm2

• intense neutrino beams

• large instrumented targets

= E [GeV]x10 fb

Calculation: see below.
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Neutrino-lepton and neutrino-quark reactions

ee ee

d u

ud

e e

k p

kp

q

e

e

k p

kp

u d

du

(Anti)neutrino-lepton interaction similar to (Anti)neutrino-quark interaction: 

neutrino-lepton results can be applied to deep-inelastic N scattering.

e

e

ee

crossing

crossing
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a) Neutrino-electron scattering

ee

)()1()()()1()(
2

55 kupupuku
G

M e
F

22222
16))((64

2

1
sGpkpkGMM FF

Spins



Limit me m 0 pkkppks 22)( 2

Using the phase space factor:

sG
e

sG
M

s
e

d

d

F

F

2

2

2
2

2

)(

464

1
)(

e e

Although effective 4-fermion theory 

works well for low q2 it violates 

unitarity bound for high q2!
Eme2

e e

k p

kp

q

This is a clear indication that the 4-fermion interaction is only an effective  

low energy approximation – not valid at high energies !!

effective 4-

fermion theory
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b) Anti-Neutrino-electron scattering (V-A)

ee

2222222
)cos1(416

2

1
sGtGMM FF

Spins

Crossing: s t (u) 

3
)(

)cos1(
16

)(

2

2

2

2

sG
e

sG
e

d

d

F

F

e

e

k p

kp

e

e
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For the (anti) neutrino electron scattering one finds 3
cc

e

cc

e

2

2

4
)(

sG
e

d

d F
e

2

2

2

)cos1(
16

)(
sG

e
d

d F
e

Different angular distribution of (anti) 

neutrino  scattering can be 

understood from a helicity analysis 

e e e

ee ee

einitial

final 

state

Allowed isotropic Forbidden (angular mom.)  

(1-cos ) suppression

Result of V-A structure
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c) (Anti) neutrino-quark scattering

d u

sG
d

sG
d

d

d

F

F

2

2

2

)(

4
)(

u d

du

ud

3
)(

)cos1(
16

)(

2

2

2

2

sG
u

sG
u

d

d

F

F

Neutrinos only interact w/   d  and  anti-u  quarks 

Anti-neutrinos only interact w/ u and anti-d  quarks

du

)()( u
d

d
u

d

d

ud

)()( d
d

d
d

d

d

u

d

u

d
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II
F QQ
MEG

N
3

1

2
)(

2

II
F QQ
MEG

N
3

1

2
)(

2

dxxxQ )(Q    with I

II

II

N

N

QQ

QQ
R

3

31

If nucleon consists only of valence quarks 

( Q=0): R=1/3 , because of V-A structure

Measurement:   

V-A theory confirmed, there are sea quarks 

15.0
67.0

34.0
II QQR

(integral of quark / anti-quark distribution)

d) Neutrino-nucleon N scattering
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3.6 Problems with pure V-A (4-fermion) theory

sG
e F

2

)(
eee• Cross section for in 4-fermion ansatz:    

i.e. cross section goes to infinity if s : violates unitarity

• Lee and Wu (1965) introduced a massive exchange 

boson. Effect of propagator: 

This fix leads to a new problem, namely the violation                 

of  unitarity  of the predicted W pair production ! 

221

1

22 W

FF

Mq

GG
 .)( conste 

Can be cures by adding a  Z boson:

Violates 

unitarity

W pair production:

Not trivial, see e.g.:              

C.Quigg, Gauge Theory of 

Strong and Weak interaction

WWZee



42One out of three e e events

Neutral current N events appear 

with a significant rate:

008.0307.0
)(

)(

XN

XN
R

CC

NC

i.e. approx.1/3  of the N 

interactions are neutral current 

interactions. 

ee

4. Neutral currents (CERN, 1973)

Gargamelle Bubble Chamber

e e
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Structure of Neutral currents

Ansatz:  four-fermion interaction

ugguJ AVNC )(
2

1 5

2,,1,
2

8
NCNC

NC JJ
G

M

1,NCJ

2,NCJe e

as q2 0 approximation of:

Z2q

Neutral weak interaction couples to left- and right-handed 

chiral fermion currents differently:

Experimental determination of the 

structure of the weak neutral currents:

)(
2

1
)(

2

1
AVRAVL gggggg

ugguJ LRNC )
2

1

2

1
(

55

NCG


