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Weak interaction

1. Phenomenology of weak decays

2. Parity violation and neutrino helicity

3. V-A theory

4. Neutral currents

The weak interaction was and is a topic with a lot of surprises:

Past:     Flavor violation, P and CP violation.                                 

Today:  Weak decays used as probes for new physics
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1. Phenomenology of weak decays

All particles (except photons and gluons) participate in the weak 

interaction. At small q2 weak interaction can be  shadowed by strong 

and electro-magnetic effects.

• Observation  of weak effects only possible if strong/electro-magnetic 

processes are forbidden by conservation laws.

• Today’s picture for charge current interaction is the exchange of 

massive W-bosons coupling only to left-handed fermion currents 
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Electromagnetic decay    e forbidden by lepton number conservation 
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Application of  Feynman-rules  for massive W boson and LH coupling:

LP LP

Calculation is straight forward ... (everything known!) 
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“weakness” result of (1/Mw)2 suppression
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Today’s picture of the -decay
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Using the the “quark level” decay one can describe weak hadron decays 

(treating the quarks which are not weakly interacting as spectators)
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Strong isospin I3 not conserved. All other quark flavor numbers also violated.

• Nucleons are composed of quarks, which are the fundamental  

fermions. Fundamental forces couple to the the quarks .
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V-A structure
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Motivation of massive boson exchange:

• Long range electromagnetic force  mediated by massless photon:

Potential:
r
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• Replace massless photon by massive W boson for weak interaction:

infinite range
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Can be verified by using Fourier transform of propagtor (Greens Funktion of 

Klein-Gordon Eq.)

Yukawa potential: 

Screened Coulomb potential
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Point-like 4-fermion interaction

• 4-fermion theory is an effective theory valid for small q2.

Gives reliable results for most low energy problems.

• Conceptual problems in the high-energy limit (see later)

• Introduced by Fermi in 1933 to explain nuclear  decay.
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Fermi coupling constant, 

dimension = (1/M)2

Non local current – current coupling
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Fermi’s treatment of nuclear -Decay:

Fermi’s explanation (1933/34) of the nuclear -decay:
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Two fermionic vector currents coupled by a weak 

coupling const. at single point (4-fermion interact.)
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Problem: Ansatz cannot explain parity violation (was no a problem in 1933)
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Fermi’s ansatz was inspired by the structure of the electromagnetic interaction 

and the fact that there is essentially no energy dependence observed.

Weak coupling constant GF is a very small number ~10-5 GeV-2. 

Explains the “weakness” of the force. 

Apply  “Feynman Rules”
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Universality of weak coupling constant:
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If one considers the quark mixing the weak coupling constant GF is universal. 
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2. Parity violation

Experimentally:

 mirroring at plane + rotation around axis perpendicular to plane

 To test parity it is sufficient to study the process in the             

“mirrored system”: physics invariant under rotation

P transformation properties:
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PH=+1/2 H=-1/2

Axial/pseudo vector

Parity transformations (P) = space inversion



10

2.1 Historical / puzzle (1956)

Until 1956 parity conservation as well as T and C symmetry was a “dogma”:         

 very little experimental tests done 

In 1956 Lee and Yang proposed parity violation in weak processes.

Starting point: Observation of two particles + and + with exactly equal 

mass, charge and strangeness but with different parity:
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Lee + Yang:  + and + same particle, but decay violates parity

 today, particle is called K+:

conserved is P  )0(

violated is P      )0( 0
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To search for possible P violation, a number of experimental tests of                          

parity conservation in weak decays has been proposed:

1957 Observation of P violation in nuclear  decays by Chien-Shiung Wu et al.

Historical names

P()=-1
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2.2 Observation of parity violation, C.S. Wu et al. 1957

ee  NiCo 6060

Idea: Measurement of the angular distribution of the emitted e- in the decay 

of polarized 60Co nuclei 

J=5 J=4

Gamov-Teller Transition J=1

Co60
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
P

Observable: epJ

 epJ-




If P is conserved, the angular distribution must be symmetric 

in  (symmetric to dashed line): transition rates for          and   

are identical.

Experiment:  Invert Co polarization and compare the 

rates at the same position .

epJ

 epJ-



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Result:

Electron rate opposite to Co 

polarization is higher than along 

the 60Co polarization:                   

parity violation

Qualitative explanation: 

J=5 J=4



e

Today we know:

Consequence of  existence of 

only left-handed (LH) neutrinos    

(RH anti-neutrinos)

NaJ detector to measure e rate

Electron 

polarization 

in  decays 2

1
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e

“freeze”  Co 

Polarization 

Warm-up (polarization lost)
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2.3 Determination of the neutrino helicity

e
Sm152

Eu152

Goldhaber et al., 1958

Indirect measurement of the neutrino helicity in a K capture reaction:

ee   SmEu 152152

Sm152

keV) (960  

captureK 

 0JP

-P 1J 

 0JP

Idea of the experiment:

1. Electron capture and  emission


eEu152

 0JP Sm152

-P 1J 


e

Sm undergoes a small recoil (precoil =950 KeV). Because of angular 

momentum conservation Spin J=1 of Sm* is opposite to neutrino spin. 

Important: neutrino helicity is transferred to the Sm nucleous.

 RH

LH

KeV950E

2 

possibilities
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2.  emission: 

 0JP

Sm152

-P 1J 



Photons along the Sm recoil direction carry the polarization of the Sm* nucleus



LH

RH

  )0(Sm)1(Sm 152152 PP JJ

Configuration

or

Sm152

LHRH

 or

RHLH

• How to select photons along the recoil direction ?  3

• How to determine the polarization of these photons ?  4
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3. Resonant photon scattering:    SmSmSm 152152152

 SmSm 152152







 

Sm

SmSm
152

152152

Resonant scattering:

To compensate the nuclear recoil, the 

photon energy must be slightly larger than 

960 keV.

This is the case for photons which have 

been emitted in the direction of the 

EuSm recoil (Doppler-effect).  

Resonant scattering only possible for 

“forward” emitted photons, which carry the 

polarization of the Sm* and thus the 

polarization of the neutrinos.
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4. Determination of the photon polarization 

Exploit that the transmission index through magnetized iron is 

polarization dependent:   Compton scattering in magnetized iron 


RH

B


Polarization of 

electrons in iron
(to minimize pot. energy)

LH photons cannot be absorbed:

Good transmission


LH

B


Polarization of 

electrons in iron

Absorption leads to spin flip

RH photons undergo Compton 

scattering: Bad  transmission

Photons w/ polarization anti-parallel to magnetization undergo less absorption
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Experiment

Sm* emitted photons  pass through the magnetized iron. Resonant scattering 

allows the photon detection by a NaJ scintillation counter. The counting rate 

difference for the two possible magnetizations measures the polarization of the 

photons and thus the helicity of the neutrinos.

Results:

 photons from Sm* are left-handed. The measured photon 

polarization is compatible with a neutrino helicity of H=1/2.

From a calculation with 100% photon polarization one expects a 

measurable value P~0.75. Reason is the finite angular acceptance. 

 Also not exactly forward-going ’s can lead to resonant scattering.  

Summary: Lepton polarization in  decays
e- e+  

H=           -v/c +v/c -1 +1

14.066.0 P


2

1
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3. “V-A Theory” for charged current weak interactions

   
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3.1 Lorentz structure of the weak currents

Fermi:

More general ansatz: 

(proposed by Gamov

& Teller)

Cannot explain the parity violation in beta decays. 

(Treats LH and RH current components the same).

    
i

ienipi vuuuCM 

T A, V, P, S,i

nip uu 

bilinear Lorentz covariants:

 )44( 
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Remark: Pure P or A couplings do not lead to observable parity violation!

Mixtures like (15) or   (15) do violate parity.
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3.2 Chirality
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Operators

are projection operators:

  0,1,
2
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working on the fermion spinors they result in the left / right handed 

chirality components: 

Not observable!

In contrary to helicity, 

which is an observable: p

p
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

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(properties of 5)
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In the relativistic limit helicity states are also eigenstates of the               

chirality operators.

Dirac spinors and chirality projection operators:

Positive helicity:

Negative helicity:



23

Polarization for particles with finite mass 
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i.e. the LH spinor component for a particle with finite mass is not fully in the 

helicity state “spin down” (=-½) .  

For massive particles of a given chirality there is a finite 

probability to observe the  “wrong” helicity state: P = [1- (p/E)]/2

RL uuuu ,, 21 
unpolarized

Helicity polarization of left handed chirality state uL :

Not 

normalized
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Neutrino-Electron Vertex

Only left-handed neutrinos are observed in beta decays: 
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This leads to the following electron-neutrino vertex 

(assuming vector coupling between LH neutrino and e):
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If one further exploits that Pl= 1/2(1 - 5) is a projection operator one finds:
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The left-handed neutrino thus couples only to left-handed electrons (vector current).  
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V-A structure:

V   - A (vector – axial-vector)


