Experimental tests of QED:

- 1. From the matrix element to the measurement
- 2. e⁺e⁻ scattering experiments

QED result for transition amplitude:

$$|\mathcal{M}|^2 = \sum_{\text{spin, color}} e^4 Q_e^2 Q_q^2 \; \frac{1}{(k_1 + k_2)^4} \; (\bar{v}_4 \gamma_\nu u_3) (\bar{u}_3 \gamma_\mu v_4) \; (\bar{u}_1 \gamma^\nu v_2) \; (\bar{v}_2 \gamma^\mu u_1)$$

$$= 32e^4 Q_e^2 Q_q^2 N_c \ \frac{1}{(k_1 + k_2)^4} \ \left[(k_1 p_1)(k_2 p_2) + (k_1 p_2)(k_2 p_1) \right]$$

What is the (differential) cross section for the reaction ?

1. From the matrix element to the measurement

Crossing

С

D

Crossing:

1.2 Cross section – experimental definition

 \rightarrow Most important observable to describe scattering processes.

Differential cross section:

$$\frac{d\sigma(\varphi, \theta)}{d\Omega} = \frac{d\dot{N}_s(\varphi, \theta)}{FN_t \cdot d\Omega} = \frac{d\dot{N}_s(\varphi, \theta)}{\Phi \cdot d\Omega}$$

 Total cross section:

 $N_t = 1$

The total cross section is obtained from the total rate of scattered particles:.

$$\sigma_{tot} = \frac{\dot{N}_s}{\Phi} \quad \text{respectively:} \quad \sigma_{tot} = \int \left(\frac{d\sigma}{d\Omega}\right) d\Omega = \frac{1}{\Phi} \int \left(\frac{d\dot{N}_s}{d\Omega}\right) d\Omega$$
$$\int d\cos\theta \, d\varphi \quad \text{of scattered particle}$$
$$\text{Dimension} \quad \sigma = \frac{\text{time}^{-1}}{(\text{time}^{-1} \times \text{area}^{-1})} = \text{area}$$
$$\text{Units:} \quad [\sigma] = 1b = 10^{-28} \text{m}^2 = 10^{-24} \text{ cm}^2$$
$$1b = 1 \text{ barn}$$

1.3 Scattering matrix and transition amplitude

Probability (density) that collection of states i will make the transition to a final state f:

$$\mathcal{F}_{fi}=\left|\mathcal{S}_{fi}\right|^2$$

$$\mathcal{F}_{fi} = (2\pi)^8 \left[\mathcal{A}_{fi} - P_i \right]^2 \left| \mathcal{M}_{fi} \right|^2$$

... or to all possible final states f:

 $\mathscr{P}_{\mathit{fi}} = \sum_{\mathit{f}} \left| \mathscr{S}_{\mathit{fi}} \right|^2$

Final-state phase-space:

The calculation of the transition probability has to consider the number of possible states for each of the out-going particles: \rightarrow phase-space factor

 dN_f = number of states within \vec{p} and $\vec{p} + d\vec{p}$:

$$dN_{f} = \frac{d^{3}p_{C}}{2E_{c}(2\pi)^{3}} \cdot \frac{d^{3}p_{D}}{2E_{D}(2\pi)^{3}} \cdot \dots$$

1.4 Amplitude, cross section and phase space

$$d\sigma = \frac{\text{transition probabilit y}}{\text{Volume } \times \text{Time}} \times \frac{1}{\text{incident flux}} \qquad (*)$$

$$d\sigma = \underbrace{\begin{vmatrix} S_{fi} \end{vmatrix}^2 dN_f}_{VT} \times \frac{1}{\Phi'} \text{ incident flux}}_{W_{f1}} = \text{Transition rate / V}$$

$$w_{f1} = \frac{\left| S_{fi} \right|^2 dN_f}{VT} = \frac{(2\pi)^8 \left[4(P_f - P_i) \right]^2 \left| \mathcal{M}_{fi} \right|^2}{VT} dN_f}{VT}$$
Fermi's trick $\longrightarrow = (2\pi)^4 \delta^4 (P_f - P_i) \left| \mathcal{M}_{fi} \right|^2 dN_f$

^{*)} We use the probability density, but we divide by a redefined flux: $\Phi' = \Phi / V$ Ignore the "prime" in the following.

Fermi's Trick:

$$\begin{bmatrix} 4 (p_f - p_i)^2 \\ = \frac{VT}{(2\pi)^4} \delta^4 (p_f - p_i)$$

$$\begin{bmatrix} \pi \delta^4 (x - x')^2 \\ = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dt \ e^{i(x - x')t} \cdot \delta(x - x')$$

$$= \frac{1}{2\pi} \left(\int_{-\infty}^{+\infty} dt \right) \cdot \delta(x - x')$$

/

Incident flux
$$\Phi$$
:
Lab: $1 \longrightarrow 2$
CMS: $1 \longrightarrow -2$
 $\vec{p}_1 = -\vec{p}_2$
Lab: $\Phi|_{unit \vee} = \rho_1 \nu_1 N_2 / \nu = 2E_1 2E_2 \left(\frac{|\vec{p}_1|}{E_1}\right)$
CMS: $\Phi|_{unit \vee} = 2E_1 2E_2 |\vec{v}_1 - \vec{v}_2| = 2E_1 2E_2 \left|\frac{\vec{p}_1}{E_1} - \frac{\vec{p}_2}{E_2}\right| = 4|\vec{p}_1|(E_1 + E_2)$
 $= 4\left(p_1 \cdot p_2\right)^2 - m_1^2 m_2^2 \sum_{j=1}^{N/2}$

Reminder: Normalization of states

$$\langle (\boldsymbol{p},\boldsymbol{s}) | (\boldsymbol{p}',\boldsymbol{s}') \rangle = \delta_{\boldsymbol{s}\boldsymbol{s}'} (2\pi)^3 2 \boldsymbol{E}_{\boldsymbol{p}} \, \delta(\boldsymbol{\vec{p}} - \boldsymbol{\vec{p}}')$$

States are delta-function in momentum space.

$$= \delta_{ss'} 2E_{\rho} \int d^3 x e^{i(\vec{\rho} - \vec{\rho}')\vec{x}} = 2E_{\rho} V \Big|_{s=s'}$$

Differential cross section:

Lorentz invariant phase-space factor

$$d\sigma = \frac{|\mathcal{M}_{fi}|^2}{4(p_1 \cdot p_2)^2 - m_1^2 m_2^2} (2\pi)^4 \delta^4 (P_f - P_i) \frac{d^3 p_C}{2E_c (2\pi)^3} \cdot \frac{d^3 p_D}{2E_D (2\pi)^3}$$

Lorentz invariant phase-space factor for n particles:

$$dLIPS_{n}(P, p_{1}, p_{2}, ..., p_{n}) =$$
Final state
$$(2\pi)^{4} \delta^{4} (P - (p_{1} + p_{2} + ... + p_{n})) \prod_{\text{final}} \frac{d^{3}p_{f}}{(2\pi)^{3} 2E_{f}}$$

See also PDG http://pdg.lbl.gov/2010/reviews/rpp2010-rev-kinematics.pdf (uses unfortunately different normalization)

Phase space integration for two-particles final-state (CMS)

Center of Mass System:

$$\vec{p}_i = \vec{p}_A = -\vec{p}_B$$
 $\vec{p}_f = \vec{p}_C = -\vec{p}_D$
 $s = (E_A + E_B)^2$
 $A \xrightarrow{\vec{p}_i} B$
 $D \xrightarrow{\vec{p}_i} C \vec{p}_f$
 $A \xrightarrow{\vec{p}_i} B$

 $d\text{LIPS}_{2} \xrightarrow{\int} \int d\text{LIPS}_{2} = \frac{1}{4\pi^{2}} \int \delta^{3}(\vec{p}_{C} + \vec{p}_{D}) \delta(E_{A} + E_{B} - E_{C} - E_{D}) \frac{d^{3}p_{C}}{2E_{C}} \frac{d^{3}p_{D}}{2E_{D}}$

$$\int d\text{LIPS}_{2} = \frac{1}{4\pi^{2}} \int \delta^{3} (\vec{p}_{C} + \vec{p}_{D}) \delta (E_{A} + E_{B} - E_{C} - E_{D}) \frac{d^{3} p_{C}}{2E_{C}} \frac{d^{3} p_{D}}{2E_{D}}$$

In the CMS and 2-particle final-state need to integrate only over p_c : $d^3p = d\Omega p^2 dp$ $\vec{p}_f = \vec{p}_C = -\vec{p}_D$

$$\int d\text{LIPS}_{2} = d\Omega_{C} \frac{1}{16\pi^{2}} \int \delta(E_{A} + E_{B} - E_{C} - E_{D}) \frac{|\vec{p}_{C}|^{2} d|\vec{p}_{C}|}{E_{C}E_{D}}$$
With $\int \delta \left[\phi(\omega) \right] g(\omega) d\omega = \left(g \left| \frac{dh}{d\omega} \right|^{-1} \right)_{h=0}$
and $h = \sqrt{s} - \sqrt{\vec{p}_{C}^{2} + m_{C}^{2}} - \sqrt{\vec{p}_{C}^{2} + m_{C}^{2}}$

$$\left|\frac{dh}{d|p_{c}|}\right|_{h=0} = 2\frac{1}{2}\frac{2|\vec{p}_{c}|}{\sqrt{\vec{p}_{c}^{2} + m_{c}^{2}}} \qquad h = 0 = \sqrt{s} - 2\sqrt{\vec{p}_{c}^{2} + m_{c}^{2}} \Longrightarrow \sqrt{s} = 2E_{c}$$

$$\left|\left|\frac{dh}{d|p_{c}|}\right|_{h=0}\right)^{-1} = \frac{\sqrt{s}}{4|\vec{p}_{c}|}$$
14

$$\int d\text{LIPS}_{2} = d\Omega_{C} \frac{1}{16\pi^{2}} \int \delta(E_{A} + E_{B} - E_{C} - E_{D}) \frac{|\vec{p}_{C}|^{2} d|\vec{p}_{C}|}{E_{C}E_{D}}$$

$$\int \delta \left[(\omega)] g(\omega) d\omega = \left(g \left| \frac{dh}{d\omega} \right|^{-1} \right)_{h=0} \right) \left(g \left| \frac{dh}{d|p_{C}|} \right|_{h=0}^{-1} \right) = \frac{\sqrt{s}}{4|\vec{p}_{C}|} \frac{|\vec{p}_{C}|^{2} d|\vec{p}_{C}|}{E_{C}E_{d}} = \frac{|\vec{p}_{C}|}{\sqrt{s}}$$

$$\Rightarrow \int d\text{LIPS}_2 = \frac{1}{16\pi^2} \int \frac{|\vec{p}_f|}{\sqrt{s}} d\Omega_f$$

1.5 Differential cross section ... putting everything together

- The dynamics of the scattering process is contained in the matrix element M_{fi} which can be calculated using Feynman rules
- 1/s dependence of the cross section because of initial/final state kinematics

1.6 Decay width, lifetime and Dalitz plots

Decay width

Differential decay width (rate):

$$d\Gamma_i (A \to 1 + 2 + \dots + n) = \frac{W_{fi}}{n_A} dLIPS_n$$

$$d\Gamma_{i} = \frac{\left|\mathcal{M}_{fi}\right|^{2}}{2E_{A}} \cdot (2\pi)^{4} \delta^{4} (p_{A} - p_{1} - p_{2} - \dots - p_{n}) \cdot \frac{d^{3}p_{1}}{2E_{1}(2\pi)^{3}} \cdot \frac{d^{3}p_{2}}{2E_{2}(2\pi)^{3}} \cdot \dots \cdot \frac{d^{3}p_{n}}{2E_{n}(2\pi)^{3}}$$

Two-body decay: $A \rightarrow 1+2 \qquad d\Gamma_{i}(A \rightarrow 1+2) = \frac{|\mathcal{M}_{fi}|^{2}}{2E_{A}} \cdot dLPS_{2} = \frac{|\mathcal{M}_{fi}|^{2}}{2E_{A}} \frac{1}{16\pi^{2}} \frac{|\vec{p}_{f}|}{\sqrt{s}} d\Omega_{f}$ $CMS: = \frac{1}{16\pi^{2}} \frac{|\vec{p}_{f}|}{\sqrt{s}} d\Omega_{f} \quad d\Omega_{f} = d\varphi_{f} d\cos\theta_{f}$ $\sqrt{s} = E_{A} = m_{A} \qquad d\Gamma_{i}(A \rightarrow 1+2) = \frac{|\vec{p}_{f}|}{32\pi^{2}m_{A}^{2}} |\mathcal{M}_{fi}|^{2} d\Omega_{f}$ 17

flat in E_1 and E_2

Three-body decay:

$$A \rightarrow 1 + 2 + 3$$

In rest frame of A: 1,2,3 in one plane

for scalar A or averaged over spins

$$\int d\text{LIPS}_{3} = \frac{1}{8(2\pi)^{5}} \int dE_{1}dE_{2} \, d\alpha \, d(\cos\beta) \, d\gamma$$
3 angles define the orientation

$$d\Gamma_{i}(E_{1},E_{2}) = \frac{1}{64\pi^{3}} \frac{1}{m_{A}} |M_{fi}|^{2} dE_{1} dE_{2}$$

Remark:Instead of variables E_1 and E_2
one can use variables m_{12}^2 and m_{23}^2 $m_{ij}^2 = (p_i + p_j)^2$ = invariant mass of pairs (i,j) $dE_1 dE_1 = C \cdot dm_{12}^2 dm_{23}^2$

$$d\Gamma_{i}(m_{12}^{2},m_{23}^{2}) = \frac{1}{256\pi^{3}} \frac{1}{m_{A}^{3}} |M_{fi}|^{2} dm_{12}^{2} dm_{23}^{2}$$

If phase space is flat in E_i then it is also flat in m_{ij}

(for A being a scalar, or average over all spin states)

Experimental method to explore behavior of *M_{fi}*: Dalitz Analysis

Dalitz Plots

Method:

Put every measured decay into a 2-dim,. (E_1,E_2) or (m_1^2,m_2^2) distribution. A flat distribution over the allowed region corresponds to a "flat matrix element". Structures in the distribution point to a varying matrix element

Dalitz-Plot at Work:

M. Staric, HEP 2007 (Manchester)

Resonance	Amplitude	Phase (deg)	Fit fraction
$K^{*}(892)^{-}$	1.629 ± 0.005	134.3 ± 0.3	0.6227
$K_0^*(1430)^-$	2.12 ± 0.02	-0.9 ± 0.5	0.0724
$K_2^*(1430)^-$	0.87 ± 0.01	-47.3 ± 0.7	0.0133
$K^{*}(1410)^{-}$	0.65 ± 0.02	111 ± 2	0.0048
$K^{*}(1680)^{-}$	0.60 ± 0.05	147 ± 5	0.0002
$K^{*}(892)^{+}$	0.152 ± 0.003	-37.5 ± 1.1	0.0054
$K_0^*(1430)^+$	0.541 ± 0.013	91.8 ± 1.5	0.0047
$K_2^*(1430)^+$	0.276 ± 0.010	-106 ± 3	0.0013
$K^{*}(1410)^{+}$	0.333 ± 0.016	-102 ± 2	0.0013
$K^{*}(1680)^{+}$	0.73 ± 0.10	103 ± 6	0.0004
$\rho(770)$	1 (fixed)	0 (fixed)	0.2111
$\omega(782)$	0.0380 ± 0.0006	115.1 ± 0.9	0.0063
$f_0(980)$	0.380 ± 0.002	-147.1 ± 0.9	0.0452
$f_0(1370)$	1.46 ± 0.04	98.6 ± 1.4	0.0162
$f_2(1270)$	1.43 ± 0.02	-13.6 ± 1.1	0.0180
$ \rho(1450) $	0.72 ± 0.02	40.9 ± 1.9	0.0024
σ_1	1.387 ± 0.018	-147 ± 1	0.0914
σ_2	0.267 ± 0.009	-157 ± 3	0.0088
NR	2.36 ± 0.05	155 ± 2	0.0615