
4. Nuclear Matter and Deconfined Quarks and Gluons
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The Standard Model of particle physics predicts a cosmological, QCD–

related smooth transition between an early high-temperature phase 

dominated by quarks and gluons (~12 ps after Big Bang) and a low-

temperature phase dominated by hadrons. 

The very large energy densities at the high temperatures of the early 

universe have essentially disappeared through expansion and cooling. 

Nevertheless, a fraction of this energy is carried today by quarks and gluons, 

which are confined into protons and neutrons. 

According to the mass-energy equivalence E = mc2, we experience this 

energy as mass. More than 99% of the mass of ordinary matter comes from 

protons and neutrons, and in turn about 95% of their mass comes from this 

confined energy. 

Dürr et al., Science, 322 , 1224-1227 (2008). 



Melting Nuclear Matter: Quark Gluon Plasma
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According to today’s understanding such a phase existed 

10 ps after the big-bang and lasted for about 10 s.

• Can we produce the QGP phase 

in the lab?

• What are the properties?

• Phase transition?

http://www-

linux.gsi.de/~andronic/intro_rhic/



Quark Gluon Plasma – A new  state of matter

Shortly after the property of asymptotic 

freedom has been discovered the 

transformation of nuclear matter into a 

deconfined phase has been discussed.

If temperature and/or nuclear 

densities are high enough strongly 

interacting quarks become free:

Quark Gluon Plasma:

• Ignoring interactions between quarks 

and gluons: ideal gas

• Significant interaction between quarks 

and gluons: liquid (hydrodynamic 

system) 

Remark: 100 MeV 1.16 1012 K

Phase diagram in ~1980
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Thermo-dynamical phase transition:
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Gibbs free energy:
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Phase diagram of QCD

49= Change of energy when adding additional baryon   

= net baryon density

Sufficiently high baryon density:                   

Cooper pairing of quarks near the 

Fermi surface (neutron starts): 

Color superconductor

Chiral symmetry broken

Chiral symmetry restored

RHIC 

LHC



Phase Transition & Critical Temperature & Order Parameter

hadrons quark/gluon

at large T              

(ignoring masses)

Degrees of freedom

QGP:

Hadronic gas phase (only pions): N = 3 

Lattice QCD predicts phase transition
Energy density of hadron gas

(ideal gas)

Critical temperature:  TC = 173 MeV
(zero net-baryon density)

Critical density:  c ~ 0.7 GeV fm-3

nuclear density:  = 0.15 GeV fm-3

Inside nucleon:  = 0.5 GeV fm-3

)32(
4

7
82 fNN

(ud+ heavy s)
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Time development of Heavy Ion Collision

= ideal way to get conditions of 

extremely high T and .

Formation time τ0 = 1 fm/c = 3,3*10-24s

QGP in thermal / chem. Equilibrium.

Cool down: hadronization

Temperature O(1012K)

Lifetime 10 fm/c = 3,3*10-23s

Lorentz contratcion: 100 (RHIC), 2700 

(LHC) 

Critical temp. corresponds to 

energy densities of ~ 1 GeV/fm3
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1. Chemical freeze-out: inelastic collisions cease. 

(Close to phase boundary?). Yields are frozen. 

Temperature:  Tch

2. Kinetic freeze-out: elastic collisions cease. 

Spectra are frozen ( t+ = 3…5 fm/c).

Temperature: Tfo

Critical temperature:  Tc
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Heavy Ion Colliders

Facility Location System Energy (CMS)

AGS BNL, New York Au+Au 2.6-4.3 GeV

SPS CERN, Geneva Pb+Pb 8.6-17.2 GeV

RHIC BNL, New York Au+Au 200 GeV

LHC CERN, Geneva Pb+Pb 5.5 TeV  

Brookhaven National Lab:

Relativistic Heavy Ion Collider 

(RHIC)

Experiments: STAR, PHENIX, 

PHOBOS, BRAHMS

sNN
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First Pb+Pb collisions in ALICE 

54/66



Geometry of AA collisions – Impact parameter

Participants

Spectators

Spectators

“Glauber” model of AA

b

Binary Collisions

Participants

b (fm)

N
p

a
rt
, 
N

c
o

ll

Binary Collisions:

1. Jet Production

2. Heavy Flavor

Cannot directly measure the impact parameter:

Use total number of produced particles and 

detected “spectators” as a   measure for the 

“centrality” of the heavy ion collision.
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Centrality measurement

“peripheral”

“central”

ALICEALICE

Two variables: 

• zero degree calorimeter

• charged track multiplicity

TPC multiplicityZero degree calorimeter

VZero detector



• In hadronic collisions most particles have only small transverse 
momentum

• Observable particles carry only small fraction of (anti)protons 
longitudinal momentum (x = pz/pz,max)

• “Rapidity” variable “increases dynamic range” (x < 0.1)

• Rapidity not easy to measure. Use pseudo-rapidity instead:

• Particle density dN/d related to dN/dy:

(Pseudo) Rapidity

)ln(~ln
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small deviations 

for slow particles 57



Experimental probes for QGP 

Global 

Observables

Is initial state dense 

enough?

• Particle Multiplicities

• Energy Density

Collective 

Behavior

Is QGP a 

thermalized state?

• Hadron Yields 

• Elliptic Flow

Hard Probes
Formed early,  

probe medium

• Energy loss of jets

• Charm production

Why What
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Charged particle density

6% most central collisions 

(grey band: syst. error)

Particle density at mid rapidity  is a measure of energy density:

At mid rapidity particles have <pT> ~ 500 MeV

RHIC
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Energy density  - Bjorken Estimate 

crit~1 GeV/fm3 at critical temperature
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Hadron yields at mid-rapidity

Analysis of hadron yields provides a “snapshot” of AA collision at chemical 

freeze-out (the earliest in the collision timeline we can look with hadronic

observables).

• Large amount of newly 

created particles.

• Large variety of species

• Mass hierarchy in production: 

u,d quarks are remnants from 

incoming nuclei 
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Thermal model for yields

Grand canonical partition function for specie i:
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Spin degeneracy factor

total energy

chemical potential

ensures (on average)  conservation of quantum numbers: 
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iiii CnVSnV0Strangeness, charm

+ = fermions, 

- = bosons
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Fit of particle multiplicites

with TCh and B as free 

parameter:

TCh = 174 MeV

B =  46 MeV

Hadron yields are well described by thermal model.

TCh agrees well with the 

theoretical calculation of 

Tc for phase transition

P.Braun-Munzinger et al., hep-ph/0105229

Phys.Lett. B518 (2001) 41

sNN = 200 GeV
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Elliptical flow - properties of QGP

Anisotropy and elliptical flow:

• Gradients of almond-shape surface will lead to 

preferential expansion in the reactions plane.

• Anisotropy of emission is quantified by 2nd

Fourier coefficient of angular distribution: v2

• Supports idea of collective expanding medium 

in thermal equilibrium

y

y

p

p
tan

Highly compressed, 

very asymmetric fireball
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Elliptical flow measured at RHIC 

agrees well with hydrodynamic 

models assuming an ideal liquid 

(i.e. no viscosity): Expanding 

medium behaves like an ideal 

liquid.

Bulk evolution described by 

relativistic hydrodynamics and an 

equation of state determined by 

weakly interacting quarks and 

gluons: confirms the idea that 

fireball reaches equilibrium 

quickly.
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Effect of QGP on hard (early) particles
Energy loss in dens medium 

Calculation assuming very dens gluon gas
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ALICE

Clear effect of a opaque 

nuclear medium confirmed 

at LHC.



J/ Suppression in QGP

2. Charm

Production

1. Colliding

Ions

QGP

3. Charm

Destruction

4. Freeze out

Early signature
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Catherine Silvestre – CMS

Confirms the large 

suppression seen at 

RHIC.



QGP 
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• Clear evidence of a new phase of matter in thermal quilibirium in 

the early stage of  the Heavy Ion collision. 

• Predictions of clear experimental signatures not easy: 

QCD + Thermodynamics + relativistic Hydrodynamics needed to 

describe the observables. Modeling involved. 

• Exciting time:  Huge set of measurements expected in the next 

year will unreveal the properties of this phase of matter.


