Higgs Boson Search

Indirect limits on Higgs mass from fits to electro-weak data:

 $m_{H} = 89 + 35_{-26} \text{ GeV}$ $m_{H} < 158 \text{ GeV} (95\% \text{ CL})$

Status July 2010

In the following we will discuss the direct searches for the Higgs boson: LEP (e⁺e⁻ collisions) and Tevatron/LHC (pp / pp collisions)

Higgs decay

Higgs decay widths / branching ratios:

1. Higgs Search at LEP (e^+e^- at $\sqrt{s}=91$, 160...206 GeV)

Relevant Higgs decays at LEP:

Higgs signatures at LEP: $Z^* \rightarrow ZH$ (dominant)

H→bb Z→qq	signature 4-jets	51%	background WW → qqqq ZZ → qqqq QCD 4-jets	
H→bb Z→vv	missing energy	15%	WW → qqlv ZZ → bbvv	
H→bb Z→τ⁺τ	τ -channel	2.4%	WW ≻ qqτν ZZ ≻ bbττ	
H→τ⁺τ ⁻ Z→q̄q	τ-channel	5.1%	ZZ → qqττ QCD low mult. jets	
H→bb Z→e⁺e ự*µ	lepton channel	4.9%	ZZ → bbee ZZ → bbμμ	

Higgs search at LEP includes 80% of the final states, selection efficiency ~40 - 50%

Higgs candidate with M_H=114 GeV

 $e^+e^- \rightarrow H(b\overline{b})Z(q\overline{q})$

Is there a Higgs at 114 GeV ?

		Expt	E_{cm}	channel	M^{rec}	$\ln(1+s/b)$
					(GeV)	@ 115 GeV
	1	Α	206.6	4 jet	114.1	1.76
LEP	2	Α	206.6	4 jet	114.4	1.44
final result	3	Α	206.4	4 jet	109.9	0.59
	4	\mathbf{L}	206.4	Emiss	115.0	0.53
Ohan alian	5	Α	205.1	Lept.	117.3	0.49
Observation:	6	Α	206.5	Tau	115.2	0.45
17 candidate	7	0	206.4	4 jet	108.2	0.43
events	8	Α	206.4	4 jet	114.4	0.41
	9	\mathbf{L}	206.4	4 jet	108.3	0.30
Europetations	10	D	206.6	4 jet	110.7	0.28
Expectation:	11	Α	207.4	4 jet	102.8	0.27
15.8 background	12	D	206.6	4 jet	97.4	0.23
events	13	0	201.5	Emiss	111.2	0.22
	14	\mathbf{L}	206.0	Emiss	110.1	0.21
8.4 signal events	15	Α	206.5	4 jet	114.2	0.19
for M _H =115 GeV	16	D	206.6	4 jet	108.2	0.19
	17	\mathbf{L}	206.6	4 jet	109.6	0.18

2. Higgs Search at $p\overline{p}$ colliders (LHC/Tevatron)

Comparison between LHC at 7 TeV and Tevatron at 2 TeV

- At the same pp luminosity the effective parton-parton luminosity at LHC is by a huge factor larger.
- The larger the Higgs mass the larger the effect is.
- Example: for M_H >140 GeV, effective gg-luminosity at LHC is at least 15× larger than at Tevatron

Higgs decays relevant for searches at LHC

• $H \rightarrow Z Z$ ("golden decay")

Challenge: Tiny Signal-to-Background Ratio

Examples for "clean" Higgs Signatures

When to claim a discovery?

Signal significance:

$$S = \frac{N_s}{\sqrt{N_B + N_s}}$$

 $N_{\rm S}$ = Signal evts. $N_{\rm B}$ = Bckgr. evts.

Discovery = 5σ :

(agreement between physicists)

 N_s is 5 times larger than the statistical uncertainty on $N_{tot}=N_s+N_{B_s}$

Probability for statistical fluctuation: P-value for $n\sigma$: $1 - erf(n/\sqrt{2})$

Here (5 σ): P-value = 6×10^{-7}

Successful Higgs Search:

- Use decay channels w/ small backgrounds
- Maximize signal resolution
- Maximize luminosity

$gg \rightarrow Higgs \ Signatures$

Channel	LHC Potential	
gg → H → bb	Huge QCD background (gg → bb); extremely difficult	
gg → H → ττ	Higgs with low p _T , hard to discriminate from background; problematic	
gg → H → γγ	Small rate, large combinatorial background, but excellent determination of m _H (CMS: crystal calorimeter)	
gg → H → WW	Large rate, but 2 neutrinos in leptonic decay, Higgs spin accessible via lepton angular correlations	
gg → H → ZZ	ZZ → 4µ: "gold-plated" channel for high-mass Higgs (ATLAS: muon spectrometer)	

° Ge

	$WBF \to H$	iggs Signatures			
ſ		Н			
	Channel	LHC Potential q Jet			
	qq → qq H [with H → bb]	Very large QCD background (gg/qq → bbqq); still very difficult			
	qq → qq H [with H → ττ]	Higher p_T than direct channel; interesting discovery channel for $m_H < 135$ GeV			
	qq → qq H [with H → γγ]	Most likely combined with gg → H → γγ to inclusive diphoton signal			
	qq → qq H [with H → WW]	Additional background suppression w.r.t. direct channel; interesting discovery channel for m _H > 135 GeV			
	gg \rightarrow ttH [with H \rightarrow bb] g Top-associated production; Seemed very promising, [with H \rightarrow bb] g but overwhelmed by SM ttbb production				
	 _g ଏ				

Search for $H \rightarrow ZZ \rightarrow 4$ Leptons ("golden decay")

Statistics of 2010 data to low to set limits from the 4-lepton channel. H \rightarrow ZZ \rightarrow IIvv, IIqq have higher sensitivity.

between 130 ... 600 GeV₁₉

Search for $H \rightarrow WW \rightarrow I v I v$

(ATLAS w/ 35 pb⁻¹)

excluded at $M_{H} = 160 \text{ GeV}$

ATLAS, M. Schumacher, Moriond 2011.

20

Search for H $\rightarrow \gamma\gamma$ (for 114 GeV < m_H < 140 GeV)

ATLAS limits provide no constraints for the Higgs search.

WBF \rightarrow H \rightarrow $\tau\tau$ \rightarrow (Iv) τ_{Had}

Forward jets help to suppress backgrounds.

Status of $H \rightarrow \tau \tau \rightarrow (Iv) \tau_{Had}$ search (gg-fusion)

Channel covers also SUSY Higgs: H here stands for "neutral Higgs boson". Backgrounds:

- irreducible: $Z \rightarrow \tau \tau$, $tt \rightarrow I \tau_{had} X$
- reducible: W+jets,tt, $Z \rightarrow II$, ...

So far no jets required: statistics to low \rightarrow no serious limits for SM-Higgs.

Status of Higgs Search

Most stringent limit from $H \rightarrow WW$ search.

Most constraining are still Tevatron results:

Excluded @ 95% CL: 158 GeV < m_H < 173 GeV

25

ATLAS Prospects for 1 fb⁻¹ (summer 2011)

Prospect for Higgs Search

m_H [GeV]

ATLAS + CMS ≈ 2 x CMS	95% CL exclusion	3 sensitivity	5σ sensitivity
1 fb ⁻¹	120 - 530	135 - 475	152 - 175
2 fb ⁻¹	114 - 585	120 - 545	140 - 200
5 fb ⁻¹	114 - 600	114 - 600	128 - 482
10 fb ⁻¹	114 - 600	114 - 600	117 - 535