Quark mixing in the Standard Model:

- Quark masses and CKM matrix
- Mixing of neutral mesons
- CP violation in meson decays

Literature: G.Hiller & U.Uwer, Quark Flavor Physics, in "Physics at the Terascale", ed. I.Brock & T.Schoerner-Sadenius, Wiley (2011)

1. Quark masses and CKM matrix

Quark mass terms in Lagrangian (after spontaneous symmetry breaking:

$$\mathcal{L}_{Y}^{quarks} = -\frac{\upsilon}{\sqrt{2}} \left\{ \overline{d}_{L} Y_{d} d_{R} + \overline{u}_{L} Y_{u} u_{R} + h.c. \right\}$$
Mass matrix: $\widetilde{M}^{U,D} = Y^{U,D} \frac{\upsilon}{\sqrt{2}}$
Short-hand notation for

$$\mathcal{L}_{Y}^{quarks} = -\frac{\upsilon}{\sqrt{2}} \sum_{j,k} \left\{ \overline{d}_{L}^{j} Y_{d}^{jk} d_{R}^{k} + \overline{u}_{L}^{j} Y_{u}^{jk} u_{R}^{k} + h.c. \right\}$$

$$\overline{d}_{L}^{j} \widetilde{M}_{jk}^{D} d_{R}^{k} + \overline{u}_{L}^{j} \widetilde{M}_{jk}^{U} u_{R}^{k}$$

Yukawa matrices and thus the mass matrices are in general not diagonal in "generation space"! In fact for the Standard Model they are not!

Diagonalization

Diagonalization using unitary transformations to obtain mass eigenstates \widetilde{q}_A

$$\widetilde{q}_{A} = V_{A,q} q_{A} \quad \text{with} \quad q = u, d \quad A = R, L \quad \text{Set of 4 matrices!}$$

and $V_{A,q} V_{A,q}^{+} = 1$

Matrices $V_{A,q}$ are determined by:

$$M_{u} = \begin{pmatrix} m_{u} & 0 & 0 \\ 0 & m_{c} & 0 \\ 0 & 0 & m_{t} \end{pmatrix} = \operatorname{diag}(m_{u}, m_{c}, m_{t}) = \frac{v}{\sqrt{2}} V_{L,u} Y_{u} V_{R,u}^{\dagger},$$
$$M_{d} = \begin{pmatrix} m_{d} & 0 & 0 \\ 0 & m_{s} & 0 \\ 0 & 0 & m_{b} \end{pmatrix} = \operatorname{diag}(m_{d}, m_{s}, m_{b}) = \frac{v}{\sqrt{2}} V_{L,d} Y_{d} V_{R,d}^{\dagger}.$$

With usual Dirac masses m_q:

$$\mathcal{L}_Y^{\text{quarks}} = -\bar{\tilde{d}}_L M_d \tilde{d}_R - \bar{\tilde{u}}_L M_u \tilde{u}_R + \text{h.c.}$$

CKM Matrix

If up-type and down-type Yukawa matrices cannot be diagonalised simultaneously, there is an net effect of the basis change on the charged current interaction (which connects u/d-type) :

The charged-current interaction gets a flavor structure which is encoded in the Cabibbo-Kobayashi-Maskawa matrix (CKM):

$$V_{CKM} = V_{L,u} V_{L,d}^{+}$$
Why don't we see no quark mixing for NC
$$\mathcal{L}_{CC} = -\frac{g_2}{\sqrt{2}} \left(\bar{\tilde{u}}_L \gamma^{\mu} W^{+}_{\mu} V_{CKM} \tilde{d}_L + \bar{\tilde{d}}_L \gamma^{\mu} W^{-}_{\mu} V^{\dagger}_{CKM} \tilde{u}_L \right)$$

The element $(V_{CKM})_{ij}$ connects the LH u-type quark of the ith generation with the LH d-type quark of the jth generation. We label the matrix element according to quark flavor instead to the generation index.

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

CP violation

$$\mathcal{L}_{\rm CC} = -\frac{g_2}{\sqrt{2}} \left(\bar{\tilde{u}}_L \gamma^\mu W^+_\mu V_{\rm CKM} \tilde{d}_L + \bar{\tilde{d}}_L \gamma^\mu W^-_\mu V^\dagger_{\rm CKM} \tilde{u}_L \right)$$

$$\overset{\bullet}{\checkmark} \qquad \mathsf{CP}$$

$$\mathcal{CP} \qquad \qquad \mathcal{OP} \qquad \qquad \mathcal{$$

$$\mathcal{L}_{\rm CC}^{CP} = -\frac{g_2}{\sqrt{2}} \left(\tilde{d}_L \gamma^\mu W^-_\mu V^T_{\rm CKM} \tilde{u}_L + \bar{\tilde{u}}_L \gamma^\mu W^+_\mu V^*_{\rm CKM} \tilde{d}_L \right)$$

CP – is only conserved if $V_{CKM} = (V_{CKM})^*$

Parameters of CKM matrix

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Independent parameters:

- 18 parameter (9 complex elements)
- -5 relative quark phases (unobservable, see next slide)
- -9 Unitarity conditions
- =4 independent parameters: 3 rotation angles + phase

Unobservable Quark Phases

Phases of left-handed quark fields are unobservable: possible redefinition

$$U_{L} \to e^{i\phi(u)}U_{L} \qquad C_{L} \to e^{i\phi(c)}C_{L} \qquad t_{L} \to e^{i\phi(t)}t_{L}$$
$$d_{L} \to e^{i\phi(d)}d_{L} \qquad s_{L} \to e^{i\phi(s)}s_{L} \qquad b_{L} \to e^{i\phi(b)}b_{L}$$
Real numbers

RH quark fields are rotated simultaneously to keep mass terms real.

Under phase transformation:

$$V \rightarrow \begin{pmatrix} e^{-i\phi(u)} & 0 & 0 \\ 0 & e^{-i\phi(c)} & 0 \\ 0 & 0 & e^{-i\phi(t)} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} e^{i\phi(d)} & 0 & 0 \\ 0 & e^{i\phi(s)} & 0 \\ 0 & 0 & e^{i\phi(b)} \end{pmatrix}$$

$$V\alpha j \rightarrow \exp[i(\phi(j) - \phi(\alpha))] V\alpha j$$

 $L^{phys}(f,G)$ invariant L(f,H) affected, rephasing q_R

Parametrization

PDG parametrization: 3 Euler angles θ_{23} , θ_{13} , θ_{12} and 1 Phase δ

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{C}_{12}\mathbf{C}_{13} & \mathbf{S}_{12}\mathbf{C}_{13} & \mathbf{S}_{13}\mathbf{e}^{-i\delta} \\ -\mathbf{S}_{12}\mathbf{C}_{23} - \mathbf{C}_{12}\mathbf{S}_{23}\mathbf{S}_{13}\mathbf{e}^{i\delta} & \mathbf{C}_{12}\mathbf{C}_{23} - \mathbf{S}_{12}\mathbf{S}_{23}\mathbf{S}_{13}\mathbf{e}^{i\delta} & \mathbf{S}_{23}\mathbf{C}_{13} \\ \mathbf{S}_{12}\mathbf{S}_{23} - \mathbf{C}_{12}\mathbf{C}_{23}\mathbf{S}_{13}\mathbf{e}^{i\delta} & -\mathbf{C}_{12}\mathbf{S}_{23} - \mathbf{S}_{12}\mathbf{C}_{23}\mathbf{S}_{13}\mathbf{e}^{i\delta} & \mathbf{C}_{23}\mathbf{C}_{13} \end{pmatrix}$$

where $c_{ij} = \cos\theta_{ij}$, $s_{ij} = \sin\theta_{ij}$

Wolfenstein Parametrization

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} d & s & b\\ u & a & \cdot\\ c & a & a & \cdot\\ t & \cdot & a & b \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

$$\lambda_{r} A_{r} \rho_{r} \eta \text{ with } \lambda = 0.22 \qquad |V_{ub}| \times e^{-i\gamma}$$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^{2}}{2} & \lambda & A\lambda^{3}(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^{2}}{2} & A\lambda^{2} \\ A\lambda^{3}(1 - \rho - i\eta) & -A\lambda^{2} & 1 \end{pmatrix} + O(\lambda^{4})$$

$$|V_{td}| \times e^{-i\beta}$$

Reflects the "hierarchical structure" of the CKM matrix.

Complex CKM elements and CP violation

<u>Remark:</u> For 2 quark generations the mixing is described by the **real 2x2** Cabbibo matrix \rightarrow **no CP violation**! To explain **CPV** in the SM Kobayashi and Maskawa have predicted a **third quark generation**.

CP Violation in the Standard Model

Requirements for CP violation

$$\begin{pmatrix} m_t^2 - m_c^2 \end{pmatrix} \begin{pmatrix} m_t^2 - m_u^2 \end{pmatrix} \begin{pmatrix} m_c^2 - m_u^2 \end{pmatrix} \\ \times \begin{pmatrix} m_b^2 - m_s^2 \end{pmatrix} \begin{pmatrix} m_b^2 - m_d^2 \end{pmatrix} \begin{pmatrix} m_s^2 - m_d^2 \end{pmatrix} \times J_{CP} \neq 0$$

where

$$J_{CP} = \left| \operatorname{Im} \left\{ V_{i\alpha} V_{j\beta} V_{i\beta}^* V_{j\alpha}^* \right\} \right| (i \neq j, \alpha \neq \beta)$$

Jarlskog determinant

Using above parameterizations

$$J_{CP} = s_{12}s_{13}s_{23}c_{12}c_{23}c_{13}\sin\delta = \lambda^{6}A^{2}\eta = O(10^{-5})$$

CP violation is small in the Standard Model

Unitarity Triangles

Unitarity condition of the CKM matrix can be described by an triangle relations in the complex plane:

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0 \text{ (db)}$$

$$V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0 \text{ (sb)}$$

$$V_{ud}V_{us}^{*} + V_{cd}V_{cs}^{*} + V_{td}V_{ts}^{*} = 0 \text{ (ds)}$$

$$V_{ud}V_{td}^{*} + V_{us}V_{ts}^{*} + V_{ub}V_{tb}^{*} = 0 \text{ (ut)}$$

$$V_{cd}V_{td}^{*} + V_{cs}V_{ts}^{*} + V_{cb}V_{tb}^{*} = 0 \text{ (ct)}$$

$$V_{ud}V_{cd}^{*} + V_{us}V_{cs}^{*} + V_{ub}V_{cb}^{*} = 0 \text{ (uc)}$$

All 6 triangles have the same area (= $J_{CP}/2$): A measure of CP violation.

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

 $|V_{ud}|$

Nuclear beta-decays $(0^+ \rightarrow 0^+$ beta decays, neutron decay)

 $|V_{ud}| = 0.97425 \pm 0.00022.$

Problem: Kaon and pion form factors (see also the section on "pion decay")

 $|V_{tb}|$

Single top-quark production at hadron colliders: W \rightarrow tb \rightarrow Wb + b

Can be measured only via virtual effects: top quark decays nearly entirely to b-quarks.

B_d and B_s oscillation: Next section.

Determination of CKM Phases:

In the Wolfenstein parametrization at order O(λ^4) (λ^6) only 2 (3) of the CKM matrix elements have non-trivial phases: V_{td}, V_{ub} (V_{ts}).

The CKM phases are measured via CP violation in B decays.

<u>General remark:</u> B decays provide access to the modulus of 4 CKM elements and of two CKM phases. That's the reason B decays are studied very intensively.

2. Mixing of neutral mesons

The quark mixing results into several interesting "loop" effects: Standard Model predicts at loop-level: Flavor Changing Neutral Currents (forbidden at tree-level)

Mixing Phenomenology

Applies to all neutral mesons!

$$i\frac{d}{dt} \begin{pmatrix} B^{0}(t) \\ \overline{B}^{0}(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} B^{0}(t) \\ \overline{B}^{0}(t) \end{pmatrix}$$

Flavor states = No mass eigenstates

Diagonalizing H:

Mass eigenstates: $|B_L\rangle = \rho |B^0\rangle + q |\overline{B^0}\rangle$ with m_{L,Γ_L} light complex coefficients $|p|^2 + |q|^2 = 1$ $|B_{H,L}(t)\rangle = |B_{H,L}(0)\rangle \cdot e^{-im_{H,L}t} \cdot e^{-\frac{1}{2}\Gamma_{H,L}t}$

 $|B^{0}\rangle = \frac{1}{2\rho}(|B_{L}\rangle + |B_{H}\rangle) |\overline{B}^{0}\rangle = \frac{1}{2\rho}(|B_{L}\rangle - |B_{H}\rangle)$

Flavor eigenstates:

Mixing of neutral mesons

$$\underbrace{P(B^{0} \rightarrow B^{0}) = P(\overline{B^{0}} \rightarrow \overline{B^{0}})}_{CPT} = \frac{1}{4} \left[e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} + 2e^{-(\Gamma_{L} + \Gamma_{H})t/2} \cos\Delta mt \right] \\
P(B^{0} \rightarrow \overline{B^{0}}) = \frac{1}{4} \left| \frac{q}{p} \right|^{2} \left[e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} - 2e^{-(\Gamma_{L} + \Gamma_{H})t/2} \cos\Delta mt \right] \\
D(\overline{B^{0}} \rightarrow B^{0}) = \frac{1}{4} \left| \frac{p}{q} \right|^{2} \left[e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} - 2e^{-(\Gamma_{L} + \Gamma_{H})t/2} \cos\Delta mt \right]$$

<u>CP - violation in mixing</u>: $P(B^0 \to \overline{B^0}) \neq P(\overline{B^0} \to B^0) \Rightarrow \left|\frac{q}{p}\right| \neq 1$

B⁰-B⁰ Mixing

Standard Model Prediction

Prediction for B_s mixing

Oscillation is about 35 times stronger than in the case of $\rm B_{d}$ ($\rm V_{ts}~$ much larger than $\rm ~V_{td})$

B oscillation:

Deactivation of GIM(*) suppression because of large top mass:

What would be the mixing if all quarks had the same masses?

(*) Glashow, Iliopoulos, Maiani, 1970, see next page.

Missing FCNC and GIM mechanism

Historical retrospect

<u>FCNC in the 3 quark model:</u> $K^0 \rightarrow \mu^+ \mu^-$

 $M \sim \sin\theta_c \cos\theta_c$

Theoretically one predicts large BR, in contradiction with experimental limits for this decay:

$$\frac{BR(K_{L} \to \mu^{+}\mu^{-})}{BR(K_{L} \to all)} = (7.2 \pm 0.5) \cdot 10^{-9}$$

Proposal by Glashow, Iliopoulos, Maiani, 1970:

GIM

There exists a fourth quark which builds together with the s quark a second doublet:

$$\begin{pmatrix} c \\ s' \end{pmatrix} = \begin{pmatrix} c \\ -\sin\theta_c \cdot d + \cos\theta_c \cdot s \end{pmatrix}$$

Additional Feynman-Graph for $K^0 \rightarrow \mu\mu$ which compensates the first one:

 $M \sim -\sin\theta_c \cos\theta_c$

Prediction of a fourth quark: Mass prediction $BR=f(m_c,...)$

GIM Suppression

Example: FCNC process $b \rightarrow s$ ("penguin process" as in $B \rightarrow K^* \gamma$)

 $\mathcal{A}(b \to s)_{\rm SM} = V_{ub}V_{us}^*A_u + V_{cb}V_{cs}^*A_c + V_{tb}V_{ts}^*A_t$

where A_q denote the sub-amplitudes for the 3 possible internal quark. A_q depend on the quark masses only:

$$A_q = A(m_q^2/M_W^2)$$

Using the unitarity of the CKM matrix, especially: $\sum_{i} V_{ib} V_{is}^* = 0$ the total amplitude can be rewritten:

$$\mathcal{A}(b \to s)_{\rm SM} = V_{tb} V_{ts}^* (A_t - A_c) + V_{ub} V_{us}^* (A_u - A_c)$$

In case of approx. equal quark masses, total amplitude vanishes: GIM suppression. For large top quark mass: $A(b \rightarrow s)_{SM} = V_{tb}V_{ts}^* \cdot \frac{m_t^2}{m_w^2}$ GIM suppression inactive

Discovery of B⁰ mixing

The observation of the B_d meson mixing put the first lower limit on the top mass: $m_{top} > 50$ GeV. (GIM suppresison is inactive)

If the top mass was lower the GIM mechanism would lead to a small Δm , i.e. the B would oscillate very slowly and would decay before mixing.

The GIM mechanism is a result of the unitarity of the CKM matrix. Only different quark masses lead to a non-perfect cancellation and are the soruces of observable FCNCs at loop level.

Experimental Status of B_d meson mixing

28

B_s – Mixing measurement at LHC

Analysis steps:

- B_s reconstruction: $B_s \rightarrow D_s \pi$ (self-tagging)
- Measurement of proper decay time
- Tagging of production flavor

Flavor Tagging & B_d Mixing

- Lepton
- Kaon
- Vertex charge
- Other B: "opposite"
- Fragmentation hadron "same side"

Figure of merit: $\varepsilon D^2 \sim 4.3\%$

- Tagging efficiency $\varepsilon \sim 34\%$
- Dilution D = $(1 2\omega) \sim 32\%$ ω = mistag probability

LHCb B_s Mixing Result

- 1350 B_s candidates in 4 B_s \rightarrow D_s π decay modes
- Proper time resolution: $\sigma_t = 33-44$ fs, OST

$$\Delta m_s = 17.63 \pm 0.11 \pm 0.04 \text{ ps}^{-1}$$

World best measurement