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Problem 1: Spontaneous symmetry breaking of global symmetries

Consider a theory with three real fields (φ1, φ2, φ3), invariant under a global SO(3) symmetry,
i.e., rotations in three-dimensional space. The Lagrangian is given by

L =
1
2
∂µΦT∂µΦ− V (ΦTΦ) , (1)

where Φ = (φ1, φ2, φ3)T is a column matrix and the potential is

V (ΦTΦ) =
λ

4!
(ΦTΦ− v2)2 . (2)

The three fields are massless in the SO(3) symmetric Lagrangian in Eq. (1), which can be seen
by expanding the potential and noting that the bare mass terms have the wrong sign.

1. Break the symmetry by giving the VEV 〈φ3〉 = v 6= 0 to φ3, while leaving the other two
fields unchanged. Rewrite the potential in terms of the new fields φ′1 = φ1, φ′2 = φ2 and
φ′3 = φ3 − v.

2. Show that the new potential V (Φ′TΦ′) is still invariant under rotations about the 3-axis,
but not under rotations about the first and second axes. Use the 3× 3 orthogonal rotation
matrices that generate the SO(3) symmetry.

This simple example illustrates Goldstone’s theorem: the two broken generators of SO(3) corre-
spond to the massless particles φ′1 and φ′2, which are called Goldstone bosons.

Problem 2: Broken U(1) symmetry and massive gauge bosons

The Lagrangian of electrodynamics coupled to a complex scalar field can be written as

L = −1
4
FµνF

µν + (Dµφ)∗(Dµφ)− V (φ∗φ) , (3)

with Fµν = ∂µAν −∂νAµ and the covariant derivative Dµ = ∂µ + ieAµ. Eq. (3) is invariant under
the local transformation

φ(x)→ eiω(x)φ(x), Aµ(x)→ Aµ(x)− 1
e
∂µω(x) , (4)

where ω(x) is an arbitrary real function. The potential V (φ∗φ) can be chosen to have the form

V (φ∗φ) = −µ2φ∗φ+
λ

2
(φ∗φ)2 , (5)

with µ2 > 0, which will lead to spontaneous symmetry breaking. This is known as the Boulware-
Gilbert model or Abelian Higgs model, and demonstrates that the breaking of a local gauge
symmetry leads to massive gauge bosons.



1. Expand the potential in Eq. (5) (to second order in the fields φi) about the vacuum state
given by the minimum

〈φ〉 = v =
(
µ2

λ

)1/2

, (6)

i.e., rewrite V (φ∗φ) in terms of φ(x) = v + 1√
2

(φ1(x) + iφ2(x)). Hence, show that the field
φ1 acquires mass, whereas φ2 remains massless.

2. Do the same for the kinetic term of φ, but omit terms that are cubic and quartic in the
fields Aµ, φ1 and φ2. What is the mass of the gauge boson?

Although your answer to question 2 should contain interaction terms between the gauge boson
Aµ and the Goldstone boson φ2, the latter (non-physical) field can be gauged away by choosing
the correct U(1) gauge transformation, i.e., by working in the unitary gauge.

Problem 3: Gauge boson masses in the Standard Model

In the Standard Model Lagrangian, the kinetic term of the Higgs field contains Higgs-gauge
field interactions, which lead to masses for the electroweak gauge bosons. At the tree level, the
(non-diagonal) effective mass terms are

∆LD2 =
1
2
v2

4
[
g2(W 1

µ)2 + g2(W 2
µ)2 + (−gW 3

µ + g′Bµ)2
]
, (7)

where W a
µ and Bµ are the SU(2) and U(1) gauge bosons, respectively.

1. Use the relations

W±µ =
1√
2

(W 1
µ ∓ iW 2

µ),
(
Aµ
Zµ

)
=
(

cos θw sin θw
− sin θw cos θw

)(
Bµ
W 3
µ

)
, (8)

to diagonalise Eq. (7) and obtain the physical masses of the W and Z bosons, in terms of
g, v and cos θw, where cos θw = g/

√
g2 + g′2. You should find that Aµ is massless.

2. By identifying Aµ with the photon field, the electric charge e =
√

4πα can be expressed as

e =
gg′√
g2 + g′2

. (9)

In addition, consistency of the Standard Model (at q2 �M2
W ) with the Fermi model requires

the identification
Gµ√

2
=

e2

8 sin2 θwM2
W

, (10)

where Gµ = 1.166364(5) × 10−5 GeV−2 is the Fermi constant, measured via the muon
lifetime. Use Eq. (10) to show that the relationship

M2
W

(
1−

M2
W

M2
Z

)
=

πα√
2Gµ

(11)

between the gauge boson masses holds, and hence provide an estimate on MW , given MZ ,
α and Gµ.

Additional information:
Christoph (c.englert@thphys.uni-heidelberg.de)
David (d.lopez@thphys.uni-heidelberg.de),
Dorival (d.goncalves@thphys.uni-heidelberg.de)
James (james.barry@mpi-hd.mpg.de)


