Standard Model of Particle Physics

Lectures: Tilman Plehn, Ulrich Uwer
Exercises: James Barry, Christoph Englert, Dorival Gonçalves Netto, David López Val

Problem Sheet 2

hand in until: 02.05.2011, 11.15

Problem 1: Kinematical Invariants of $2 \rightarrow 2$ Scattering

Consider the scattering process

$$
\begin{equation*}
a+b \rightarrow 1+2, \tag{1}
\end{equation*}
$$

with four momenta p_{a}, p_{b}, p_{1}, and p_{2}.

1. How many independent lorentz-invariant quantities can one construct from the incoming and outgoing four momenta? Take into account energy-momentum conservation of the scattering process.
2. Show that the Mandelstam variables

$$
\begin{align*}
s & =\left(p_{a}+p_{b}\right)^{2}, \tag{2a}\\
t & =\left(p_{a}-p_{1}\right)^{2}, \tag{2b}\\
u & =\left(p_{a}-p_{2}\right)^{2}, \tag{2c}
\end{align*}
$$

suffice to fully describe the $2 \rightarrow 2$ scattering's kinematics.
3. The lorentz-invariant 2-body phase space, which shows up in the computation of the $2 \rightarrow 2$ scattering cross section reads

$$
\begin{equation*}
\mathrm{dLIPS}_{2}=\frac{\mathrm{d}^{3} \mathbf{p}_{1}}{(2 \pi)^{3} 2 E_{1}} \frac{\mathrm{~d}^{3} \mathbf{p}_{2}}{(2 \pi)^{3} 2 E_{2}} \delta^{(4)}\left(p_{a}+p_{b}-p_{1}-p_{2}\right), \tag{3}
\end{equation*}
$$

where $E_{i}^{2}=p_{i}^{2}+\mathbf{p}_{i}^{2}, i=1,2$. What is the phase space integration's dimensionality? How is this reflected in the Mandelstam variables? (Hint: Find a relation between $p_{1}^{2}, p_{2}^{2}, p_{a}^{2}, p_{b}^{2}$ and s, t, u.)

Problem 2: $e^{-} \mu^{-}$Scattering

Compute the S matrix element for genuine $e^{-}\left(p_{a}\right)+\mu^{-}\left(p_{b}\right) \rightarrow e^{-}\left(p_{1}\right)+\mu^{-}\left(p_{2}\right)$ scattering in QED, i.e. neglect the case when no scattering takes place, $p_{a}=p_{1}$.

1. Write down the contributing Feynman graph(s) to $|\mathcal{M}|^{2}$ in the leading order approximation.
2. Apply the QED Feynman rules (cf. lecture notes on Tilman's webpage) and translate the Feynman diagrams into an algebraic expression for the amplitude $i \mathcal{M}$.
3. Compute the unpolarized matrix element $|\mathcal{M}|^{2}$, i.e. sum over final state spins, and average over initial state spins. Neglect the electron and muon masses for convenience. You will need the trace identity

$$
\begin{equation*}
\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4\left(g^{\mu \nu} g^{\rho \sigma}-g^{\mu \rho} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \rho}\right), \tag{4}
\end{equation*}
$$

and the rule for complex conjugation of the spinor product

$$
\begin{equation*}
\left[\bar{u}(p) \gamma^{\mu} u(k)\right]^{\star}=\bar{u}(k) \gamma^{\mu} u(p) \tag{5}
\end{equation*}
$$

(no proofs needed). Express the unpolarized $|\mathcal{M}|^{2}$ in terms of the Mandelstam variables Eq. (2). What happens for forward scattering

$$
\begin{equation*}
\cos \theta_{a 1}=\mathbf{p}_{a} \cdot \mathbf{p}_{1} /\left(\left|\mathbf{p}_{a}\right|\left|\mathbf{p}_{1}\right|\right) \rightarrow 0 ? \tag{6}
\end{equation*}
$$

Is this result familiar to you?

Contact:

Christoph (c.englert@thphys.uni-heidelberg.de)
David (d.lopez@thphys.uni-heidelberg.de),
Dorival (d.goncalves@thphys.uni-heidelberg.de)
James (james.barry@mpi-hd.mpg.de)

