# 6. Energiegewinnung aus Kernreaktionen

### 6.1 Kernspaltung und Kernkraftwerke (KKW)

Nützlich: M. Volkmer, Basiswissen Kernphysik (web) http://www.kernenergie.net/

#### Motivation

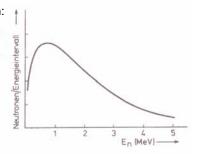
Bei der Spaltung von 1 kg Uran wird die gleiche Energie frei, wie bei der Verbrennung von 750 t Kohlenstoff ( $\rightarrow$  2770 t CO<sub>2</sub>). Bem.: In realistischen Reaktoren werden aber nur etwa 5% des eingesetzten Brennstoffs gespalten.

# a) Spaltreaktion

$$n (\textit{therm.}) + ^{235}U \rightarrow \left(^{236}U\right)^* \rightarrow Y_1 + Y_2 + \nu n (\text{schnell})$$
$$n (\sim 1 \,\text{MeV}) + ^{238}U \rightarrow \left(^{239}U\right)^* \rightarrow Y_1 + Y_2 + \nu n (\text{schnell})$$

Im Mittel 2.3 Neutronen (schnell)

Neben direkten Neutronen entstehen auch verzögerte Neutronen (~1%)


$$Y_1 \xrightarrow{\beta} Y_2^* \xrightarrow{} Y_3 + n$$
 typ.  $\tau = 1 \text{ms...} 1 \text{min}$ 

Energieverteilung der entstehenden Neutronen:

$$\frac{dN}{dE} \sim \sqrt{E} \exp(-\frac{E}{kT})$$

$$\langle E \rangle \approx 2 \, \text{MeV}$$

d.h. Mehrzahl der Neutronen ist sehr schnell



### b) Energiebilanz bei Spaltung

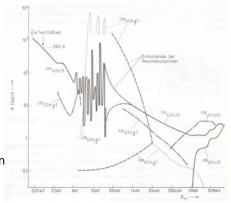
| $E_{kin}$ der Spaltfragmente                                                          | 167 | ±     | 5 MeV   |
|---------------------------------------------------------------------------------------|-----|-------|---------|
| ${\cal E}_{kin}$ aller Spaltneutronen                                                 | 5   | $\pm$ | 0.2 MeV |
| prompte $\gamma$ -Strahlung                                                           | 8   | $\pm$ | 1.5 MeV |
| verzögerte $\gamma$ -Strahlung                                                        | 6   | $\pm$ | 1 MeV   |
| $E_{kin} \ \mathrm{der} \ e^- \ \mathrm{aus} \ \mathrm{dem} \ \beta\text{-Zerfall}$   | 6   | $\pm$ | 1 MeV   |
| $E_{kin} \ \mathrm{der} \ \overline{\nu}_e$ aus $\mathrm{dem} \ \beta\text{-Zerfall}$ | 12  | $\pm$ | 2.5 MeV |
| Summe $Q$                                                                             | 204 | ±     | 6 MeV   |
|                                                                                       |     |       |         |

$$Q - E_{kin}(v) = 192 \text{ MeV}$$



$$1gU \equiv 2.55 \text{ MWh}$$

### c) Kettenreaktion


Die bei der Spaltung ausgelösten  $\nu$  Neutronen können an einer Reihe unterschiedlicher Reaktionen teilnehmen und für weitere Spaltung verloren gehen.

Beispiel:  $(n,\gamma)$  Absorptionsreaktion

$$n+U \rightarrow U^* \rightarrow U+\gamma$$

Statt  $\nu$  verwendet man die Größe  $\eta$  (Regenerations(Vermehrungs)faktor)

 $\sigma_R$  = Reaktionsquerschnitt für alle anderen Neutron-induzierte Reaktionen



Eine Kettenreaktion kann nur stattfinden wenn  $\eta > 1$ .

Für  $^{238}$ U ist der WQ für inelastische Stoßprozesse  $\sigma(n,\,n',\gamma)$  größer als der Spaltquerschnitt  $\sigma(n,\,f)$ . In  $^{238}$ U kann keine Kettenreaktion stattfinden.

Eine Kettenreaktion ist nur mit thermischen Neutronen und Spaltung von  $^{235}$ U möglich:  $\rightarrow$  Abbremsen (Moderation) der Neutronen.

Beim Abbremsen in Natur-Uran (99.3%  $^{238}$ U + 0.7%  $^{235}$ U) bzw. in angereichtertem Uran (97%  $^{238}$ U + 3%  $^{235}$ U) durchlaufen die Neutronen Energien zwischen 100 eV ... 1 eV für die der WQ  $^{238}$ U (n,  $\gamma$ ) sehr groß ist  $\rightarrow \eta$  wird < 1.

Abbremsen in einem vom Brennstoff getrennten Moderator

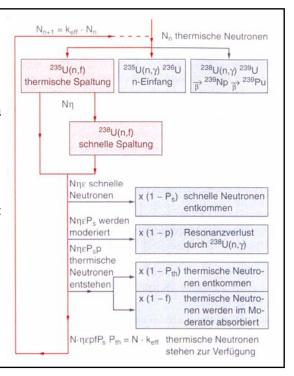
#### Moderatoren

| Moderator        | $\lambda_{\rm abs}$ / cm | λ <sub>elastisch</sub> / cm | Bremslänge /cm    |  |  |
|------------------|--------------------------|-----------------------------|-------------------|--|--|
|                  |                          | relastisch rom              | (schnell→langsam) |  |  |
| H <sub>2</sub> O | 51.8                     | 0.43                        | 5.3               |  |  |
| D <sub>2</sub> O | 13000                    | 2.4                         | 11.2              |  |  |
| 12 <b>C</b>      | 2500                     | 2.7                         | 19.2              |  |  |

auch als Kühlmittel geeignet

#### Kritische Masse:

In hochangreichertem <sup>235</sup>U (>90%) oder <sup>239</sup>Pu ohne Neutronen absorbierende Fremdkerne kommt es bei genügend großer Masse (möglichst kugelförmig) zu einer unkontrollierten Kettenreaktion.


|        | Kritische Masse bei Kugelform |                    |  |  |
|--------|-------------------------------|--------------------|--|--|
| Nuklid | unreflektiert                 | durch Wasser refl. |  |  |
| U-235  | 49 kg                         | 23 kg              |  |  |
| Pu-239 | 10 kg                         | 5.4 kg             |  |  |

# Neutronenbilanz für Kernreaktor (97% <sup>238</sup>U + 3% <sup>235</sup>U)

nte Generation: N<sub>n</sub> therm. Neutronen

- η Regenerationsfaktor
- ε Schnellspaltfaktor
- P<sub>s</sub> Wahrsch. schnelles Neutron bleibt im Reaktor (endl. Reaktor)
- P<sub>th</sub> Wahrsch. therm. Neutron bleibt im Reaktor (endl. Reaktor)
- p Wahrsch. für n Abbremsung ohne Resonanzeinfang
- f Nutzungsfaktor: Anteil der nicht im Moderator absorbiert wird
- → (n+1)te Generation:

$$N_{n+1} = \eta \varepsilon P_{s} p P_{th} f \cdot N_{n}$$



#### Neutronenbilanz

Therm. Neutronen in (n+1)ter Generation:

$$N_{n+1} = \eta \varepsilon P_s p P_{th} f \cdot N_n \equiv k_{eff} \cdot N_n$$
  $k_{eff} = effektiver Vermehrungsfaktor$ 

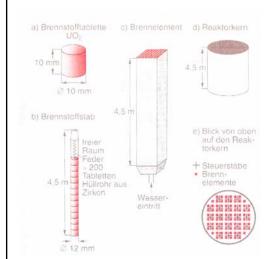
$$\frac{N_{n+1}-N_n}{T}=\frac{k_{\text{eff}}-1}{T}\cdot N_n$$

 $\frac{N_{n+1}-N_n}{T} = \frac{k_{eff}-1}{T} \cdot N_n$  T = Mittlere Zykluszeit zwischen Generationen(typ. 1 µs, Abbremszeit)



$$\frac{dN}{dt} = \frac{k_{\text{eff}} - 1}{T} \cdot N \quad \Longrightarrow \quad N(t) = N_0 \exp\left(\frac{k_{\text{eff}} - 1}{T} \cdot t\right)$$

Stationärer Betrieb eines Reaktors:  $k_{eff} = 1$   $k_{eff} \equiv k_{\infty} P_s P_{th}$ 


Für unendlich großen Reaktor:

$$P_s = P_{th} = 1$$

Vierfaktorformel:

$$P_{\rm s} = P_{\rm th} = 1$$
  
 $K_{\infty} = \eta \cdot \varepsilon \cdot \rho \cdot f = 1$ 

# d) Aufbau eines Reaktors: Druckwasserreaktor - gängigster Typ in D



#### Steuerstäbe:

Material mit großer Neutronen-Absorption: B, Cd, In, Ag

$$n+_{5}^{10}B\rightarrow_{3}^{7}Li+_{2}^{4}He+\gamma$$
  
 $n+_{48}^{113}Cd\rightarrow_{48}^{114}Cd+\gamma$ 

#### typische Daten (Brokdorf 1993):

| Kernbrennstoff         | $UO_2$     |
|------------------------|------------|
| Anreicherung $^{235}U$ | 1.9 - 3.5% |
| Brennstoffmenge        | 103 t      |
| thermische Leistung    | 3.8~GW     |
| elektr. Nettoleistung  | 1.3~GW     |
| Wirkungsgrad           | 35%        |



# e) Steuerung und Betrieb eines Reaktors

Reaktivität  $\rho \equiv \frac{k_{\rm eff} - 1}{k_{\rm eff}}$  Zahl der Neutronen  $N(t) = N_0 \exp\left(\frac{\rho k_{\rm eff}}{T} \cdot t\right)$   $\rho = 0$ : Stationärer Betrieb

Zykluszeit T (typ. 1  $\mu$ s) ist zu schnell für eine Regelung mit Steuerstäben. Zur Steuerung wichtig sind die verzögerten Neutronen ( $\tau$  = 0.1 ... 60 s):

Verzögerte Neutronen:  $N_n^v = \beta \cdot N_n$  mit  $\beta \approx 0.7\%$ 

Regelung:  $\rho < 0$ : Reaktor schaltet ab

 $0 < \rho < \beta$ : Reaktor fährt langsam hoch

Regelzeit für Absorberstäbe ~ 10 s

 $\rho > \beta$  schnelles Anwachsen der Spaltprozesse

 $\rho = 0$  Stationärer Betrieb

Beim Anfahren des Reaktors wird künstliche Neutronenquelle benutzt:  $\rho > 0$ 

## Selbstregelung:

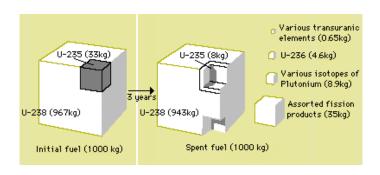
• Bei Leichtwasser Reaktoren (H<sub>2</sub>O als Moderator)

$$k_{eff} > 1 \rightarrow mehr Wärme$$

 $\rightarrow$  Moderator  $H_2O$  verdünnt sich

$$\rightarrow k_{\rm eff} \, {\rm sinkt}$$

 $\rightarrow \mbox{W\"{a}rmebewegung} \rightarrow \mbox{Dopplerverbreiterung} \\ \mbox{der Resonanzen} \rightarrow \mbox{k}_{\mbox{\scriptsize eff}} \mbox{ sinkt}$ 


Sinnvolles Design: 
$$\frac{dk_{eff}}{dT} < 0 \rightarrow \text{Selbstabschaltung}$$

• Graphit-Moderierte Druckröhren-Reaktoren (Tschernobyl Typ)

$$\left. \frac{dk_{\text{eff}}}{dT} \right|_{H_2O} > 0$$

Reaktor neigt zu Instabilitäten insbesondere beim Entfernen fast aller Steuerstäbe

### Abbrand:



### Bei mittlerem Abbrand:

1 t angereichtes Uran  $\rightarrow$  ~10 GWd an elektrischer Energie

KKW mit 1 GW Leistung  $\rightarrow$  30 t angereichertes Uran / Jahr

Typischer Reaktor (1.3 GW) enthält etwa 100 t Uran.

### e) Reaktortypen

### Klassifizierungskriterien:

- Trennung von Spaltstoff und Moderator: homogene, heterogene Reaktoren
- Moderator: Leichtwasser (H<sub>2</sub>O), Schwerwasser (D<sub>2</sub>O), Graphit
- Kühlung/Kühlmittel:
  - Druckwasser-Reaktoren DWR: H<sub>2</sub>O, Primärkreislauf bei hohem Druck, Sekundärkreislauf bei niedrigem Druck.
  - Siedewassér-Reaktor SWR: Kombinierter Kühl- und Dampkreislauf.
  - Gasgekühlte Reaktoren mit CO₂, He₂ (→ Hochtemperatur Reaktor HTR)
  - Fl. Natrium-Kühlung (→ schneller Brüter **SBR**)
- Brutverhalten

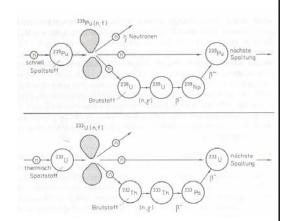
Typische Betriebsparameter für 1000 MW-Reaktoren ( $\eta$  Wirkungsgrad)

|     | Mode-<br>rator | Kühlung | Brenn-<br>stoff | Anrei-<br>cherung | Abbrand<br>MW/t    | °C/atm  | η   | Zahl der<br>Kühlkreise |
|-----|----------------|---------|-----------------|-------------------|--------------------|---------|-----|------------------------|
| DWR | $H_2O$         | $H_2O$  | 100 t           | 3 %               | $3 \cdot 10^{4}$   | 330/160 | 33% | 2                      |
| SWR | $H_2O$         | $H_2O$  | 100 t           | 2.7%              | $2.8 \cdot 10^{4}$ | 290/70  | 34% | 1                      |
| HTR | C              | He      | 40 t            | 4 % (93%)         | 10 <sup>5</sup>    | 800/48  | 38% | 2                      |
| SBR |                | Na      | 19 t            | 12 %              | $7 \cdot 10^{4}$   | 600/<10 | 42% | 2(3)                   |

#### Brut-Reaktoren:

"Schneller Brüter"

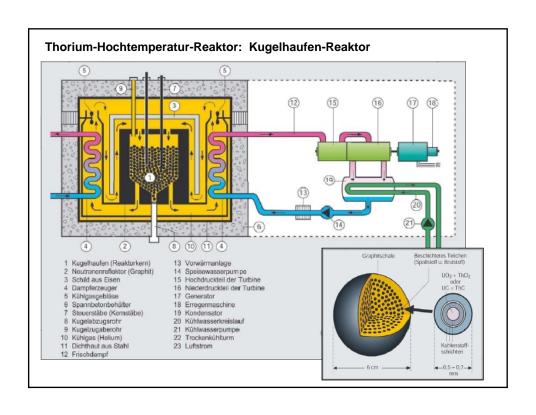
erzeugt spaltbares <sup>239</sup>Pu aus <sup>238</sup>U


H<sub>2</sub>O als Kühlmittel nicht möglich (wirkt als Moderator)

→ Verwendung von fl. Natrium.

Probleme: fl. Na sehr agressiv, Na wird radiaoaktiv → mehrere Kühlkreisläufe


"Thorium Brüter"


erzeugt spaltbares <sup>233</sup>U aus <sup>232</sup>TH



Brut-Reaktoren: Bessere Nutzung des Urans bzw. Nutzung von Thorium (größere Welt-Reserven als für Uran)

7





### 6.2 Kernfusion und Fusionsreaktoren

http://www.ipp.mpg.de/ippcms/de/presse/pi/kernfusion\_berichte\_02.pdf

## a) Kontrolliertes "Sonnenfeuer" auf der Erde

- Bei Fusion ist die freigesetzte Energie pro fusionierender Masse sehr viel größer als bei Spaltung
- Leistungsdichte  $\varepsilon_F$  der Sonne ist aber gering: KKW  $\varepsilon_F = 10^8 \text{ W}_{th}/\text{m}^3$

Sonne 
$$\varepsilon_F = 0.3 \cdot 10^3 \text{ W}_{th}/\text{m}^3$$
  
Zentrum

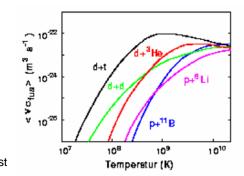
Wichtigste Fusionskette in Sonne pp-I Kette (s.a. Abschnitt 7)

- Radioaktive Abfälle sehr viel kurzlebiger als bei Spaltung
- · Rohstoff ist fast unbegrenzt vorhanden

### b) Bedingungen für Kernfusion

Uberwindung (Durchtunneln) der Coulomb-Barriere der Kerne 
$$V_{\rm C} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Z_1 Z_2 e^2}{r} \quad K_1 \bigcirc E_{Kin} \longrightarrow Z_2 K_2$$

$$E_{Kin} \approx 10 \text{ keV} \dots 100 \text{ keV} \leftrightarrow T \approx 10^{8 \dots 9} \text{ K}$$


Tunneleffekt:

$$\sigma_f(v) \sim e^{-2G}$$
 mit  $G \sim \frac{Z_1 Z_2 e^2}{4\pi\varepsilon_0} \frac{1}{v}$   $\longrightarrow$  
$$\begin{cases} Z_1, Z_2 \text{ klein (= 1 !!)} \\ v \leftrightarrow \text{Temperatur) growth} \end{cases}$$

Mögliche Fusionsreaktionen:

$$^{2}H+^{2}H\rightarrow^{3}He+^{1}H+3.4 \text{ MeV}$$
 $^{2}H+^{2}H\rightarrow^{3}He+n+4.0 \text{ MeV}$ 
 $^{3}H+^{2}H\rightarrow^{4}He+n+17.6 \text{ MeV}$ 
 $^{3}He+^{2}H\rightarrow^{4}He+^{1}H+18.1 \text{ MeV}$ 

aussichtsreichste Alternative: Erzeugung von <sup>3</sup>H im Reaktor selbst



#### Plasma:

Bei den obigen Temperaturen sind die leichten H/He-Kerne im Reaktor vollständig ionisiert: es liegt ein neutrales Plasma aus Elektronen und Kernen vor.

## Fusionsrate für Tritium/Deterium:

$$Z_F = n_d n_t \cdot \langle \sigma_f(v) v \rangle$$
 [Fusionen/(m<sup>3</sup>s)]

 $n_{d,t,e} = Deuterium/Tritium/e - Dichte$ 

v = Relativgschwindigkeit

 $\sigma_F$  = Fusionsquerschnitt

Neutrales Plasma

$$n_d = n_t = \frac{n_e}{2} \equiv \frac{n}{2}$$

Fusionen sind nur dann möglich wenn die Einschlusszeit  $\tau_{\text{E}}$  der Teilchen im Plasma größer ist als die Zeit bis zu einem Fusionsstoß  $\tau_{\text{F}}$ 

• Lange Plasma-Einschlusszeiten → magnetischer Einschluss:

$$n \sim 10^{20} / \text{m}^3$$
  $\tau_E = O(10 \text{ s})$ 

ullet Hohe Dichten o Laserinduzierte Plasmen - Trägheitseinschluss:

$$n \sim 10^{31}/\text{m}^3$$
  $\tau_E \sim 10^{-10}\text{s}$ 

#### Zündbedingung für Plasma (Lawson Kriterium):

$$^{3}H+^{2}H\rightarrow^{4}He$$
 (3.5 MeV) + n (14.1 MeV)

Plasma zugeführte Leistung

 $E_{\alpha} = 3.5 \,\mathrm{MeV}$ 

(Neutronen bleiben nicht im Plasma)

Verlustleistung:

- Plasmadiffusion
- Elektronen-Bremsstrl. an Kernen

Zur Berechnung wird thermisches Gleichgewicht angenommen:  $T_{ion} = T_e = T$ 

Energiedichte:  $U = \frac{3}{2}(n_e + n_d + n_t) \cdot kt = 3nkt$ 

Diffusionszeit aus Reaktionsvolumen  $\tau_D$ 

Verlustleistungsdichte durch Diffusion:

$$P_D = \frac{3nkT}{\tau_D} = \frac{3n^2kT}{n\tau_D}$$

Verlustleistungsdichte durch Bremsstrahlung

$$P_{\gamma} = \varepsilon_{\gamma} n^2 \sqrt{kT}$$
  $\varepsilon_{\gamma} = 5.4 \cdot 10^{-37} \frac{\text{Wm}^3}{\sqrt{\text{keV}}}$ 

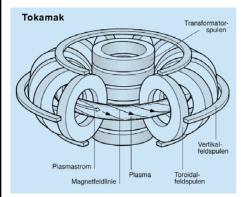
Leistungsdichte durch Fusion (nur  $\alpha$  Teilchen):

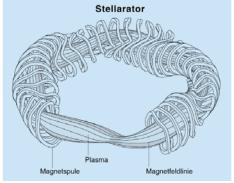
$$P_{\alpha} = Z_F \cdot E_{\alpha} = \left(\frac{n}{2}\right)^2 \langle \sigma_F(v) v \rangle \cdot E_{\alpha}$$

Break-even Punkt: Energie aus Fusionsreaktion produziert gerade erforderliche Plasma-Temperatur

$$P_{\alpha} \ge P_D + P_{\gamma} \quad \Leftrightarrow \quad \frac{1}{P_D} \ge \frac{1}{P_{\alpha} - P_{\gamma}}$$

$$P_{\alpha} \geq P_{D} + P_{\gamma} \quad \Leftrightarrow \quad \frac{1}{P_{D}} \geq \frac{1}{P_{\alpha} - P_{\gamma}}$$


$$n\tau_{D} \geq \frac{3kT}{\frac{1}{4} \langle \sigma_{F} V \rangle \cdot E_{\alpha} - \varepsilon_{\gamma} \sqrt{kT}} \quad \text{Lawson Kriterium}$$


Beispiel:

 $kT \approx 10 \text{ keV} \quad \langle \sigma_F v \rangle \text{ (Abbildung)} \quad \Rightarrow n\tau \approx 10^{21} \text{s/m}^3$ 

### c) Fusionskraftwerke: Magnetischer Einschluss

Plasma muss auf T>108 K aufgeheizt werden und genügend lange eingeschlossen bleiben:



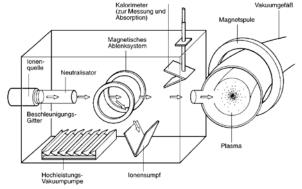


Magnetsystem:

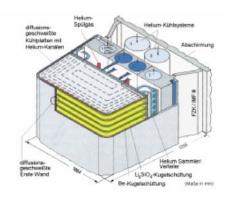
- Toroidfeldspule
- $\bullet \ Transformator feld spule \rightarrow Plasmastrom \\$
- Vertikalfeldspule
- → Pulsbetrieb

#### Magnetsystem:

- •Nicht ebene Einzelspulen
- → Dauerbetrieb


# **Plasmaheizung**

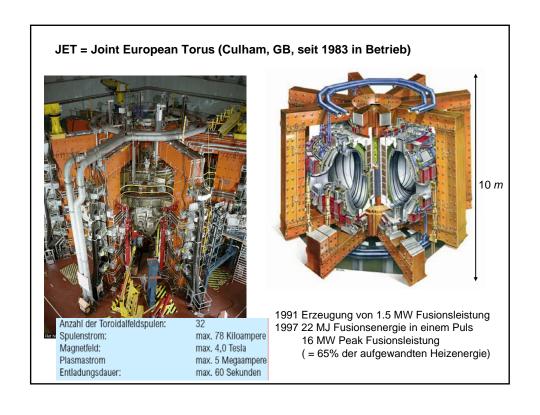
- Stromheizung (Tokamak): Plasma = Sekundärspule eines Transformators
- Neutralteilchenheizung:
   Einschuss hochenergetischer neutraler Teilchen (<sup>2</sup>H Atome)

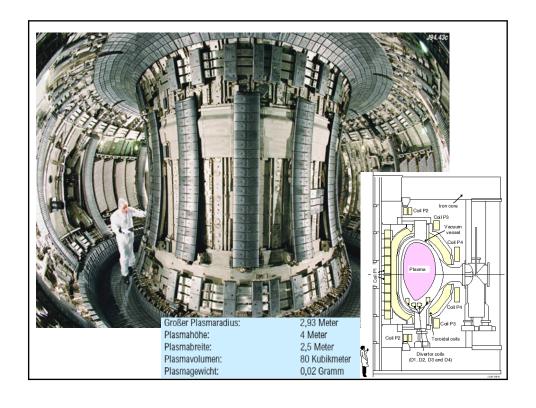

• Einspeisung von HF und Mikrowellen

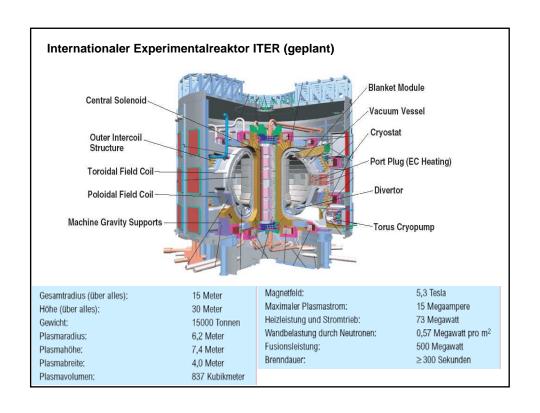
### Neutralteilchenheizung:

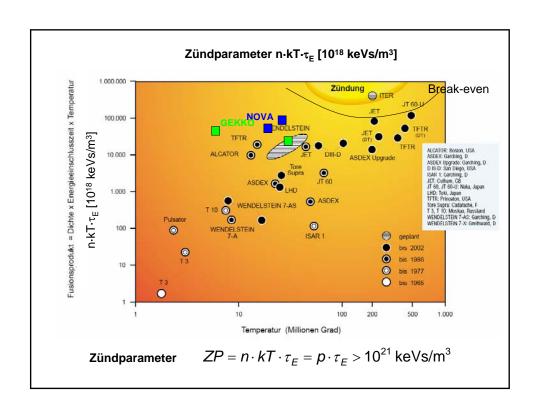
D<sub>2</sub> dissoziert/ionisiertNeutralisator=Alkali-DampfTangentialer Einschuss

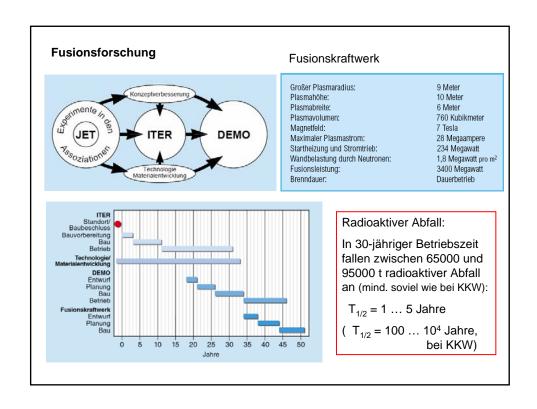



## **Blanket**





In zukünftige Kraftwerken bedeckt das etwa 1 m dicke Blanket die innere Wand des Plasmagefässes:


- Fusionsneutronen werden im Blanket abgebremst. Bewegungsenergie wandelt sich in Wärme um, die über Wärmetauscher abgeführt wird.
- Neutronen erzeugen hier aus Li das für die Fusion benötigte Tritium:


$$n+^{6}Li(7.5\%) \rightarrow ^{3}H + \alpha$$
  
 $n+^{7}Li(92.5\%) \rightarrow ^{3}H + \alpha + n$ 

