Experimental tests of the Standard Model

- Discovery of the W and Z bosons
- Precision tests of the Z sector
- Precision tests of the W sector
- Electro-weak unification at HERA
- Radiative corrections and prediction of the top and Higgs mass
- Top discovery at the Tevatron
- Higgs searches at the LHC

1. Discovery of the W and Z boson

1.1 Boson production in pp interactions

$pp \rightarrow W \rightarrow t\bar{t} + X$

$pp \rightarrow Z \rightarrow t\bar{t} + X$

Similar to Drell-Yan: (photon instead of W)

$s = x_q x_{\bar{q}} s$ mit $\langle x_q \rangle = 0.12$

$s = \langle x_q \rangle^2 s = 0.014 \cdot (65 \text{ GeV})^2$

\rightarrow Cross section is small!
1.2 UA-1 Detector

1.3 Event signature: \(p\bar{p} \rightarrow Z \rightarrow f\bar{f} + X \)

High-energy lepton pair:

\[m_{\ell\ell} = (p_{\ell^+} + p_{\ell^-})^2 = M_Z^2 \]

\(M_Z \approx 91 \text{GeV} \)
1.4 Event signature: \(pp \rightarrow W \rightarrow \ell \bar{\nu}_\ell + X \quad W^\rightarrow \rightarrow e \bar{\nu} \)

Undetected \(\nu \) – Missing momentum

High-energy lepton – Large transverse momentum \(p_t \)

How can the \(W \) mass be reconstructed?

\(W \) mass measurement

In the \(W \) rest frame:
- \(|p_\ell| = |p_\bar{\nu}| = \frac{M_W}{2} \)
- \(|p_T| \leq \frac{M_W}{2} \)

Jacobian Peak:
\[
\frac{dN}{dp_t} \sim \frac{2p_t}{M_W} \left(\frac{M_W^2}{4} - p_t^2 \right)^{-1/2}
\]

- Trans. Movement of the \(W \)
- Finite \(W \) decay width
- \(W \) decay is not isotropic

\(M_W \approx 80 \text{ GeV} \)
The Nobel Prize in Physics 1984

Simone van der Meer Carlo Rubbia

"for their decisive contributions to the large project, which led to the discovery of the field particles W and Z, communicators of weak interaction"

S. van der Meer

One of the achievements to allow high-intensity p ¯p collisions, is stochastic cooling of the ¯p beams before inserting them into SPS.

1.5 Production of Z and W bosons in e+e− annihilation

Precision tests of the Z sector

Tests of the W sector

\[W \rightarrow q\bar{q} \]
2. Precision tests of the Z sector

2.1 Cross section for $e^+ e^- \rightarrow \gamma / Z \rightarrow f \bar{f}$

\[
|M|^2 = \left| \begin{array}{cc}
\gamma & Z \\
\end{array} \right|^2
\]

for $e^+ e^- \rightarrow \mu^+ \mu^-$

\[
M_\gamma = -e^2 (\bar{\gamma} \gamma) \frac{1}{q^\rho} (\bar{\gamma}^\mu e)
\]

\[
M_Z = - \frac{g^2}{\cos^2 \theta_W} \left[\bar{\gamma} \gamma^\nu \frac{1}{2} \left(g_{\nu\mu} - g_{\nu\rho} g^\nu g^\rho \right) \mu \right] \frac{g_{\nu\rho} - q_\rho q_\nu}{(q^2 - M_Z^2) + i M_Z \Gamma_Z} \left[\bar{\gamma} \gamma^\nu \frac{1}{2} \left(g_{\nu\mu} - g_{\nu\rho} g^\nu g^\rho \right) e \right]
\]

Z propagator considering a finite Z width

Differential cross section for $e^+ e^- \rightarrow \mu^+ \mu^-$

\[
\frac{d\sigma}{d\cos \theta} = \frac{\pi \alpha^2}{2s} \left[F_\gamma (\cos \theta) + F_{\gamma Z} (\cos \theta) \frac{s(s - M_Z^2)}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2} + F_Z (\cos \theta) \frac{s^2}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2} \right]
\]

\[\gamma\quad \gamma/Z \text{ interference} \quad Z\]

Vanishes at $\sqrt{s}=M_Z$

with

\[
F_\gamma (\cos \theta) = Q_e^2 Q_\mu^2 (1 + \cos^2 \theta) = (1 + \cos^2 \theta)
\]

\[
F_{\gamma Z} (\cos \theta) = \frac{Q_e Q_\mu}{4 s \cos^2 \theta_W} \left[2 g_\nu g_{\mu\nu} (1 + \cos^2 \theta) + 4 g_\nu g_{\mu\nu} \cos \theta \right]
\]

\[
F_Z (\cos \theta) = \frac{1}{16 s \cos^2 \theta_W} \left[(g_{\nu\mu}^2 + g_{\nu\rho}^2)(g_{\nu\rho}^2 + g_{\mu\rho}^2) (1 + \cos^2 \theta) + 8 g_{\nu\rho} g_{\mu\nu} g_{\mu\rho} \cos \theta \right]
\]
At the Z-pole $\sqrt{s} \approx M_Z$ → Z contribution is dominant → interference vanishes

$$\sigma_{tot} = \sigma_Z = \frac{4\pi}{3s} \frac{\alpha^2}{16\sin^4\theta_w \cos^4\theta_w} \left[(g'_\mu)^2 + (g'_\alpha)^2 \right] \left[(g'_\nu)^2 + (g'_\lambda)^2 \right] \frac{s^2}{(s - M_Z^2)^2 + (M_2\Gamma_Z)^2}$$

$$\sigma(s) = 12\pi \frac{\Gamma_e \Gamma_{\mu}}{M_Z^2} \frac{s}{(s - M_Z^2)^2 + M_2^2\Gamma_Z^2}$$

$$\sigma_Z(\sqrt{s} = M_Z) = \frac{12\pi \Gamma_e \Gamma_{\mu}}{M_Z^2} \frac{s}{\Gamma_Z^2}$$

With partial and total widths:

$$\Gamma_i = \frac{\alpha M_Z}{12 \sin^2\theta_w \cos^2\theta_w} \left[(g'_\nu)^2 + (g'_\lambda)^2 \right]$$

$$\Gamma_Z = \sum_i \Gamma_i$$

Cross sections and widths can be calculated within the Standard Model if all parameters are known

4.2 Measurement of the Z lineshape

Z resonance curve:

$$\sigma(s) = 12\pi \frac{\Gamma_e \Gamma_{\mu}}{M_Z^2} \frac{s}{(s - M_Z^2)^2 + M_2^2\Gamma_Z^2}$$

Peak: $\sigma_0 = \frac{12\pi \Gamma_e \Gamma_{\mu}}{M_Z^2} \frac{s}{\Gamma_Z^2}$

- Resonance position $\rightarrow M_Z$
- Height $\rightarrow \Gamma_e \Gamma_{\mu}$
- Width $\rightarrow \Gamma_Z$

Initial state Bremsstrahlung corrections

$$\sigma_{\gamma(Z)} = \frac{1}{4m_e^2/s} \int G(z) \sigma^0_{\gamma(Z)}(zs) \, dz \quad z = 1 - \frac{2E_e}{\sqrt{s}}$$
Resonance looks the same, independent of final state: Propagator is the same.
Z line shape parameters (LEP average)

\[
M_Z = 91.1876 \pm 0.0021 \text{ GeV} = \pm 23 \text{ ppm (*)}
\]

\[
\begin{align*}
\Gamma_Z &= 2.4952 \pm 0.0023 \text{ GeV} \\
\Gamma_{\text{had}} &= 1.7458 \pm 0.0027 \text{ GeV} \\
\Gamma_\ell &= 0.08392 \pm 0.00012 \text{ GeV} \\
\Gamma_\mu &= 0.08399 \pm 0.00018 \text{ GeV} \\
\Gamma_\tau &= 0.08408 \pm 0.00022 \text{ GeV}
\end{align*}
\]

3 leptons are treated independently

Assuming lepton universality: \(\Gamma_\ell = \Gamma_\mu = \Gamma_\tau \)

*) error of the LEP energy determination: \(\pm 1.7 \text{ MeV (19 ppm)} \)

http://lepewwg.web.cern.ch/ (Summer 2005)

LEP energy calibration: Hunting for ppm effects

Changes of the circumference of the LEP ring changes the energy of the electrons:

- tide effects
- water level in lake Geneva

Changes of LEP circumference \(\Delta C = 1 \ldots 2 \text{ mm/27km (4} \ldots 8 \times 10^{-8}) \)

![Diagram showing changes in energy and circumference](image-url)
Effect of the French “Train a Grande Vitesse” (TGV)

Vagabonding currents (~1A) from trains

In conclusion: Measurements at the ppm level are difficult to perform. Many effects must be considered!

2.3 Number of light neutrino generations

In the Standard Model:

\[
\Gamma_Z = \Gamma_{\text{had}} + 3\cdot\Gamma_{\nu} + N_{\nu}\cdot\Gamma_{\nu} \quad \text{invisible: } \Gamma_{\text{inv}}
\]

\[
\Gamma_{\text{inv}} = 0.4990 \pm 0.0015 \text{ GeV}
\]

To determine the number of light neutrino generations:

\[
N_{\nu} = \frac{\Gamma_{\text{inv}}}{\Gamma_{\nu}} \cdot \frac{\Gamma_{\nu}^{SM}}{\Gamma_{\nu}}
\]

5.9431 ± 0.0163 = 1.991 ± 0.001 (small theo. uncertainties from \(m_{t,\nu}, M_H\))

\[
N_{\nu} = 2.9840 \pm 0.0082
\]

No room for new physics: \(Z \rightarrow \text{new}\)
4 Forward-backward asymmetry and fermion couplings to Z

Forward-backward asymmetry

\[\frac{d\sigma}{d\cos\theta} \sim (1 + \cos^2\theta) + \frac{8}{3} A_{FB} \cos\theta \]

with

\[A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} \]

\[\sigma_F(\theta) = \int_0^{\pi/2} \frac{d\sigma}{d\cos\theta} d\cos\theta \]

At the Z-pole \(\sqrt{s} = M_Z \)

→ Z contribution is dominant
→ interference vanishes

\[A_{FB} = 3 \cdot \frac{g_V^0g_A^0}{(g_V^0)^2 + (g_A^0)^2} \cdot \frac{g_V^\mu g_A^\mu}{(g_V^\mu)^2 + (g_A^\mu)^2} \]

For the reaction \(e^+ e^- \rightarrow Z \rightarrow \mu^+ \mu^- \)

\[e^+ e^- \rightarrow Z \rightarrow \mu^+ \mu^- \]
Forward-backward asymmetry

- Away from the resonance A_{FB} is large
 \rightarrow interference term dominates
 $$A_{FB} \sim g_A^e g_A^V \cdot \frac{s(s - M_Z^2)}{(s - M_Z^2)^2 + M_{Z^2}^2}$$
- At the Z pole: Interference = 0
 $$A_{FB} \sim g_A^e g_A^V$$
 \rightarrow very small because g_V small in SM

Fermion couplings

- Away from the resonance A_{FB} is large
 \rightarrow interference term dominates
 $$A_{FB} \sim g_A^e g_A^V \cdot \frac{s(s - M_Z^2)}{(s - M_Z^2)^2 + M_{Z^2}^2}$$
- At the Z pole: Interference = 0
 $$A_{FB} \sim g_A^e g_A^V$$
 \rightarrow very small because g_V small in SM

Asymmetries together with cross sections allow the determination of the fermion couplings g_A and g_V.

Confirms lepton universality
Higher order corrections seen

Asymmetries together with cross sections allow the determination of the fermion couplings g_A and g_V.

Confirms lepton universality
Higher order corrections seen
I. Precision tests of the W sector (LEP2 and Tevatron)

\[e^+ e^- \rightarrow WW \rightarrow ffff \]

Threshold behavior of the cross section (phase space) for \(ee\rightarrow WW\) production:

Phase space factor = \(f(M_W, \sqrt{s})\):
- Allows determination of \(M_W\)

\[\sigma_{WW}(\text{pb}) \]

\(\sqrt{s}\) (GeV)

\[\sigma_{WW}(\text{pb}) \]

\(\sqrt{s}\) (GeV)

W decays

\(W\) \[q^-, q_d, \bar{\nu}_d, \bar{\nu}_d \]

WW \[qq\nu \ 44\% \]
\[qqqq \ 45\% \]
\[l\nu\nu \ 11\% \]
W branching ratios

ALEPH
DELPHI
L3
OPAL

LEP \(W \rightarrow e\nu \) \(10.59 \pm 0.17 \)
ALEPH
DELPHI
L3
OPAL

LEP \(W \rightarrow \mu\nu \) \(10.55 \pm 0.16 \)
ALEPH
DELPHI
L3
OPAL

LEP \(W \rightarrow \tau\nu \) \(11.20 \pm 0.22 \)
ALEPH
DELPHI
L3
OPAL

LEP \(W \rightarrow l\nu \) \(10.74 \pm 0.09 \)

\(Br(W \rightarrow q\bar{q}) = (67.77 \pm 0.28)\% \)

Lepton universality tested to 2%

Invariant W mass reconstruction

ALEPH Preliminary \(q\bar{q}q\bar{q} \)

ALEPH Preliminary \(e\nu\nu \)

More difficult: pairing ambiguities

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Mass of the W Boson (M_W) [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEPH</td>
<td>80.412 \pm 0.042</td>
</tr>
<tr>
<td>DELPHI</td>
<td>80.404 \pm 0.074</td>
</tr>
<tr>
<td>L3</td>
<td>80.376 \pm 0.077</td>
</tr>
<tr>
<td>OPAL</td>
<td>80.459 \pm 0.065</td>
</tr>
<tr>
<td>LEP</td>
<td>80.379 \pm 0.058</td>
</tr>
</tbody>
</table>

p\bar{p}-colliders

\(80.454 \pm 0.059 \)

LEP2

\(80.412 \pm 0.042 \)

Average

\(80.426 \pm 0.034 \)

NuTeV

\(80.136 \pm 0.084 \)

LEP1/SLD

\(80.373 \pm 0.033 \)

LEP1/SLD/m_{t}

\(80.378 \pm 0.023 \)
Effect of triple gauge coupling

Data confirms the existence of the γ/ZWW triple gauge boson vertex

4. Electro-weak unification, as visible at HERA

\[
\frac{d\sigma_{NC}}{dQ^2} \sim \frac{1}{(Q^2)^2} + \frac{1}{Q^2(Q^2 + M_Z^2)} + \frac{1}{(Q^2 + M_Z^2)^2}
\]

\[
\gamma \quad \gamma/Z \quad Z
\]

\[
\frac{d\sigma_{CC}}{dQ^2} \sim \frac{1}{(Q^2 + M_W^2)^2}
\]

\[
\gamma
\]
4. Electro-weak unification, as visible at HERA

\[
\frac{d\sigma_{\text{NC}}}{dQ^2} \sim \frac{1}{(Q^2)^2} + \frac{1}{Q^2(Q^2 + M_Z^2)} + \frac{1}{(Q^2 + M_Z^2)^2}
\]

HERA

\[
\frac{d\sigma_{\text{CC}}}{dQ^2} \sim \frac{1}{(Q^2 + M_W^2)^2}
\]

5. Higher order corrections and the Higgs mass

Lowest order SM predictions

\[
\rho = \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = 1
\]

\[
\sin^2 \theta_W = 1 - \frac{m_W^2}{m_Z^2} = \frac{\pi \alpha}{\sqrt{2} \sin^2 \theta_W G_F}
\]

\[
\alpha(m_Z^2) = \frac{\alpha(0)}{1 - \Delta \alpha}
\]

Including radiative corrections

\[
\bar{\rho} = 1 + \Delta \rho
\]

\[
\sin^2 \theta_{\text{eff}} = (1 + \Delta \kappa) \sin^2 \theta_W
\]

\[
m_W^2 = \frac{\pi \alpha}{\sqrt{2} \sin^2 \theta_W G_F} (1 + \Delta r)
\]

\[
\Delta \rho, \Delta \kappa, \Delta r = f(m_H^2, \log(m_H), ...)
\]
Top mass prediction from radiative corrections

The measurement of the radiative corrections:

\[\sin^2 \theta_{\text{eff}} = \frac{1}{4} \left(1 - \frac{\mathcal{G}_f}{\mathcal{G}_A} \right) \]

\[\sin^2 \theta_{\text{eff}} = (1 + \Delta x) \sin^2 \theta_w \]

allows an indirect determination of the unknown parameters \(m_t \) and \(M_H \).

Direct measurement of \(m_t \):

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Mass (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF</td>
<td>176.1 ± 6.8</td>
</tr>
<tr>
<td>DØ</td>
<td>179.0 ± 5.1</td>
</tr>
<tr>
<td>Average</td>
<td>178.0 ± 4.3</td>
</tr>
</tbody>
</table>

Prediction of \(m_t \) by LEP before the discovery of the top at TEVATRON.

Good agreement between the indirect prediction of \(m_t \) and the value obtained in direct measurements confirm the radiative corrections of the SM.

Observation of the top quark at TEVATRON (1995)

\(p\bar{p} \rightarrow 2 \text{ TeV} \)

- \(q\bar{q} \) annihilation (85%)
- Gluon fusion (15%)

Top decay

Channel used for mass reconstruction:

\[m_t = m_H(b - \text{jet}, W \rightarrow \text{jet} + \text{jet}) \]
Higgs mass prediction from radiative corrections

Awaiting the discovery of the Higgs at the LHC

- $M_H > 114$ GeV (from direct searches)
- $M_H < 144$ GeV (from EW fits)