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1. Requisites
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a) Fundamental fermions

Leptons

Quarks

Left-handed 
doublets

right-handed 
singlets

b) Fundamental interaction

• Charged current interaction:                 
transitions inside LH doublets

• Neutral current interaction:                   
couples to LH and RH fermions

• Electromagnetic interaction couples 
equally to LH and RH fermions 

weak



 

2.  Local Gauge Invariance
Quantum Electrodynamics

QED Lagrangian for free spin ½ particle:
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Applying the Euler-Lagrange formalism leads to the Dirac equation.

Demanding invariance under local phase transformation of the free 
Langrangian (local gauge invariance):       
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Invariance under Local  Gauge Transformation

requires the substitution:

)(xeAii µµµ +∂→∂

Reminder
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If A transforms under local gauge transformation as  
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Then L remains 
invariant:
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To interpret the introduced  field Aµ  as photon field requires to 
complete the Langrangian by the corresponding field energy: 

The requirement of local gauge invariance has autom atically led 
to the interaction of the free electron with a fiel d. 

Reminder



 

Quantum Chromodynamics – SU(3) Theory

      

Invariance of the QCD Lagrangian under 

local SU(3) gauge transformation

with any unitary (3 x 3) matrix U(x).

U(x) can be given by a linear combination of 
� �8 Gell-Mann matrices   ...     [SU(3) group generators]

requires interaction fields – 8 gluons correspondin g to these matrices

Lagrangian is constructed with quark wave functions 
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Electroweak Theory – SU(2) × U(1) Theory

As in case of the (iso)spin, the transformations are defined by the 
SU(2) group - the group of all unitary (2 x 2) matrices U(x). The 
generators of the group are the three Pauli matrices τk = σk.
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Describe the particles of the LH doublet as two states of one particle.
In analogy to the strong isospin one can introduce a new quantum
number: weak isospin  T = ½. The two states are then given by T3 = ±½.
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Three gauge bosons W1, W2, W3 should correspond to the three  group generators.

This means
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as in the QED lagrangian

we expect three fermion currents in the weak lagrangian: 

fermion current        e.m. field

L
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Weak isospin Triplett 
of LH fermion currents

i. e. we expect the terms  gJi
µ Wi

µ with some coupling g.

What do we see in reality?
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Charge raising current:

LLeeJ νγνγγ µµµ =−=−
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Charge lowering current:

Charged current weak interaction

Neutral current weak interaction
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Electromagnetic interaction
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Weak isospin and weak currents

As in the case of the (iso)spin, one can use the 
raising and lowering operators defined by the Pauli 
matrices to express the state transitions.  
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Weak isospin Triplett 
of LH fermion currents

The charge current can then be written in the compact form:

J+ and J– describe state transitions along the T3 axis.

From the SU(2) structure of the isospin formalism
one expects that in addition to the currents J±  

there exists a 3rd neutral current J3 of the form:

and the corresponding fields are: W �

±
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3. Electro-weak unification
The new current J3  is not equal to the current JNC:             
JNC contains LH and RH fermion contributions

Treat both neutral currents, Jem and JNC, simultaneously:

As both currents contain RH contributions it should be 
possible to construct a linear combination which couples 
only to LH fermions:

            two linear combinations of Jem and JNC
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sin Choose θW such that RH fermions 
components in J3 vanish. 

• J3 completes the isospin triplet Ji

• JY  is called hypercharge current
It couples via hypercharge Y
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4. Current coupling to the gauge fields/bosons

In the electro-weak theory  the coupling 
between bosons and fermions is defined in 
analogy to the coupling of the photon to the 
fermions currents in QED. There are in 
total 4 boson fields:
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Corresponding to J± and J3 there are fields 
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convention

g, g′ are coupling 
constants.

Note: B corresponds to an additional local gauge transformation U(1)Y of L





 

5. Feyman rules
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Propagator
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Comparison of the q2→0 limit with the 4-femion ansatz
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6. Higgs boson and the parameters of the SM

The original EW lagrangian 

with

is invariant under local gauge transformations only with massless fields . 
But particles have masses. Ad-hoc mass terms for

   fermions

   bosons

destroy the gauge invariance under SU(2)L x U(1)Y.

To generate boson and fermion masses in an gauge invariant way the 
Standard Model uses the Higgs mechanism. 
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Higgs–Kibble Mechanism

Introduce a new doublet of complex
scalar fields (4 degrees of freedom)
with the ‘mexican hat’ potential:
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with µ, λ > 0

Spontanous symmetry breaking :
�System falls in to minimum of V at   0.≠

This results in:
�Three massless excitations along the valley    masses for W± and Z

�One massive exciation out of the valley    „physical“ Higgs boson

Higgs field has two components: φ = v + H.
1. omnipresent, constant background condensate with non-vanishing

vacuum expectation value  v = µ/√λ = 247 GeV (from GF)

2. Higgs boson H with unknown mass MH = • 2 = v 2µ √ √ λ

 

Interactions of the condensate field result in Lagrangian terms:
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boson mass terms              fermion mass terms
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For the boson masses one finds:   

Fermion masses are added via uknown Yukawa couplings  mf ~ gf v
specific for each fermion
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Omnipresent Higgs field

 

Higgs field – generation of masses



 

Excitation of the Higgs field

 

Higgs boson gets mass



 

Higgs boson couplings
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Fermions:  gf ~ mf / v    - coupling proportional to the fermion mass

W/Z bosons: gV ~ g2 v = MV
2 / v

 

F �µ F �  µ term contains
self couplings between
gauge bosons.

Cross section: �WW ~ Ecm

WLWL scattering probability becomes larger than unity for Ecm > 1.2 TeV.
Violation of unitarity if force remains weak at this scale.

To restore unitary it needs
a scalar boson “H ” with
gHWW ~ mW

gHff ~ mf

MH < 1TeV

Then �WW will remain 

constant for high energies 

Higgs and WW scattering



 

e (αQED) 

(GF and sinθW ) or (MW and MZ) or …

αs (strong coupling constant)

9 fermion masses, neutrinos are massless

4 quark mixing parameters (CKM matrix)

MH

+ 3 neutrino masses

+ 4 neutrino mixing parameters

18 parameters

Standard Model Parameters

      too many?

 

Shortcomings of the electro-weak unification

• Not one group but two: SU(2)L x U(1)Y

• Two couplings g and g' remain
• Mathematically, other unifications of weak and e.m. forces could be realised, 
  e.g. the lagrangian is  in fact invariant w.r.t. 2 global U(1) transformations :

The lagrangian could be invariant w.r.t. 2 independent local  U(1) trasformations.
In this case 2 massless photon fields would be observed.
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Full understanding is supposed to be obtained only in the
Grand Unification Theory (GUT) which should have one common group
for electro-weak and QCD fields.



 

Grand Unification
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