VI. Probing the weak interaction

- 1. Phenomenology of weak decays
- 2. Parity violation and neutrino helicity
- 3. V-A theory
- 4. Structure of neutral currents

The weak interaction was and is a topic with a lot of surprises:

Past: Flavor violation, P and CP violation.

Today: Weak decays used as probes for new physics

1. Phenomenology of weak decays

All particles (except photons and gluons) participate in the weak interaction. At small q² weak interaction is shadowed by strong and electro-magnetic effects.

• Observation of weak effects only possible if strong/electro-magnetic processes are forbidden by conservation laws:

Electromagnetic decay $\mu^- \rightarrow e^- \gamma$ forbidden by lepton number conservation

• In addition the observation of interference effects is possible (e.g. atomic parity violation: γ/Z interference).

2. Parity violation Reminder: Parity transformations (\mathbf{P}) = space inversion $P\psi(t,\vec{x}) = \psi'(t,\vec{x}) = \psi(t,-\vec{x})$ \Leftrightarrow mirroring at plane + rotation around axis perpendicular to plane \Rightarrow To test P symmetry it is sufficient to study the process in the "mirrored system": physics invariant under rotation $P: \quad \vec{r} \to -\vec{r}$ $t \to t$ $\vec{p} \to -\vec{p}$ $\vec{\ell} = \vec{r} \times \vec{p} \to \vec{\ell}$ Axial/pseudo vector $H = \frac{\vec{s} \cdot \vec{p}}{|\vec{p}|} \xrightarrow{P} - \frac{\vec{s} \cdot \vec{p}}{|\vec{p}|} \text{ (pseudo - scalar)}$ $P \to \frac{\vec{r} \to -\vec{r}}{|\vec{p}|} \xrightarrow{P} - \frac{\vec{r} \to -\vec{r}}{|\vec{p}|} \text{ (pseudo - scalar)}$

2.1 Historical θ/τ puzzle (1956)

P violation in pion decay: Heintze vs. Jensen

Until 1956 parity conservation as well as T and C symmetry was a "dogma":

→ very little experimental tests done

In 1956 Lee and Yang proposed parity violation in weak processes.

Historical names

Starting point: Observation of two particles θ* and τ* with exactly equal mass, charge and strangeness but with different parity:

$$\theta^{+} \to \pi^{+} \pi^{0} \quad W/ \quad P(\theta^{+}) = P(\pi)^{2} (-1)^{\ell} \to J^{P}(\theta^{+}) = 0^{+}, 1^{-}$$
$$\tau^{+} \to \pi^{+} \pi^{+} \pi^{-} \qquad P(\tau^{+}) = P(\pi)^{3} (-1)^{2\ell} \to J^{P}(\tau^{+}) = 0^{-}, 2^{-}$$

Lee + Yang: θ + and τ + same particle, but decay violates parity

⇒ particle is K+:

$$K^+(0^-) \to \pi^+ \pi^0$$
 P is violated $K^+(0^-) \to \pi^+ \pi^+ \pi^-$ P is conserved

To search for possible P violation, a number of experimental tests of parity conservation in weak decays has been proposed:

1957 Observation of P violation in nuclear β decays by Chien-Shiung Wu et al.

2.2 Observation of parity violation, C.S. Wu et al. 1957

Idea: Measurement of the angular distribution of the emitted e⁻ in the decay of polarized ⁶⁰Co nuclei

If P is conserved, the angular distribution must be symmetric in θ (symmetric to dashed line): transition rates for $\vec{J}\cdot\vec{p}_{e}$ and $\vec{-J}\cdot\vec{p}_{e}$ are identical.

Experiment: Invert Co polarization and compare the rates at the same position θ .

2.3 Determination of the neutrino helicity

Goldhaber et al., 1958

Indirect measurement of the neutrino helicity in a K capture reaction:

Idea of the experiment:

1. Electron capture and v emission

Sm undergoes is small recoil (p_{recoil} =950 KeV). Because of angular momentum conservation Spin J=1 of Sm* is opposite to neutrino spin. Important: neutrino helicity is transferred to the Sm nucleous.

Experiment

Sm* emitted photons pass through the magnetized iron. Resonant scattering allows the photon detection by a NaJ scintillation counter. The counting rate difference for the two possible magnetizations measure the polarization of the photons and thus the helicity of the neutrinos.

Results:

$$P_{\gamma} = -0.66 \pm 0.14$$

→ photons from Sm* are left-handed. The measured photon polarization is compatible with a neutrino helicity of H=–1/2.

From a calculation with 100% photon polarization one expects a measurable value P_{γ} ~0.75. Reason is the finite angular acceptance.

 \rightarrow Also not exactly forward-going γ 's can lead to resonant scattering.

Summary: Lepton polarization in β decays

 e^{-} e^{+} v v v $H = \frac{1}{2} \cdot v/c + v/c -1 +1$

3. "V-A Theory" for charged current weak interactions

What is the Lorentz structure of the weak currents?

3.1 Nuclear β decay – Historical approach

Fermi's original ansatz for $n \rightarrow p e^- \overline{\nu}_e$

4-fermion "point" interaction of fermion vector currents:

$$M = \frac{G_F}{\sqrt{2}} \cdot J_{N,\mu} \cdot J_e^{\mu^+} = \frac{G_F}{\sqrt{2}} \cdot \left(\overline{u}_p \gamma_\mu u_n \right) \cdot \left(\overline{u}_e \gamma_\mu v_\nu \right)$$

Fermi coupling constant

Problem: ansatz cannot explain parity violation

More general ansatz by Gamov & Teller:

(Lorentz invariant current current form)

$$M = \sum_{i} C_{i} (\overline{u}_{p} \Gamma_{i} u_{n}) \cdot (\overline{u}_{e} \Gamma_{i} v_{v})$$

$$i = S, P, V, A, T$$

$$P : \overline{u}_{p} \gamma^{5} u_{n}$$

$$P : \overline{u}_{p} \gamma^{5} u_{n}$$

Assume most general Lorentz structure

$$\overline{u}_{p}\Gamma_{i}u_{n}$$

S:
$$\overline{u}_p u_n$$

P:
$$\overline{u}_p \gamma^5 u_n$$

$$V: \overline{u}_p \gamma^{\mu} u_n$$

A:
$$\overline{u}_p \gamma^5 \gamma^\mu u_n$$

T:
$$\overline{u}_p \sigma^{\mu\nu} u_n$$

Nuclear transitions in non-relativistic limit:

S:
$$\overline{u}_p u_n \rightarrow u_p^+ u_n$$

☐ No spin change

$$P: \ \overline{u}_p \gamma^5 u_n \qquad \to \quad 0$$

P:
$$\overline{u}_{p} \gamma^{5} u_{n} \rightarrow 0$$

V: $\overline{u}_{p} \gamma^{\mu} u_{n} \rightarrow u_{p}^{+} u_{n}$ if μ =0, else =0

No spin change

A:
$$\overline{u}_{p}\gamma^{5}\gamma^{\mu}u_{n} \rightarrow u_{p}u_{n}$$
 If μ =0, else =0 No spin change

T: $\overline{u}_{p}\gamma^{5}\gamma^{\mu}u_{n} \rightarrow u_{p}^{+}\sigma^{i}u_{n}$ If μ =i=1,...,3, else =0 spin change

T: $\overline{u}_{p}\sigma^{\mu\nu}u_{n} \rightarrow u_{p}^{+}\sigma^{i}u_{n}$ If μ =j v=k j,k=1,...,3, and spin change i,j,k cyclic, else =0

$$\mathsf{T}: \quad \overline{U}_p \sigma^{\mu\nu} U_n \quad \to \quad U_p^+ \sigma^i U_n$$

Fermi-Transitions: e.g. $^{14}O \rightarrow ^{14*}N + e^+ + \nu (0^+ \rightarrow 0^+)$

Gamov-Teller -

Transitions: e.g. ${}^{6}He \rightarrow {}^{6}Li + e^{-} + \overline{\nu} (0^{+} \rightarrow 1^{+})$

☐ A or 7

- + Parity violation
- + neutrino helicity
- + muon decay properties together with universality

 \Box

V – A Theory

$$M = \frac{G_F}{\sqrt{2}} \left(\overline{u}_p \gamma^{\mu} (c_V - c_A \gamma^5) u_n \right) \cdot \left(\overline{u}_e \gamma^{\mu} (1 - \gamma^5) v_v \right)$$

 c_V , c_A vector and axial-vector couplings of nucleons:

 $c_A/c_V = 1.2695 \pm 0.0029$ PDG 2004