VI. Probing the weak interaction

1. Phenomenology of weak decays
2. Parity violation and neutrino helicity
3. V-A theory
4. Structure of neutral currents

The weak interaction was and is a topic with a lot of surprises:
Past: Flavor violation, P and CP violation. Today: Weak decays used as probes for new physics

1. Phenomenology of weak decays

All particles (except photons and gluons) participate in the weak interaction. At small q^{2} weak interaction is shadowed by strong and electro-magnetic effects.

- Observation of weak effects only possible if strong/electro-magnetic processes are forbidden by conservation laws:

Electromagnetic decay $\mu^{-} \rightarrow e^{-} \gamma$ forbidden by lepton number conservation

- In addition the observation of interference effects is possible (e.g. atomic parity violation: γ / Z interference).

1.1 Weak hadronic decays

a) Dominant decay modes (quark level)

Historically
$M^{2} \sim \cos ^{2} \theta_{c} \sim 0.95$
\uparrow
Cabibbo angle: $\theta_{\mathrm{c}} \approx 0.22$
Today: CKM Matrix
If q^{2} is large enough the W can also decay to (u, d) or ($\bar{u} \mathrm{~d}$) quark pairs

Using the the "quark level" decay one can describe weak hadron decays (treating the quarks which are not weakly interacting as spectators)

b) suppressed decay modes

$$
\begin{array}{ll}
d \rightarrow c \ell^{-} \bar{v}_{\ell} & u \rightarrow s \ell^{+} v_{\ell} \\
s \rightarrow u \ell^{-} \bar{v}_{\ell} & c \rightarrow d \ell^{+} v_{\ell}
\end{array}
$$

$M^{2} \sim \sin ^{2} \theta_{c} \sim 0.05$

Weak interaction does not conserve strong isospin, strangeness or other quark flavor numbers. Lepton number is conserved.

1.2 Neutrino interactions

β decay

Neutrino-nucleon scattering

$$
\begin{aligned}
& \text { Very small cross section for } v N \\
& \text { scattering: } \sigma(v N) \approx E_{v}[G e V] \times 10^{-38} \mathrm{~cm}^{2}
\end{aligned}
$$

- intense neutrino beams
- large instrumented targets

$$
=E_{v}[\mathrm{GeV}] \times 10 \mathrm{fb}
$$

(see also DIS neutrino nucleon scattering)

2. Parity violation

Reminder: \quad Parity transformations $(\mathbf{P})=$ space inversion

$$
P \psi(t, \vec{x})=\psi^{\prime}(t, \vec{x})=\psi(t,-\vec{x})
$$

\Leftrightarrow mirroring at plane + rotation around axis perpendicular to plane
\Rightarrow To test P symmetry it is sufficient to study the process in the "mirrored system": physics invariant under rotation
P transformation properties:

$$
\begin{aligned}
P: \quad & \vec{r} \\
& \rightarrow-\vec{r} \\
& t \rightarrow t \\
& \vec{p} \\
& \rightarrow-\vec{p} \\
& \vec{\ell}
\end{aligned}=\vec{r} \times \vec{p} \rightarrow \vec{\ell} \quad \text { Axial/pseudo vector }
$$

e.g.: Helicity operator

$$
H=\frac{\vec{s} \cdot \vec{p}}{|\vec{p}|} \xrightarrow{P}-\frac{\vec{s} \cdot \vec{p}}{|\vec{p}|} \quad \text { (pseudo - scalar) }
$$

2.1 Historical θ / τ puzzle (1956)
 P violation in pion decay: Heintze vs. Jensen

Until 1956 parity conservation as well as T and C symmetry was a "dogma":
\rightarrow very little experimental tests done
In 1956 Lee and Yang proposed parity violation in weak processes.
Historical names
Starting point: Observation of two particles θ^{+}and τ^{+}with exactly equal mass, charge and strangeness but with different parity:

$$
\begin{array}{lll}
\theta^{+} \rightarrow \pi^{+} \pi^{0} & \text { w/ } & P\left(\theta^{+}\right)=P(\pi)^{2}(-1)^{\ell} \rightarrow J^{P}\left(\theta^{+}\right)=0^{+}, 1^{-} \\
\tau^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-} & P\left(\tau^{+}\right)=P(\pi)^{3}(-1)^{2 \ell} \rightarrow J^{P}\left(\tau^{+}\right)=0^{-}, 2^{-}
\end{array}
$$

Lee + Yang: θ^{+}and τ^{+}same particle, but decay violates parity
\Rightarrow particle is K^{+}:

$$
\begin{array}{ll}
K^{+}\left(0^{-}\right) \rightarrow \pi^{+} \pi^{0} & \mathrm{P} \text { is violated } \\
K^{+}\left(0^{-}\right) \rightarrow \pi^{+} \pi^{+} \pi^{-} & \mathrm{P} \text { is conserved }
\end{array}
$$

To search for possible P violation, a number of experimental tests of parity conservation in weak decays has been proposed:
1957 Observation of P violation in nuclear β decays by Chien-Shiung Wu et al.

2.2 Observation of parity violation, C.S. Wu et al. 1957

Idea: Measurement of the angular distribution of the emitted e^{-}in the decay of polarized ${ }^{60} \mathrm{Co}$ nuclei

Gamov-Teller Transition $\Delta \mathrm{J}=1$
(see section 3.1)

Observable: $\overrightarrow{\mathrm{j}} \cdot \overrightarrow{\mathrm{p}}_{\mathrm{e}} \longrightarrow \quad \longrightarrow \quad-\overrightarrow{\mathrm{J}} \cdot \overrightarrow{\mathrm{p}}_{\mathrm{e}}$

If P is conserved, the angular distribution must be symmetric in θ (symmetric to dashed line): transition rates for $\vec{j} \cdot \vec{p}_{e}$ and $-\overrightarrow{\mathrm{j}} \cdot \overrightarrow{\mathrm{p}}_{\mathrm{e}}$ are identical.

Experiment: Invert Co polarization and compare the rates at the same position θ.

2.3 Determination of the neutrino helicity

Indirect measurement of the neutrino helicity in a K capture reaction:

$$
\begin{aligned}
& { }^{152} \mathrm{Eu}+\mathrm{e}^{-} \rightarrow{ }^{152} \mathrm{Sm}^{*}+v_{\mathrm{e}} \\
& E_{v} \approx 950 \mathrm{KeV} \\
&
\end{aligned}
$$

Idea of the experiment:

1. Electron capture and vemission

Sm undergoes is small recoil ($p_{\text {recoil }}=950 \mathrm{KeV}$). Because of angular momentum conservation Spin $\mathrm{J}=1$ of Sm^{*} is opposite to neutrino spin. Important: neutrino helicity is transferred to the Sm nucleous.
2. $\quad \gamma$ emission: ${ }^{152} \mathrm{Sm}^{*}\left(J^{P}=1^{-}\right) \rightarrow{ }^{152} \mathrm{Sm}\left(J^{P}=0^{+}\right)+\gamma$

Photons along the Sm recoil direction carry the polarization of the Sm^{*} nucleus

- How to select photons along the recoil direction ? $\Rightarrow 3$
- How to determine the polarization of these photons ? $\Rightarrow 4$

3. Resonant photon scattering: $\gamma+{ }^{152} \mathrm{Sm} \rightarrow{ }^{152} \mathrm{Sm}^{*} \rightarrow{ }^{152} \mathrm{Sm}+\gamma$

Resonant scattering:

To compensate the nuclear recoil, the photon energy must be slightly larger than 960 keV .

This is the case for photons which have been emitted in the direction of the $\mathrm{Eu} \rightarrow$ Sm recoil (Doppler-effect).
\downarrow
Resonant scattering only possible for "forward" emitted photons, which carry the polarization of the Sm^{*} and thus the polarization of the neutrinos.

Fig. 7.8. Schematic diagram of the apparatus used by Goldhaber et al., in which γ-rays from the decay of ${ }^{152} \mathrm{Sm}^{*}$. produced following K -capture in ${ }^{152} \mathrm{Eu}$, undergo resonance cattering in $\mathrm{Sm}_{2} \mathrm{O}_{3}$ and are recorded by a sodium iodide scintillator and photomultiplier. The transmission of photons through the iron surrounding the source depends on their
helicity and the direction of the magnetic field \mathbf{B}. helicity and the direction of the magnetic field B.
4. Determination of the photon polarization

Exploit that the transmission index through magnetized iron is polarization dependent: Compton scattering in magnetized iron

Photons w/ polarization anti-parallel to magnetization undergo less absorption

Experiment

Sm^{*} emitted photons pass through the magnetized iron. Resonant scattering allows the photon detection by a NaJ scintillation counter. The counting rate difference for the two possible magnetizations measure the polarization of the photons and thus the helicity of the neutrinos.

Results: $\quad P_{\gamma}=-0.66 \pm 0.14$
\rightarrow photons from Sm^{*} are left-handed. The measured photon polarization is compatible with a neutrino helicity of $\mathrm{H}=-1 / 2$.
From a calculation with 100% photon polarization one expects a measurable value $P_{\gamma} \sim 0.75$. Reason is the finite angular acceptance. \rightarrow Also not exactly forward-going γ 's can lead to resonant scattering.

Summary: Lepton polarization in β decays | e^{-} | e^{+} | v | \bar{v} |
| :---: | :---: | :---: | :---: |
| $\mathrm{H}=\frac{1}{2} \cdot-\mathrm{v} / \mathrm{c}$ | $+\mathrm{v} / \mathrm{c}$ | -1 | +1 |

3. "V-A Theory" for charged current weak interactions

What is the Lorentz structure of the weak currents ?

3.1 Nuclear β decay - Historical approach

Fermi's original ansatz for $n \rightarrow p e^{-} \bar{v}_{e}$

Problem: ansatz cannot explain parity violation

More general ansatz by Gamov \& Teller:
(Lorentz invariant current current form)

$$
\begin{gathered}
M=\sum_{i} C_{i}\left(\bar{u}_{p} \Gamma_{i} u_{n}\right) \cdot\left(\bar{u}_{e} \Gamma_{i} v_{v}\right) \\
i=\underbrace{\mathrm{S}, \mathrm{P}, \mathrm{~V}, \mathrm{~A}, \mathrm{~T}}_{\begin{array}{c}
\text { Assume most general } \\
\text { Lorentz structure }
\end{array}}
\end{gathered}
$$

$\bar{u}_{p} \Gamma_{i} u_{n}$
$\mathrm{S}: \bar{u}_{p} u_{n}$
$\mathrm{P}: \bar{u}_{p} \gamma^{5} u_{n}$
$\mathrm{V}: \bar{u}_{p} \gamma^{\mu} u_{n}$
A: $\bar{u}_{p} \gamma^{5} \gamma^{\mu} u_{n}$
$\mathrm{T}: \bar{u}_{p} \sigma^{\mu v} u_{n}$

Nuclear transitions in non-relativistic limit:
S: $\bar{u}_{p} u_{n}$
$\rightarrow u_{p}^{+} u_{n}$No spin change
$\mathrm{P}: \bar{u}_{p} \gamma^{5} u_{n}$
$\rightarrow 0$
$\mathrm{V}: \bar{u}_{p} \gamma^{\mu} u_{n} \rightarrow u_{p}^{+} u_{n}$
if $\mu=0$, else $=0$ \square No spin change
$\mathrm{A}: \bar{u}_{p} \gamma^{5} \gamma^{\mu} u_{n} \rightarrow u_{p}^{+} \sigma^{i} u_{n}$
If $\mu=\mathrm{i}=1, . ., 3$, else $=0$ \square spin change
$\mathrm{T}: \bar{u}_{p} \sigma^{\mu v} u_{n} \rightarrow u_{p}^{+} \sigma^{i} u_{n}$
If $\mu=\mathrm{j} v=\mathrm{k} j, k=1, . .3$, and
$\mathrm{i}, \mathrm{j}, \mathrm{k}$ cyclic, else $=0$ spin change

$\mathrm{C}_{\mathrm{V}}, \mathrm{c}_{\mathrm{A}}$ vector and axial-vector couplings of nucleons:

$$
c_{A} / c_{V}=1.2695 \pm 0.0029 \quad \text { PDG } 2004
$$

