### 2.3 Multi-jet events and gluon self coupling

Non-abelian gauge theory (SU(3))


## Multiple jets and jet algorithm

## Durham Jet Algorithm

Hadronic particles are i and j grouped to a pseudo particle $k$ as long as the invariant mass is smaller than the jet resolution parameter:

$$
\frac{m_{i j}^{2}}{s}<y_{c u t}
$$

${ }_{\mathrm{ij}}$ is the invariant mass of i and j .
Remaining pseudo particles are jets.



Note: small hadronisation corrections
down to y ~ 0.001


 $\left({ }^{\ddagger} \underset{-}{d}-{ }^{\varepsilon} \underset{\sim}{d}\right) \cdot\left({ }^{\tau} \underset{-}{d}-{ }^{\mathrm{T}} \underset{-}{d}\right) x^{d N} \theta$ SOD әбие лә！рәу－ииешичәер $\left({ }^{\ddagger} \underline{d} \times{ }^{\varepsilon} \underset{\sim}{d}\right) \cdot\left({ }^{\tau} \underset{\sim}{d} \times{ }^{I} \underset{\sim}{d}\right) \infty^{Z g} \chi_{\text {SOO }}$ әןбие seмıәz－иозsıбиә ：suounqquมs！̣ גеןn反ue 反u！̣！̣｜dxə＇peəłs








| z／t | 8／t | $\varepsilon$ | （ع）$\cap \mathrm{S}$ |
| :---: | :---: | :---: | :---: |
| z／t | $N \mathrm{C} /\left(\mathrm{T}-{ }_{2} \mathrm{~N}\right)$ | N | （N）$\cap \mathrm{S}$ |
| \＆ | I | 0 | ${ }^{\mathrm{E}}(\mathrm{t}) \cap$ |
| I | I | 0 | （ t ）$\cap$ |
| ${ }^{4} L_{L}$ | ${ }^{4} O$ | ${ }^{\circ} \mathrm{N}$ | dnoup |




：Sıołvef ıоןоつ

słUə＾ə łəโฺ－


Confirms QCD prediction (SU(3)) and gluon self-coupling:
$T_{F} / C_{F}=0.375$ and $N_{C} / C_{F}=2.25$

### 2.4 Strong coupling constant $\alpha_{\text {s }}$

QED: Running coupling constant


QED vacuum works
like dielectric

e+

$\square$ $\bigcirc$

QCD propagator corrections:


Running strong coupling $\alpha_{s}\left(Q^{2}\right)$

$$
\alpha_{s}\left(Q^{2}\right)=\frac{\alpha_{s}\left(\mu^{2}\right)}{1+\alpha_{s}\left(\mu^{2}\right) \underbrace{\frac{1}{12 \pi} 33-2 \mathrm{n}}_{\beta_{0}=\frac{1}{12 \pi}\left(33-2 \mathrm{n}_{f}\right)})} \log \frac{Q^{2}}{\mu^{2}}
$$

$$
\alpha_{s}\left(Q^{2}\right)=\frac{\alpha_{s}\left(\mu^{2}\right)}{O^{2}} \quad \text { "+" is possible only in non-abelian theories! }
$$

$$
\text { Here " }+ \text { " remains for } n_{f}<17
$$

QCD vacuum works like "paramagnetic"

Introduce scale $\Lambda_{Q C D}$ at which perturbative solutions diverge:

$$
\begin{aligned}
& \alpha_{s}\left(Q^{2}\right)=\frac{\alpha_{s}\left(\mu^{2}\right)}{1+\alpha_{s}\left(\mu^{2}\right) \beta_{0} \log \frac{Q^{2}}{\mu^{2}}} \quad \mu^{2}=\Lambda_{Q C D}^{2} \\
& \qquad \frac{1}{\alpha_{s}\left(Q^{2}\right)}=\underbrace{\frac{1}{\alpha_{s}\left(\Lambda_{Q C D}^{2}\right)}}_{=0}+\beta_{0} \ln \left(Q^{2} / \Lambda_{Q C D}^{2}\right) \quad \begin{array}{l}
\Lambda_{Q C D} \approx 200 \mathrm{MeV} \\
\text { (parameter, must be } \\
\text { determined experimentally) }
\end{array} \\
& \Rightarrow \alpha_{s}\left(Q^{2}\right)=\frac{1}{\beta_{0} \log \left(Q^{2} / \Lambda_{Q C D}^{2}\right)}
\end{aligned}
$$

$\rightarrow$ Confinement for small $\mathbf{Q}^{2}$
$\rightarrow$ Asymptotic freedom for large $\mathbf{Q}^{2}$
For large $\mathrm{Q}^{2}$ quarks can be treated as free particles: $\rightarrow$ Quark Parton Model Gross\&Wilczek (1973), Politzer (1974)


"for the discovery of asymptotic freedom in the theory of the strong interaction"

### 2.5 Measurement of strong coupling $\alpha_{\text {s }}$

$\Rightarrow \alpha_{s}$ measurements are done at given scale $Q^{2}: \alpha_{s}\left(Q^{2}\right)$
a) $\alpha_{s}$ from total hadronic cross section

$$
\begin{aligned}
& \sigma_{\text {had }}(s)=\sigma_{\text {had }}^{Q E D}(s)\left[1+\frac{\alpha_{s}(s)}{\pi}+1.411 \cdot \frac{\alpha_{s}(s)^{2}}{\pi^{2}}+\ldots\right] \\
& R_{\text {had }}=\frac{\sigma(e e \rightarrow \text { hadrons })}{\sigma(e e \rightarrow \mu \mu)}=3 \sum Q_{q}^{2}\left\{1+\frac{\alpha_{s}}{\pi}+1.411 \frac{\alpha_{s}^{2}}{\pi^{2}}+\ldots\right\}
\end{aligned}
$$

Not very precise. Got first indication on running $\alpha_{s}(\mathrm{~s})$
b) $\alpha_{s}$ from hadronic event shape variables

3-jet rate: $\quad R_{3} \equiv \frac{\sigma_{3-\text { jet }}}{\sigma_{\text {had }}} \quad$ depends on $\alpha_{\text {s }}$
3 -jet rate is measured as function of a jet resolution parameter $y_{\text {cut }}$

QCD calculation provides a theoretical prediction for $R_{3}^{\text {theo }}\left(\alpha_{s}, y_{\text {cut }}\right)$
$\rightarrow$ fit $\mathrm{R}_{3}^{\text {theo }}\left(\alpha_{\mathrm{s}}, \mathrm{y}_{\mathrm{cut}}\right)$ to the data to determine $\alpha_{\mathrm{s}}$

Similarly other event shape variables (sphericity, thrust, ...) can be used to obtain a prediction for $\alpha_{s}$

$$
\Rightarrow \alpha_{s}(s)
$$


$T=\max \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}_{T}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}$
thrust axis maximizes longitudinal momentum

- For 2 back-to-back jets: $T=1$
- For spherical events: $T=1 / 2$


c) $\alpha_{s}$ from hadronic $\tau$ decays

$$
R_{h a d}^{\tau}=\frac{\Gamma\left(\tau \rightarrow v_{\tau}+\text { Hadrons }\right)}{\Gamma\left(\tau \rightarrow v_{\tau}+e \bar{v}_{e}\right)} \sim f\left(\alpha_{s}\right)
$$


at $\tau$ mass

$$
R_{\text {had }}^{\tau}=R_{\text {had }}^{\tau, 0}\left(1+\frac{\alpha_{s}\left(m_{\tau}^{2}\right)}{\pi}+\ldots\right)
$$

d) $\alpha_{s}$ from DIS (deep inelastic scattering)
will be discussed later

Running of $\alpha_{s}$ and asymptotic freedom

$$
\alpha_{s}\left(Q^{2}\right)=\frac{1}{\beta_{0} \log \left(Q^{2} / \Lambda_{Q C D}^{2}\right)}
$$


3. Study of QCD in deep inelastic scattering (DIS)


### 3.1 Elastic electron-proton scattering



General form of differential cross section

$-q^{2}=4 E E^{\prime} \sin ^{4} \frac{\theta}{2}$

Pointlike target w/ spin and mass M

$$
(\ldots \ldots)_{e \mu \rightarrow e \mu}^{\text {elastic }}=\left(\cos ^{2} \frac{\theta}{2}+\frac{Q^{2}}{2 \mathrm{M}^{2}} \sin ^{2} \frac{\theta}{2}\right)
$$

Extended proton w/ spin

$$
(\ldots \ldots .)_{\text {ep } \rightarrow \text { eps }}^{\text {elic }}=\left(\frac{G_{E}^{2}+\tau G_{M}^{2}}{1+\tau} \cos ^{2} \frac{\theta}{2}+2 \tau G_{M}^{2} \sin ^{2} \frac{\theta}{2}\right) \quad \text { with } \tau=\frac{Q^{2}}{4 \mathrm{M}^{2}}
$$

### 3.2 DIS in the quark parton model (QPM)



- Elastic scattering: $W=M$
$\Rightarrow$ only one free variable

$$
\frac{Q^{2}}{2 \mathrm{M} v}=1
$$

- Inelastic scattering: $W \neq M$
$\Rightarrow$ scattering described by 2 independent variables

$$
(E, v),\left(Q^{2}, x\right),(x, y), \ldots
$$

$x=$ fractional momentum of struck quark
$y=P q / P k=$ fractional energy transfer in proton rest frame
$v=E-E^{\prime}=$ energy transfer in lab

$$
\left\{\begin{array}{cc}
Q^{2}=s x y & s=\text { CMS energy } \\
x=\frac{Q^{2}}{2 \mathrm{M} v} & (\text { Bjorken } \mathrm{x})
\end{array}\right.
$$

## Cross section in quark parton model (QPM)

Elastic scattering on single quark


$$
\left\{\left.\ldots \ldots\right|_{e \mu \rightarrow e \mu} ^{\text {elastic }}=\left(\cos ^{2} \frac{\theta}{2}+\frac{Q^{2}}{2 \mathrm{M}^{2}} \sin ^{2} \frac{\theta}{2}\right)\right.
$$

$$
\frac{d \sigma}{d Q^{2}}=\left(\frac{4 \pi \alpha^{2}}{Q^{4}}\right) \frac{E^{\prime}}{E} \cdot e_{i}^{2}\left(\cos ^{2} \frac{\theta}{2}+\frac{Q^{2}}{2 \mathrm{x}^{2} M^{2}} \sin ^{2} \frac{\theta}{2}\right)
$$



Parton density $\mathrm{q}_{\mathrm{i}}(\mathrm{x}) \mathrm{dx}$ : Probability to find parton $i$ in momentum interval $[x, x+d x]$

$$
\frac{d^{2} \sigma}{d Q^{2} d x}=\left(\frac{4 \pi \alpha^{2}}{Q^{4}}\right) \frac{E^{\prime}}{E} \cdot \sum_{i} q_{i}(x)\left(\cos ^{2} \frac{\theta}{2}+\frac{Q^{2}}{2 x^{2} M^{2}} \sin ^{2} \frac{\theta}{2}\right)
$$

Using structure functions

$$
\begin{aligned}
& F_{2}(x)=x \sum_{i} e_{i}^{2} q_{i}(x) \\
& F_{1}(x)=\frac{1}{2} \sum_{i} e_{i}^{2} q_{i}(x)
\end{aligned}
$$

$$
\frac{d^{2} \sigma}{d Q^{2} d x}=\left(\frac{4 \pi \alpha^{2}}{Q^{4}}\right) \frac{E^{\prime}}{E} \cdot\left(\frac{F_{2}(x)}{x} \cos ^{2} \frac{\theta}{2}+2 F_{1}(x) \frac{Q^{2}}{2 x^{2} M^{2}} \sin ^{2} \frac{\theta}{2}\right)
$$



$$
\frac{d^{2} \sigma}{d Q^{2} d x}=\left(\frac{4 \pi \alpha^{2}}{Q^{4} x}\right) \cdot\left((1-y) F_{2}(x)+x y^{2} F_{1}(x)\right)
$$

## Predictions of Quark - Parton model

- Free partons: $F_{2}=F_{2}(x) \Leftrightarrow$ "scaling"
- Spin $1 / 2$ partons: $2 x F_{1}(x)=F_{2}(x)$ (Callan-Gross relation)


## SLAC/MIT Experiment (1969)




Jerome I. Friedman $\quad$ Henry W. Kendall $\quad$ Richard E. Taylor
"for their pioneering investigations concerning deep inelastic scattering of electrons on protons and bound neutrons, which have been of essential importance for the development of the quark model in particle physics"

### 3.3 Structure functions - Nucleon structure

In infinite momentum frame,
$x$ - fractional momentum of struck quark

$$
p=x P
$$

Proton model

$$
F_{2}(x)=x \sum_{i} e_{i}^{2} q_{i}(x)
$$

$\qquad$



## Three bound valence

 quarks + some slow


## Sea and valence quarks in the proton



Quark composition of the proton

$$
\begin{aligned}
& u_{v}+u_{v}+d_{v}+\underbrace{\left(u_{s}+\bar{u}_{s}\right)+\left(d_{s}+\bar{d}_{s}\right)+\left(s_{s}+\bar{s}_{s}\right)}_{\text {Heavy sea quarks are strongly suppressed }} \\
& \frac{F_{2}^{e p}(x)}{x}=\sum_{i} e_{i}^{2} \cdot q_{i}(x) \\
& \quad=\frac{4}{9}\left(u^{p}(x)+\bar{u}^{p}(x)\right)+\frac{1}{9}\left(d^{p}(x)+\bar{d}^{p}(x)\right)+\frac{1}{9}\left(s^{p}(x)+\bar{s}^{p}(x)\right)
\end{aligned}
$$



## Sum of quark momenta

Scattering at an iso-scalar target N: \#p = \#n (e.g. Deuteron, C, Ca)
$F_{2}^{e N}=\frac{1}{2}\left[F_{2}^{e p}+F_{2}^{e n}\right]=\frac{5}{18} x \cdot[u+\bar{u}+d+\bar{d}]+\frac{1}{9} x \cdot[s+\bar{s}]$
$\underbrace{\approx \frac{5}{18} x \cdot[u+\bar{u}+d+\bar{d}]}=\frac{5}{18}$ [Sum of all quark momenta $]$
Small s quark distribution neglected

Naively one expects: $\quad \frac{18}{5} \cdot \int_{0}^{1} F_{2}^{e N}(x) d x \approx 1$

Experimental observation: $\quad \frac{18}{5} \cdot \int_{0}^{1} F_{2}^{e N}(x) d x \approx 0.5$

- Probed quarks and anti-quarks carry only $50 \%$ of nucleon momentum
- Remaining momentum is carried by gluons (see later)


## Valence Quark Distribution

After subtracting

$$
\frac{1}{x}\left[F_{2}^{e p}-F_{2}^{e n}\right]=\frac{1}{3} \cdot\left[u_{v}(x)-d_{v}(x)\right]
$$

Shape of valence quark distribution. It peaks really at $1 / 3$


### 3.4 Neutrino nucleon scattering

$$
v_{\mu} N \rightarrow \mu^{ \pm} X
$$

- More information on quark distribution
- Separation between quarks / anti-quarks


QPM: $\quad x=\frac{Q^{2}}{2 \mathrm{M} v} \quad y=\frac{v}{E} \quad v=E-E^{\prime}$

$$
\begin{aligned}
& \left.\frac{d \sigma\left(v_{\mu} N \rightarrow \mu^{-} X\right)}{d y}=\sum_{i} \right\rvert\, \xrightarrow[u]{\nu_{\mu}} \rightarrow \\
& \frac{d \sigma\left(\bar{v}_{\mu} N \rightarrow \mu^{+} X\right)}{d y}= \\
& \sum_{i} \mid
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow F_{i}^{\bar{v} p}(x) \text { and } F_{i}^{\bar{v} n}(x)
\end{aligned}
$$

## Structure functions for neutrino scattering

## Double differential cross section: Scattering at iso-scalar target

$$
\begin{gathered}
\frac{d^{2} \sigma(v N, \bar{v} N)}{d x d y}=2 M E(\frac{G_{F}^{2}}{2 \pi}[(1-y) F_{2}^{v N}(x)+\frac{y^{2}}{2} 2 x F_{1}^{v N}(x) \pm \underbrace{y\left(1-\frac{y}{2}\right) x F_{3}^{v N}(x)}_{\substack{\text { to account for } \\
\text { parity violation }}}] \\
\frac{4 \pi \alpha^{2}}{Q^{4}} \frac{G_{F}^{2}}{2 \pi}
\end{gathered}
$$

## Structure functions in QPM

$$
\begin{aligned}
& F_{1}^{v N}=\frac{1}{2 \mathrm{x}} F_{2}^{v N} \\
& F_{2}^{v p}=2 \mathrm{x}[d+\bar{u}] \\
& F_{2}^{v n}=2 \mathrm{x}\left[d^{n}+\bar{u}^{n}\right] \\
& \quad x F_{3}^{v p}=2 \mathrm{x}[d-\bar{u}] \\
& =2 \mathrm{x}[u+\bar{d}] \quad=2 \mathrm{x}[u-\bar{d}]
\end{aligned}
$$

$\begin{aligned} & \text { Iso-scalar } \\ & \text { target }\end{aligned} F_{2}^{v N}=x[u+\bar{u}+d+\bar{d}] \quad x F_{3}^{v N}=x[(u+d)-(\bar{u}+\bar{d})]$

$$
F_{2}^{v N}=x[Q(x)+\bar{Q}(x)] \quad x F_{3}^{v N}=x[Q(x)-\bar{Q}(x)]
$$

Measures sum of quarks and anti-quarks

Measures valence quarks

$$
\text { Measurement: } \quad F_{2}^{v N}+x F_{3}^{v N}=2 x Q(x) \quad \Longrightarrow \text { Sea and valence quarks }
$$

$$
F_{2}^{v N}-x F_{3}^{v N}=2 \mathrm{x} \bar{Q}(x) \Longrightarrow \text { Sea quarks }
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
F_{i}^{v n}=F_{i}^{\bar{v}} p \\
F_{i}^{v p}=F_{i}^{\bar{v} n}
\end{array}\right\} \quad \text { Equal because of Charge symmetry } \\
& F_{i}^{v N}=\frac{1}{2}\left(F_{i}^{v p}+F_{i}^{v n}\right)=\frac{1}{2}\left(F_{i}^{\bar{v} n}+F_{i}^{\bar{v} p}\right)=F_{i}^{\bar{v} N} \text { for } \mathrm{i}=1,2 \\
& F_{3}^{\bar{v} N}=-F_{3}^{v N} \quad \text { Additional structure function to account } \\
& \text { for parity violation }
\end{aligned}
$$

## こDHS (CERN-Dortmund-Heidelberg-Saclay) Experiment



Note: Fe is not iso-scalar: $26 p, 30 n$. Iso-scalar correction is applied.


## Neutrino beams

Sources of intense neutrino beams are 2-body decays of intense hadron beams

$$
\pi^{ \pm} \rightarrow \mu^{ \pm} v_{\mu}\left(\bar{v}_{\mu}\right) \quad K^{ \pm} \rightarrow \mu^{ \pm} v_{\mu}\left(\bar{v}_{\mu}\right)
$$

where the pions/kaons are generated in proton-nucleon interactions: $\mathrm{p}+\mathrm{N} \rightarrow \pi, \mathrm{K}$


The Lorentz boost transforms the monoenergetic neutrino of the two-body decay into a flat energy spectrum:

$$
0<\frac{E_{v}}{E_{\pi, K}}<1-\frac{m_{\mu}^{2}}{m_{\pi, K}^{2}}
$$

Beams contain small admixture ( $0.5 \%$ ) of electron neutrinos !

## Generation of neutrino beams



Focussing, momentum \& charge selection

1. $\sim 400 \mathrm{GeV}$ proton beam on a (Be) target: secondary hadrons $\pi, \mathrm{K}$
2. Momentum and charge selection of $\pi$ 's and K's using a focusing system
3. Selected $\pi^{\prime}$ s and K's enter a decay tunnel: $\pi^{ \pm}, K^{ \pm} \rightarrow \mu^{ \pm} v_{\mu}\left(\bar{v}_{\mu}\right)$
4. Remaining hadrons and decay muons are filtered by a massive absorber ( $\sim 400 \mathrm{~m}$ iron, concrete, earth): only neutrinos after absorber


Anti-quark distribution:
a measure of sea quarks

## Parton distribution in eN and vN scattering

## Question:

Do the parton distribution seen in electromagnetic ( $F_{2}{ }^{\text {eM }}$ ) and in weak interaction $F_{2}{ }^{e M}$ ) agree?
$\Rightarrow \frac{F_{2}^{v N}(x)}{F_{2}^{e N}(x)}=\frac{x[Q(x)+\bar{Q}(x)]}{\frac{5}{18} \cdot x[Q(x)+\bar{Q}(x)]}=\frac{18}{5}$


Factor from fractional charge

## Answer:

- e.m. and weak quark structure is the same
- Factor $18 / 5 \rightarrow$ fractional quark charge



## Summary: eN and $v \mathrm{~N}$ scattering ( $\mathrm{N}=$ =iso-scalar target)

$e N$ scattering

$$
\begin{aligned}
& \frac{d^{2} \sigma^{e N}}{d x d y}=\frac{2 \pi \alpha^{2}}{Q^{4}} x s\left[1+(1-y)^{2}\right] \cdot \frac{5}{18}[Q(x)+\bar{Q}(x)] \\
& F_{2}^{e N}(x)=\frac{5}{18} x[Q(x)+\bar{Q}(x)]
\end{aligned}
$$

$$
v N+\bar{v} N \quad \text { scattering }
$$

$$
\frac{d^{2} \sigma^{v N}}{d x d y}=\frac{G_{F}^{2}}{2 \pi} x s\left[Q(x)+(1-y)^{2} \cdot \bar{Q}(x)\right]
$$

$$
\frac{d^{2} \sigma^{\bar{v} N}}{d x d y}=\frac{G_{F}^{2}}{2 \pi} x s\left[\bar{Q}(x)+(1-y)^{2} \cdot Q(x)\right]
$$

$$
F_{2}^{v N}(x)=x[Q(x)+\bar{Q}(x)] F_{3}^{v N}(x)=x[Q(x)-\bar{Q}(x)]
$$

$$
F_{2}^{\overline{\bar{N}} N}(x)=x[Q(x)+\bar{Q}(x)] F_{3}^{\bar{v} N}(x)=x[\bar{Q}(x)-Q(x)]
$$

