
Experimental studies of QCD

- 1. Elements of QCD
- 2. Tests of QCD in e^+e^- annihilation
- 3. Studies of QCD in DIS
- 4. QCD in $pp(p\overline{p})$ collisions

1. Elements of QCD - SU(3) Theory

- (i) Quarks in 3 color states: R, G, B
- (ii) "colored" gluons as exchange vector boson

$$SU(3)$$
: $3\times\overline{3}=8 \oplus 1$

Gluons of color octet:

$$\begin{array}{l} R\,\bar{B}\,,\,R\,\bar{G}\,,\,G\,\bar{B}\,,\,G\,\bar{R}\,,\,B\,\bar{G}\,,\,B\,\bar{R}\\ \frac{1}{\sqrt{2}}(\,R\,\bar{R}-G\,\bar{G}\,)\\ \frac{1}{\sqrt{6}}(\,R\,\bar{R}+G\,\bar{G}-2\,B\,\bar{B}\,) \end{array}$$

Ninth state = color singlet does not take part in interaction $\frac{1}{\sqrt{3}}(R\bar{R} + G\bar{G} + B\bar{B})$

Quantum Electrodynamics

To recapitulate the previously discussed material.

Lagrangian for free spin ½ particle:

$$L(x,t) = i\overline{\psi}(x,t)\gamma^{\mu}\partial_{\mu}\psi(x,t) - m\overline{\psi}(x,t)\psi(x,t)$$

Applying the Euler-Lagrange formalism leads to the Dirac equation.

Invariance under Local Gauge Transformation

Demanding invariance under local phase transformation of the free Langrangian (local gauge invariance):

$$\psi(x) \rightarrow \psi(x) = e^{i\alpha(x)}\psi(x)$$

requires the substitution:

$$i\partial_{\mu} \rightarrow i\partial_{\mu} + eA_{\mu}(x)$$

If one defines the tansformation of A under local gauge transformation as

$$A_{\mu}(\mathbf{x}) \rightarrow A_{\mu}(\mathbf{x}) + \partial_{\mu}\alpha(\mathbf{x})$$

one finds invariance of L:
$$L(x) \xrightarrow{\psi \to \psi \ e^{i\alpha(x)}} L(x)$$

To interpret the introduced field A_{μ} as photon field requires to complete the Langrangian by the corresponding field energy:

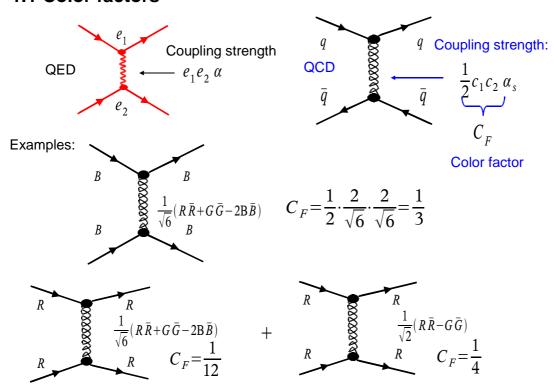
$$L = \overline{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi + e\overline{\psi}\gamma^{\mu}\psi A_{\mu} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$
$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

The requirement of local gauge invariance has automatically led to the interaction of the free electron with a field.

Quantum Chromodynamics - SU(3) Theory

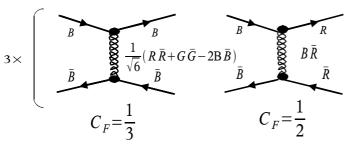
Lagrangian is constructed with quark wave functions $\psi = egin{array}{c} \psi_{\scriptscriptstyle R} \ \psi_{\scriptscriptstyle G} \ \psi_{\scriptscriptstyle B} \end{array}$

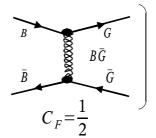
Invariance of the Lagrangian under Local SU(3) Gauge Transformation

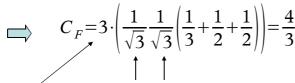

$$\psi(x) \rightarrow \psi'(x) = U(x)\psi(x) = e^{i\frac{\alpha_k(x)}{2}\lambda_k}\psi(x)$$

with any unitary (3 x 3) matrix U(x).

U(x) can be given by a linear combination of 8 Gell-Mann matrices $\lambda_1 \dots \lambda_8$ [SU(3) group generators]

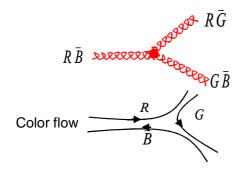

requires interaction fields - 8 gluons corresponding to these matrices

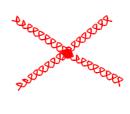

1.1 Color factors



Color factor for $q\overline{q}$ color singlet state (meson):

$$\frac{1}{\sqrt{3}}(R\,\bar{R}+G\,\bar{G}+B\,\bar{B})$$




Color singlet meson is composed of 3 different possibilities

In the case of a color singlet, each initial and final state carries a factor $\frac{1}{\sqrt{3}}$

Triple and quadruple gluon Vertex

Gluons carry color charges: important feature of SU(3)

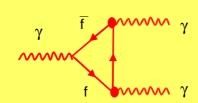
Color factors

$$\begin{vmatrix} & & & \\$$

1.2 Evidence of colored spin ½ quarks

- a) successful classification of mesons and baryons
- b) clear two-jet event structure in $e^+e^- \rightarrow hadrons (q\bar{q}) \frac{d\sigma}{d\Omega} \sim (1+\cos^2\theta)$
- c) $R_{had} = \frac{\sigma(\textit{ee} \rightarrow \textit{hadrons})}{\sigma(\textit{ee} \rightarrow \mu\mu)}$ indicates fractional charges and N_c=3
- d) Further indications for $N_c=3$:

 Δ^{++} (Ω_s) statistic problem:

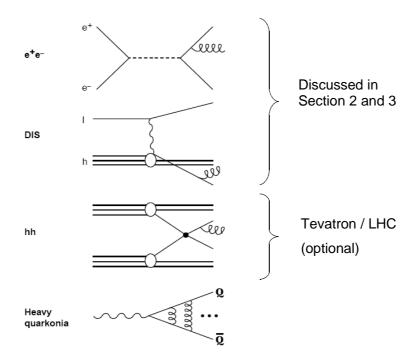

Spin $J(\Delta^{++})=3/2$ (L=0), quark content |uuu>

$$\rightarrow |\Delta^{++}\rangle = |u \uparrow u \uparrow u \uparrow \rangle$$
 forbidden by Fermi statistics

Solution is additional quantum number for quarks (color)

$$|\Delta^{++}\rangle = \frac{1}{\sqrt{6}} \varepsilon_{ijk} |u_i \uparrow u_j \uparrow u_k \uparrow\rangle \ i, j, k = \text{color index}$$

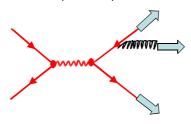
Triangle anomaly
Divergent fermion loops


Divergence

$$\sim \sum_{f} Q_{f} = \underbrace{(-1) + (-1) + (-1)}_{\text{leptons}} + N_{C} \cdot \left[(\frac{2}{3} - \frac{1}{3}) \cdot 3 \right]$$

3 generations of u/d-type quark

 \rightarrow cancels if $N_C = 3$


1.3 Tests of QCD in different processes

2. Test of QCD in e⁺e⁻ annihilation

2.1 Discovery of the gluon

Discovery of 3-jet events by the TASSO collaboration (PETRA) in 1977:

3-jet events are interpreted as quark pairs with an additional hard gluon.

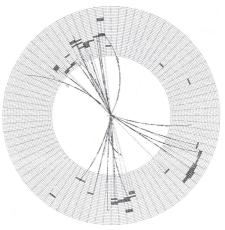


Fig. 11.12 A three-jet event observed by the JADE detector at PETRA

$$\frac{\text{# 3-jet events}}{\text{# 2-jet events}} \approx 0.15 \sim \alpha_s$$

 $\alpha_{\!_{s}}$ is large

at √s=20 GeV

2.2 Spin of the gluon

Ellis-Karlinger angle

Ordering of 3 jets: E₁>E₂>E₃

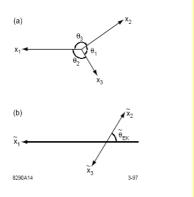


Figure 8: (a) Representation of the momentum vectors in a three-jet event, and (b) definition of the Ellis-Karliner angle.

Measure direction of jet-1 in the rest frame of jet-2 and jet-3: θ_{EK}

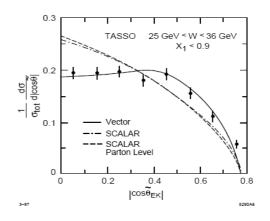


Figure 9: The Ellis-Karliner angle distribution of three-jet events recorded by TASSO at $Q\sim 30$ GeV [18]; the data favour spin-1 (vector) gluons.

Gluon spin J=1