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I. Introduction 

1. Standard Model: Building blocks of 
matter and their interactions

2. Experimental tools

3. Natural units

What you already know from „Physik 5“
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1. Standard Model *) of Particle Physics

Based on the principle of 
local gauge invariance

Not yet directly
observed

12 gauge fields

I IIIII

*) S. L. Glashow, A. Salam and S. Weinberg, 1967/8

History of Experimental Tests of Standard Model 

1967/8 Standard Model, S. L. Glashow, A. Salam and S. Weinberg

1971 Renormalizability of non-abelian gauge theories, G. `t Hooft and M. Veltman

1973 Asymptotic freedom of QCD, D. Gross, D. Politzer and F. Wilzcek

1973 Discovery of Neutral Currents: „Z-Boson exchange“ (Gargamelle, CERN)

1974 Discovery of the 4th quark (SLAC / BNL)

1979 Discovery of the gluon (DESY)

1983 Observation  of W and Z bosons (UA1/2, CERN)

1989 Start of LEP I: Z factory

Z properties, measurement of radiative corrections, prediction of topmass

1995 Discovery of the Top-Quark at TEVATRON

1996 Start of LEP II:                                                
W Pair production and Higgs search (until Nov 2000)

2001 Start of TEVATRON Run II:                                       
Precision measurement of Top-Quark and W-Boson properties, B physics

2009 Start of LHC: Discovery of the Higgs boson ?
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1.1 Leptons and Quarks

Quarks

Leptons

Flavor-Generation
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Point-like, spin ½ , elementary building blocks of matter

Anti-particles with opposite charge to each lepton/quark

< 10-18 m

Doublets reflect structure of weak interaction 
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Lepton Properties 

Lτ=1

Lµ=1

Le=1

Lτ=1

Lµ=1

Le=1

Lepton 
number

∞<18.2 MeVντ

∞<190 keVνµ

∞< 2 eVνe

0.3 ps1.78 GeVτ−

2.2 µs106 MeVµ−

∞511 keVe−

lifetimemass·c2

• All leptons exist as free 
particles

• Lepton number conservation

In the Standard Model neutrinos are 
assumed to be massless. Recently clear 
evidence for neutrino oscillations have 
been observed: explained with non-zero 
masses. Mass difference are very small:     
m ν <  3  e V f o r  a l l  N e u t r i n o s    
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Neutrino oscillations ⇔
Lepton flavor violation
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Standard model process: Effect of neutrino mass is 
“GIM suppressed” by a factor 
of (∆mν

2/MW
2)2 ~ 10-50 and 

hence unobservable

×

SUSY-GUT scenarios predict 
larger BR for LFV decays.

Muon capture
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T=+1

B=-1

C=+1

S=-1

I=±1/2

Flavor 
number

~175 GeVt

4.6 – 4.9 GeVb

1.15 - 1.35 GeVc

80 - 130 MeVs

~5 and ~8 MeVu, d

quark mass·c2• Quarks are confined in hadrons: 
mesons (q⎯q) or baryons (qqq)

• Quark masses cannot be 
measured directly: mass is well 
defined only for free particles

• Heavy quarks: Constituent quark 
masses. Determination from 
observed hadron mass spectra 
+ assumed binding potential 

For the light quarks (u,d,s,) the 
masses are estimates of the 
“current masses” which appear 
in the QCD Lagrangian

• Quarks carry color charge

Quark Properties 

1995

Flavor changing weak currents

There are no flavor changing 
neutral currents (no FCNCs).

W

d uqdV c t

Interesting question: do we need massive 
quarks to build massive hadrons ?

Questions:

• Why are there three generations  ?

• Mass hierarchy ?

• Charges =   0, 1/3e,  2/3e  or e ?

• Is there a symmetry which explains the
flavor sector ?

If we are honest, we don‘t really
understand the flavor sector of the SM
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1.2 Fundamental interactions

~10−39Graviton / masslessGravitation

~10−6W± Z0 / massiveweak

~10−2Photon / masslessElektro-
magnetic

1Gluon g / masslessStrong

strengthMediator bosonIA

• Forces are mediated by virtual field quanta (bosons)

• Virtual bosons transfer energy and momentum for which in 
general (off mass-shell)222 pEmBoson −≠

Mw~83 GeV

Mz~91 GeV

a.) Electro-magnetic interaction
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b.) Strong interaction

Color charges and gluons.

• Quarks and anti-quarks carry 3  
different (anti) color charges 

• Interaction is mediated by 8 
massless colored gluons (spin 1)

• Color symmetry is exact: strong 
interaction only depends on color 
and is independent of quark flavor

• Color charge of gluons ⇒ gluon-
gluon coupling: triple gluon vertex

q: r g b     ⎯q: ⎯r⎯g ⎯b

⎯u

u u

⎯u

How strong is “strong” ?

Use decay times of the following kinematically similar Σ decays:

strong10−23 s208 MeV
weak10−10 s189 MeV

e.m.10−19 s74 MeV
IADecay timeQ-value Σ decays

γΛ→Σ ),1192(0 uds
0),1189( πpuus →Σ+

00 ),1385( πΛ→Σ uds

22

1~1~
IAfiM α

τ
Γ

=
h

For the decay times one finds

αIA = effective coupling of decay 
process

Neglecting kinematics:
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Q value is a measure of phase space
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c.) Weak interaction

Mediated by massive bosons:
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(massive propagator leads to suppression) 

Effective 
weak coupling 
αw is small
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1.3 Higgs Boson = additional scalar Field

Scalar Higgs field couples to the boson fields and fermion fields and 
generates through the coupling masses: 

Higgs production in Proton-Proton Collisions
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Current Higgs Limits:

Moriond 2009

2. Experimental tools

sL ~

From W.K.H.Panofsky: The evolution 
of particle accelerators and colliders

2.1 Particle accelerators

s
1~σCross 

sections

Moore’s Law for Particle Physics
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Large Hadron Collider

LHC Dipole Magnet

Dipole current: 12 KA   (super-conducting, T=1.9 k), B = 8.3 T

Energy stored in 1 dipole: 7.6 MJ in all 1232 dipoles: 9.4 GJ
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First circulating beams on September 10th 2008

beam after one turn

beam after 
injection

Beam Position Monitor

10:30                             
Beam1 around the ring (~1h).  
~3 turns.

15:00                                       
Beam2 around the ring.         
3…4 turns. 
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First Beam Induced Particles (here in LHCb)

Track reconstruction algorithm: M. Schiller (HD)

LHC Accident

Electrical arc developed, evaporated the power bar and 
punctured  the He enclosure. 

~2 t of LHe released into the insulating vacuum. 

Of the 340 MJ stored in S34 only 2/3 went into dump resistors.

Rapid pressure rise inside magnets.                             
Relief  valves opened but could not handle the overpressure. 
Pressure wave  (estimated 4 - 5 bars) propagated until it 
reached vacuum barriers. Several tons of load on the barriers:  
displaced magnets, breaking anchors.

6 of 15t of LHe of S34 released into the tunnel (30000 m3 He)

During ramping of one sector (S34, 8.7kA) :  development of 
resistive zone (200 nΩ) in the super-conductive bus bar between 
quadrupole and neighboring dipole → loss of superconductivity
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Repair is progressing very well  - expect beam in October!
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International Linear Collider

30 km

Center of mass energy: √s=500 … 1 TeV Field gradients: ~35 MV/m 

Remember: synchrotron radiation 
for circular machines  
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2.2 Particle detectors

Prototype of a modern compact  particle detector
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ATLAS

3. Natural units 1== ch

With this choice one has the freedom to choose the unit of one other 
physical quantity. Typically:  [E] = GeV

⇒ Units of all other quantities are defined

Time

Temp Tk
Charge e

Area
Length

Mass
Energy

SI unitHEP unitQuantity
GeV
GeV

-1GeV
-2GeV

πα4
GeV

21 c×

ch×
2)( ch×

21
0 )( εch×
k1×

J10106.1 −⋅

kg271078.1 −⋅

fm197.0
mb389.0

C19106.1 −⋅

K161016.1 ⋅

Heaviside Lorentz
Units: ε0 = µ0 = 1 

π
α

4

2e
=

mbGeV389.0c)(                     

fmMeV197 :const. useful
22 =

⋅=

h

hc

-1GeV h× s251058.6 −⋅


