1. Fermions, propagators and $e^{-} e^{+} \rightarrow \mu^{-} \mu^{+}$scattering

1) The Dirac action is given by

$$
\begin{equation*}
S[\phi]=\frac{1}{2} \int d^{4} x \bar{\psi}(i \not \partial-m) \psi(x) . \tag{1}
\end{equation*}
$$

with the fermionic field operator

$$
\begin{equation*}
\psi(x)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 p^{0}} \sum_{s= \pm 1 / 2}\left\{e^{i p x} v_{s}(p) b_{s}^{\dagger}(\vec{p})+e^{-i p x} u_{s}(p) a_{s}(\vec{p})\right\} \tag{2}
\end{equation*}
$$

Here $p^{0}=\sqrt{\vec{p}^{2}+m^{2}}$, and annihilation/creation operators of fermions and anti-fermions, e.g. electrons and positrons, a, a^{\dagger} and b, b^{\dagger}, respectively with

$$
\begin{equation*}
\left\{a_{s}(\vec{p}), a_{r}^{\dagger}(\vec{p})\right\}=2 p^{0}(2 \pi)^{3} \delta_{s r} \delta\left(\vec{p}-\vec{p}^{\prime}\right), \quad\left\{b_{s}(\vec{p}), b_{r}^{\dagger}(\vec{p})\right\}=2 p^{0}(2 \pi)^{3} \delta_{s r} \delta\left(\vec{p}-\vec{p}^{\prime}\right), \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{s= \pm 1 / 2} u_{s}(p) \bar{u}_{s}(p)=\not p+m, \quad \sum_{s= \pm 1 / 2} v_{s}(p) \bar{v}_{s}(p)=\not p-m \tag{4}
\end{equation*}
$$

a) Show with (3) that $\psi(x)$ and $\bar{\psi}(x)$ satisfy the anti-commutation relations

$$
\begin{equation*}
\{\psi(\vec{x}, t), \bar{\psi}(\vec{y}, t)\}=\gamma^{0} \delta(\vec{x}-\vec{y}), \quad\{\psi(\vec{x}, t), \psi(\vec{y}, t)\}=\{\bar{\psi}(\vec{x}, t), \bar{\psi}(\vec{y}, t)\}=0 \tag{5}
\end{equation*}
$$

c) Show that the Feynman propagator $G_{F, A}(x-y)=\langle 0| T A_{\mu}(x) A_{\nu}(y)|0\rangle$ is the propagator of the wave equation,

$$
\begin{equation*}
-\partial_{\mu} \partial^{\mu} G_{F, A}(x-y)=i g_{\mu \nu} \delta(x-y) \tag{6}
\end{equation*}
$$

Show that $G_{F, A}(x-y)$ is given by

$$
\begin{equation*}
G_{F, A}(x-y)=i g_{\mu \nu} \lim _{\epsilon \rightarrow 0_{+}} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{-i k(x-y)}}{k^{2}+i \epsilon} . \tag{7}
\end{equation*}
$$

c) Show that the Feynman propagator $G_{F, \psi}(x-y)=\langle 0| T \psi(x) \bar{\psi}(y)|0\rangle$ is the propagator of the Dirac equation,

$$
\begin{equation*}
\left(i \not \partial^{x}-m\right) G_{F, \psi}(x-y)=i \delta(x-y) . \tag{8}
\end{equation*}
$$

Show that $G_{F, \psi}(x-y)$ is given by

$$
\begin{equation*}
G_{F, \psi}(x-y)=i \lim _{\epsilon \rightarrow 0_{+}} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{-i p(x-y)}}{p^{2}-m^{2}+i \epsilon}(\not p+m) . \tag{9}
\end{equation*}
$$

2) The S-Matrix of QED is given by

$$
\begin{equation*}
S=T \exp \left(-i \int d^{4} x A_{\nu}(x) j^{\nu}(x)\right) \tag{10}
\end{equation*}
$$

where T stands for time ordering and the fermionic current

$$
\begin{equation*}
j^{\nu}(x)=-e: \bar{\psi} \gamma^{\nu} \psi(x):=: \psi_{e} \gamma^{\nu} \psi_{e}(x):+: \psi_{\mu} \gamma^{\nu} \psi_{\mu}(x):, \tag{11}
\end{equation*}
$$

with standard four-component Dirac spinors ψ_{e}, ψ_{μ} and $\psi=\left(\psi_{e}, \psi_{\mu}\right)$. For the $e^{-} e^{+} \rightarrow$ $\mu^{-} \mu^{+}$-scattering we are interested in the S-Matrix element

$$
\begin{equation*}
\left\langle\mu^{+}\left(p_{4}\right) \mu^{-}\left(p_{3}\right)\right| S\left|e^{+}\left(p_{2}\right) e^{-}\left(p_{1}\right)\right\rangle \tag{12}
\end{equation*}
$$

with the initial and final states

$$
\begin{equation*}
\left|e^{+}\left(p_{2}\right) e^{-}\left(p_{1}\right)\right\rangle=b_{e}^{\dagger}\left(\vec{p}_{2}\right) a_{e}^{\dagger}\left(\vec{p}_{1}\right)|0\rangle, \quad\left\langle\mu^{+}\left(p_{4}\right) \mu^{-}\left(p_{3}\right)\right|=\langle 0| b_{\mu}\left(\vec{p}_{4}\right) a_{\mu}\left(\vec{p}_{3}\right), \tag{13}
\end{equation*}
$$

respectively.
a) Expand the S-matrix up to the second order, and perform the time-ordering.
b) Show, that the following relations are valid,

$$
\begin{align*}
\langle 0| \psi_{e}(x) a_{e}^{\dagger}\left(\vec{p}_{1}\right)|0\rangle & =e^{-i p_{1} x} u_{e}\left(p_{1}\right) \tag{14}\\
\langle 0| \bar{\psi}_{e}(x) b_{e}^{\dagger}\left(\vec{p}_{2}\right)|0\rangle & =e^{-i p_{2} x} \bar{v}_{e}\left(p_{2}\right) \tag{15}
\end{align*}
$$

and derive the corresponding Feynman rules for the initial state. Apply the same reasoning to the final state.
c) Reduce the matrix element

$$
\left\langle\mu^{+}\left(p_{4}\right) \mu^{-}\left(p_{3}\right)\right| T: \bar{\psi} \gamma^{\nu} \psi(x):: \bar{\psi} \gamma^{\mu} \psi\left(x^{\prime}\right):\left|e^{+}\left(p_{2}\right) e^{-}\left(p_{1}\right)\right\rangle
$$

to a product of the simple matrix elements such as $\langle 0| \psi_{e}(x) a_{e}^{\dagger}\left(\vec{p}_{1}\right)|0\rangle$ in (14).
d) Show that

$$
\begin{align*}
\sum_{s, s^{\prime}, r, r^{\prime}} & \left|\bar{u}_{s}\left(p_{3}\right) \gamma^{\mu} v_{s^{\prime}}\left(p_{4}\right) \bar{v}_{r}\left(p_{2}\right) \gamma_{\mu} u_{r}^{\prime}\left(p_{1}\right)\right|^{2} \\
& =\operatorname{tr}\left[\gamma^{\mu}\left(\not p_{4}-m\right) \gamma_{\rho}\left(\not p_{3}+m\right)\right] \operatorname{tr}\left[\gamma^{\mu}\left(\not p_{1}+m\right) \gamma_{\rho}\left(\not p_{2}-m\right)\right] \tag{16}
\end{align*}
$$

The spin sums in (16) are relevant for $e^{+} e^{-} \rightarrow e^{+} e^{-}$and $e^{+} e^{-} \rightarrow \mu+\mu^{-}$-scattering matrix elements.
3) Consider the scattering process $\mathrm{a}\left(p_{a}\right)+\mathrm{b}\left(p_{b}\right) \rightarrow \mathrm{c}\left(p_{c}\right)+\mathrm{d}\left(p_{d}\right)$, where the 4-momenta p_{i} are that in the lab-system. The Mandelstam-variables s, t, u are Lorentz-invariant variables,

$$
\begin{equation*}
s=\left(p_{a}+p_{b}\right)^{2}, \quad t=\left(p_{a}-p_{c}\right)^{2}, \quad u=\left(p_{a}-p_{d}\right)^{2} \tag{17}
\end{equation*}
$$

with

$$
\begin{equation*}
s=\left(p_{a}+p_{b}\right)^{2}=\left(p_{a}^{*}+p_{b}^{*}\right)^{2} \tag{18}
\end{equation*}
$$

where the p_{i}^{*} are the momenta of the particles in the centre of mass (CM) system: $\vec{p}_{a}^{*}=$ $-\vec{p}_{b}^{*}$.
a) The particle b is at rest in the lab system. Show that

$$
\begin{equation*}
\left|\vec{p}_{a}\right|=\frac{1}{2 m_{b}} w\left(s, m_{a}^{2}, m_{b}^{2}\right) \tag{19}
\end{equation*}
$$

with

$$
\begin{equation*}
w(x, y, z)=\left(x^{2}+y^{2}+z^{2}-2 x y-2 x z-2 y z\right)^{\frac{1}{2}} \tag{20}
\end{equation*}
$$

Show also that the energy $E_{a}^{*}\left(E_{b}^{*}\right)$ of the particle a (b) in the CMS is given by

$$
\begin{equation*}
E_{a}^{*}=\frac{s+m_{b}^{2}-m_{a}^{2}}{2 \sqrt{2}} \text { and } E_{b}^{*}=\frac{s+m_{a}^{2}-m_{b}^{2}}{2 \sqrt{2}} \tag{21}
\end{equation*}
$$

Equivalent relations hold for E_{c}^{*} and E_{d}^{*}.
b) Show that

$$
\begin{equation*}
\left|\vec{p}_{b}^{*}\right|=\left|\vec{p}_{a}^{*}\right|=\frac{1}{2 \sqrt{s}} w\left(s, m_{a}^{2}, m_{b}^{2}\right) \quad\left|\vec{p}_{c}^{*}\right|=\left|\vec{p}_{d}^{*}\right|=\frac{1}{2 \sqrt{s}} w\left(s, m_{c}^{2}, m_{d}^{2}\right) \tag{22}
\end{equation*}
$$

and write t as a function of s and the scattering angle θ^{*} in the CMS.
c) The flow F for the above configuration is (b is at rest, volume $V=1$):

$$
\begin{equation*}
F=|\vec{v}| 2 E_{a} 2 m_{b} \tag{23}
\end{equation*}
$$

Express the flow as a function of the momentum $\left|\vec{p}_{a}^{*}\right|$ in CMS.
d) Perform the integration of the 2-particle phase space for the above scattering process in the CMS. Show that

$$
\begin{equation*}
\int d \Phi_{2}=\frac{1}{16 \pi^{2}} \frac{\left|\vec{p}_{c}^{*}\right|}{\sqrt{s}} \int d \Omega_{C} \tag{24}
\end{equation*}
$$

by using the relation

$$
\begin{equation*}
\int \delta[f(\omega)] g(\omega) d \omega=\left(g\left|\frac{d f}{d \omega}\right|^{-1}\right)_{f=0} \tag{25}
\end{equation*}
$$

