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1. Fermions, propagators and e−e+ → µ−µ+ scattering

1) The Dirac action is given by

S[φ] =
1

2

∫

d4x ψ̄ (i∂/−m)ψ(x) . (1)

with the fermionic field operator

ψ(x) =
∫ d3p

(2π)3

1

2p0

∑

s=±1/2

{

eipxvs(p)b
†
s(~p) + e−ipxus(p)as(~p)

}

. (2)

Here p0 =
√
~p2 +m2, and annihilation/creation operators of fermions and anti-fermions,

e.g. electrons and positrons, a, a† and b, b†, respectively with

{as(~p) , a†r(~p′)} = 2p0(2π)3δsrδ(~p− ~p′) , {bs(~p) , b†r(~p′)} = 2p0(2π)3δsrδ(~p− ~p′) , (3)

and

∑

s=±1/2

us(p)ūs(p) = p/+m,
∑

s=±1/2

vs(p)v̄s(p) = p/−m. (4)

a) Show with (3) that ψ(x) and ψ̄(x) satisfy the anti-commutation relations

{ψ(~x, t) , ψ̄(~y, t)} = γ0δ(~x− ~y) , {ψ(~x, t) , ψ(~y, t)} = {ψ̄(~x, t) , ψ̄(~y, t)} = 0 . (5)

c) Show that the Feynman propagator GF,A(x− y) = 〈0|TAµ(x)Aν(y)|0〉 is the propa-
gator of the wave equation,

−∂µ∂µGF,A(x− y) = igµνδ(x− y) . (6)

Show that GF,A(x− y) is given by

GF,A(x− y) = igµν lim
ǫ→0+

∫ d4k

(2π)4

e−ik(x−y)

k2 + iǫ
. (7)

c) Show that the Feynman propagator GF,ψ(x−y) = 〈0|Tψ(x)ψ̄(y)|0〉 is the propagator
of the Dirac equation,

(i∂/x −m)GF,ψ(x− y) = iδ(x− y) . (8)

Show that GF,ψ(x− y) is given by

GF,ψ(x− y) = i lim
ǫ→0+

∫ d4p

(2π)4

e−ip(x−y)

p2 −m2 + iǫ
(p/+m) . (9)
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2) The S-Matrix of QED is given by

S = T exp
(

−i
∫

d4xAν(x)j
ν(x)

)

, (10)

where T stands for time ordering and the fermionic current

jν(x) = −e : ψ̄γνψ(x) :=: ψeγ
νψe(x) : + : ψµγ

νψµ(x) : , (11)

with standard four-component Dirac spinors ψe, ψµ and ψ = (ψe, ψµ). For the e−e+ →
µ−µ+-scattering we are interested in the S-Matrix element

〈µ+(p4)µ
−(p3)|S |e+(p2)e

−(p1)〉 , (12)

with the initial and final states

|e+(p2)e
−(p1)〉 = b†e(~p2)a

†
e(~p1)|0〉 , 〈µ+(p4)µ

−(p3)| = 〈0|bµ(~p4)aµ(~p3) , (13)

respectively.

a) Expand the S-matrix up to the second order, and perform the time-ordering.

b) Show, that the following relations are valid,

〈0|ψe(x)a†e(~p1)|0〉 = e−ip1xue(p1) , (14)

〈0|ψ̄e(x)b†e(~p2)|0〉 = e−ip2xv̄e(p2) , (15)

and derive the corresponding Feynman rules for the initial state. Apply the same
reasoning to the final state.

c) Reduce the matrix element

〈µ+(p4)µ
−(p3)| T : ψ̄γνψ(x) : : ψ̄γµψ(x′) : |e+(p2)e

−(p1)〉
to a product of the simple matrix elements such as 〈0|ψe(x)a†e(~p1)|0〉 in (14).

d) Show that
∑

s,s′,r,r′
|ūs(p3)γ

µvs′(p4) v̄r(p2)γµu
′
r(p1)|2

= tr [γµ(p/4 −m)γρ(p/3 +m)] tr [γµ(p/1 +m)γρ(p/2 −m)] . (16)

The spin sums in (16) are relevant for e+e− → e+e− and e+e− → µ+ µ−-scattering
matrix elements.
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3) Consider the scattering process a(pa) + b(pb) → c(pc) + d(pd), where the 4-momenta
pi are that in the lab-system. The Mandelstam-variables s, t, u are Lorentz-invariant
variables,

s = (pa + pb)
2 , t = (pa − pc)

2 , u = (pa − pd)
2 , (17)

with

s = (pa + pb)
2 = (p∗a + p∗b)

2 , (18)

where the p∗i are the momenta of the particles in the centre of mass (CM) system: ~p∗a =
−~p∗b .

a) The particle b is at rest in the lab system. Show that

|~pa| =
1

2mb
w(s,m2

a, m
2
b) , (19)

with

w(x, y, z) = (x2 + y2 + z2 − 2xy − 2xz − 2yz)
1

2 (20)

Show also that the energy E∗
a (E∗

b ) of the particle a (b) in the CMS is given by

E∗
a =

s+m2
b −m2

a

2
√

2
and E∗

b =
s+m2

a −m2
b

2
√

2
(21)

Equivalent relations hold for E∗
c and E∗

d .

b) Show that

|~p∗b | = |~p∗a| =
1

2
√
s
w(s,m2

a, m
2
b) |~p∗c | = |~p∗d| =

1

2
√
s
w(s,m2

c, m
2
d) , (22)

and write t as a function of s and the scattering angle θ∗ in the CMS.

c) The flow F for the above configuration is (b is at rest, volume V = 1):

F = |~v|2Ea2mb . (23)

Express the flow as a function of the momentum |~p∗a| in CMS.

d) Perform the integration of the 2-particle phase space for the above scattering process
in the CMS. Show that

∫

dΦ2 =
1

16π2

|~p∗c |√
s

∫

dΩC , (24)

by using the relation

∫

δ[f(ω)]g(ω)dω =



g

∣

∣

∣

∣

∣

df

dω

∣

∣

∣

∣

∣

−1




f=0

. (25)


