1. Quantisation and Scattering

1) The action of a free real scalar field is given by

$$
\begin{equation*}
S[\phi]=\frac{1}{2} \int d^{4} x\left(\partial_{\mu} \phi(x) \partial^{\mu} \phi(x)-m^{2} \phi^{2}(x)\right) . \tag{1}
\end{equation*}
$$

The field operator of a real scalar field is given by

$$
\begin{equation*}
\phi(x)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{2 \omega}\left\{e^{i k x} a^{\dagger}(\vec{k})+e^{-i k x} a(\vec{k})\right\} \tag{2}
\end{equation*}
$$

with $\omega=\sqrt{\vec{k}^{2}+m^{2}}$, and annihilation/creation operators a, a^{\dagger} with

$$
\begin{equation*}
\left[a(\vec{k}), a^{\dagger}\left(\vec{k}^{\prime}\right)\right]=2 \omega(2 \pi)^{3} \delta\left(\vec{k}-\vec{k}^{\prime}\right) \tag{3}
\end{equation*}
$$

a) Show that the Klein-Gordon equation $\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \phi(x)=0$ follows from

$$
\begin{equation*}
\frac{\delta S[\phi]}{\delta \phi(x)}=0, \quad \text { with } \quad \frac{\delta \phi(y)}{\delta \phi(x)}=\delta(x-y) \tag{4}
\end{equation*}
$$

Show that $\phi(x)$ in (2) satisfies the Klein-Gordon equation, and show, that the canonical momentum operator $\Pi(x)$ is given by $\Pi(x)=\dot{\phi}(x)$.
b) Show with (3) that $\phi(x)$ and $\dot{\phi}(x)$ satisfy the canonical commutation relations

$$
\begin{equation*}
[\phi(\vec{x}, t), \dot{\phi}(\vec{y}, t)]=i \delta(\vec{x}-\vec{y}), \quad[\phi(\vec{x}, t), \phi(\vec{y}, t)]=[\dot{\phi}(\vec{x}, t), \dot{\phi}(\vec{y}, t)]=0 \tag{5}
\end{equation*}
$$

2) Consider the scattering of one particle in the presence of an interaction Lagrangian $\mathcal{L}^{\prime}(x)=-1 / 2 V(\vec{x}): \phi(x) \phi(x):$, where : . : stands for normal ordering, e.g.,

$$
\begin{equation*}
: a_{1} \cdots a_{n} a_{1}^{\dagger} \cdots a_{m}^{\dagger}:=a_{1}^{\dagger} \cdots a_{m}^{\dagger} a_{1} \cdots a_{n} \tag{6}
\end{equation*}
$$

With $H^{\prime}(t)=-\int d^{3} x \mathcal{L}^{\prime}(x)$, the time evolution in the interaction picture is given by

$$
\begin{equation*}
i \partial_{t}|t\rangle=H^{\prime}(t)|t\rangle \tag{7}
\end{equation*}
$$

a) Show by iterating (7) in its infinitesimal form, $|t+\Delta t\rangle=\left(\mathbb{1}-i H^{\prime}(t)\right)|t\rangle$, that

$$
\begin{equation*}
|t\rangle=U\left(t, t_{0}\right)\left|t_{0}\right\rangle, \quad \text { where } \quad U\left(t, t_{0}\right)=T e^{-i \int_{t_{0}}^{t} d t^{\prime} H^{\prime}\left(t^{\prime}\right)} \tag{8}
\end{equation*}
$$

with time ordering T : $T H^{\prime}\left(t_{1}\right) H^{\prime}\left(t_{2}\right)=H^{\prime}\left(t_{1}\right) H^{\prime}\left(t_{2}\right) \theta\left(t_{1}-t_{2}\right)+H^{\prime}\left(t_{2}\right) H^{\prime}\left(t_{1}\right) \theta\left(t_{2}-t_{1}\right)$. Expand U up to the second order.
b) Show that

$$
\begin{equation*}
\left\langle\vec{k}^{\prime}\right|: \phi(x) \phi(x):|\vec{k}\rangle=2\left\langle\vec{k}^{\prime}\right|: \phi(x)|0\rangle\langle 0| \phi(x):|\vec{k}\rangle \tag{9}
\end{equation*}
$$

and compute it. This matrix element is relevant for the first order perturbation theory.
3) The action of a free photon field is given by

$$
\begin{equation*}
S[A]=-\frac{1}{4} \int d^{4} x F_{\mu \nu} F^{\mu \nu}=\frac{1}{2} \int d^{4} x A_{\mu}(x)\left(g^{\mu \nu} \partial_{\rho} \partial^{\rho}-\partial^{\mu} \partial^{\nu}\right) A_{\nu}(x) \tag{10}
\end{equation*}
$$

The field operator of the gauge field A_{μ} is given by

$$
\begin{equation*}
A_{\mu}(x)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{2 k_{0}}\left\{e^{i k x} a_{\mu}^{\dagger}(\vec{k})+e^{-i k x} a_{\mu}(\vec{k})\right\} \tag{11}
\end{equation*}
$$

with $k_{0}=\sqrt{\vec{k}^{2}}$, and annihilation/creation operators $a_{\mu}, a_{\mu}^{\dagger}$ with

$$
\begin{equation*}
\left[a_{\mu}(\vec{k}), a_{\nu}^{\dagger}\left(\vec{k}^{\prime}\right)\right]=-g_{\mu \nu} 2 k_{0}(2 \pi)^{3} \delta\left(\vec{k}-\vec{k}^{\prime}\right) \tag{12}
\end{equation*}
$$

a) Show that the Klein-Gordon equation (wave equation) $\partial_{\rho} \partial^{\rho} A_{\mu}(x)=0$ follows from

$$
\begin{equation*}
\frac{\delta S[A]}{\delta A_{\mu}(x)}=0, \quad \text { with } \quad \frac{\delta A_{\nu}(y)}{\delta A_{\mu}(x)}=g_{\nu}{ }^{\mu} \delta(x-y) \quad \text { for } \quad \quad \partial^{\mu} A_{\mu}=0 \tag{13}
\end{equation*}
$$

Show that $A_{\mu}(x)$ in (11) satisfies the wave equation, and show, that the canonical momentum operator $\Pi_{i}(x)$ is given by $\Pi_{i}(x)=E_{i}(x)=-F_{0 i}(x)=-\left[\partial_{0} A_{i}(x)-\partial_{i} A_{0}(x)\right]$.
b) Show with (12) that $A_{i}(x)$ and $E_{j}(x)$ satisfy the canonical commutation relation

$$
\begin{equation*}
\left[A_{i}(\vec{x}, t), E_{j}(\vec{y}, t)\right]=i g_{i j} \delta(\vec{x}-\vec{y}) \tag{14}
\end{equation*}
$$

4) Physical states are defined by

$$
\begin{equation*}
\left.\alpha_{0} \mid \text { phys. states }\right\rangle=0 \tag{15}
\end{equation*}
$$

with

$$
\begin{array}{rlrl}
\alpha_{0}^{\dagger}(\vec{k}) & =\frac{1}{\sqrt{2}}\left(a_{0}^{\dagger}(\vec{k})-\hat{k} \vec{a}^{\dagger}(\vec{k})\right), & \text { with } \quad \hat{k}=\frac{\vec{k}}{|\vec{k}|}, \\
\alpha_{i}^{\dagger}(\vec{k}) & =\hat{e}_{i} \vec{a}^{\dagger}(\vec{k}), & \text { with } \quad \hat{e}_{i} \hat{k}=0, \quad i=1,2, \\
\alpha_{3}^{\dagger}(\vec{k}) & =\frac{1}{\sqrt{2}}\left(a_{0}^{\dagger}(\vec{k})+\hat{k} \vec{a}^{\dagger}(\vec{k})\right) . & &
\end{array}
$$

a) Show that the operator α^{\dagger} satisfy the commutation relations

$$
\begin{aligned}
{\left[\alpha_{0}(\vec{k}), \alpha_{0}^{\dagger}\left(\vec{k}^{\prime}\right)\right] } & =0=\left[\alpha_{3}^{\dagger}(\vec{k}), \alpha_{3}\left(\vec{k}^{\prime}\right)\right] \\
{\left[\alpha_{0}(\vec{k}), \alpha_{i}^{\dagger}\left(\vec{k}^{\prime}\right)\right] } & =0=\left[\alpha_{3}^{\dagger}(\vec{k}), \alpha_{i}\left(\vec{k}^{\prime}\right)\right] \\
{\left[\alpha_{0}(\vec{k}), \alpha_{3}^{\dagger}\left(\vec{k}^{\prime}\right)\right] } & =-2 k_{0}(2 \pi)^{3} \delta\left(\vec{k}-\vec{k}^{\prime}\right) \\
{\left[\alpha_{i}(\vec{k}), \alpha_{i}^{\dagger}\left(\vec{k}^{\prime}\right)\right] } & =2 k_{0}(2 \pi)^{3} \delta\left(\vec{k}-\vec{k}^{\prime}\right), \quad i=1,2 .
\end{aligned}
$$

b) Show that the one particle states $\alpha_{0}^{\dagger}(\vec{k})|0\rangle, \alpha_{i}^{\dagger}(\vec{k})|0\rangle$ with $i=1,2$ are physical states with (15). Show that $\alpha_{3}^{\dagger}(\vec{k})|0\rangle$ is not a physical state.

