A semi-phenomenological approach to the structure and transport properties of macromolecules in solution

> Alexander Uvarov Universität Kassel 18/07/2006

A semi-phenomenological approach to the structure and transport properties of macromolecules in solution

---- Content

Introduction & Motivation

- Macromolecules in Solution
 - Sructure and Transport properties of the solution
- Macroscopic vs. microscopic theory of molecules in solution
 - Transport properties vs. semi-phenomenological approach
 - Fokker—Planck equation and friction tensors
- Results
 - Translational motion
 - Rotational motion
- **Summary and outlook**

Macromolecules in solution

---- Introduction & Motivation

<u>IUPAC definition:</u> A macromolecule is a larger complex molecule consisting of many smaller structural units (molecules, group of atoms, atoms) linked together.

Macromolecules in solution

---- Introduction & Motivation

<u>IUPAC definition:</u> A macromolecule is a larger complex molecule consisting of many smaller structural units (molecules, group of atoms, atoms) linked together.

Macromolecules in solution

---- Structure & Transport properties

Macromolecules:

- Very massive and complex (10³-10⁵ atoms)
- Slow (v_{Macr} / v_{H2O} <10³)
- Time scale of relaxation is much larger then the typical relaxation times of simple solvents

Translation diffusion coefficient:

$$\mathbf{D}_{\mathrm{T}} = \frac{\left\langle \left(\mathbf{R}_{\mathrm{a}}(\mathbf{0}) - \mathbf{R}_{\mathrm{a}}(\mathbf{t}) \right)^{2} \right\rangle}{6t}$$

Center-of-mass (CM) diffusion coefficient:

$$\mathbf{D}^{(\mathrm{CM})} = \frac{\left\langle \left(\mathbf{R}_{\mathrm{cm}}(\mathbf{0}) - \mathbf{R}_{\mathrm{cm}}(\mathbf{t}) \right)^2 \right\rangle}{6t}$$

Rotational diffusion coefficient:

$$\mathbf{D}_{\mathrm{R}} = \frac{\left\langle \left(\Delta \boldsymbol{\theta} (\Delta t) \right)^{2} \right\rangle}{\Delta t}$$

Time dependent correlation functions:

$$\mathbf{CF}(\mathbf{t}) = \langle \mathbf{A}(\mathbf{0})\mathbf{A}(\mathbf{t}) \rangle$$

Dynamics of the macromolecules in solution

---- Macroscopic vs. Microscopic

Macroscopic (phenomenological)

- Solvent is a uniform non-compressible medium.
- Phenomenological boundary conditions
- Bead-solvent interaction: via random forces (Gaussian distributed)

Assumptions

- Molecule has internal structure (non-uniform).
- Molecule much more heavy and slower than solvent particles

Basic mathematical assumptions:

The beads are assumed to be "embedded" to the solvent flow

(Stoke's law: $F = -\xi v$)

 The transport and diffusion are described via the Diffusion Eq. (Fick's laws)

The dynamical behaviour of the macromolecules more complex!

"... these mathematical assumptions must be questioned since macromolecule can not be considered as "embedded" into the surroundings but dramastically start to "emancipate" from the solvent".

B. Dünweg and K. Kremer, J. Chem. Phys. 99 (1993) 6984.

Dynamics of the macromolecules in solution

---- Macroscopic vs. Microscopic

Macromolecular Dynamical Simulations (Newton's equations)

> Phase-space formalism (Liouville eduation)

Macroscopic (phenomenological)

- Solvent is a uniform non-compressible medium.
- Phenomenological boundary conditions
- Bead-solvent interaction: via random forces (Gaussian distributed)

 $H = H_{M} + H_{S} + H_{MS}$

Assumptions

- Molecule has internal structure (non-uniform).
- Molecule much more heavy and slower than solvent particles

Microscopic

- Solvent as set of particles with given mass m
- Discrete structure of the solvent ('solvent-solvent' interaction V)
- Bead-solvent interaction: via potentials W

Semi-phenomenological approach to the study of the macromolecular dynamics

Total energy of the system (Hamiltonian)

---- Molecular Dynamics Simulation (MDS)

Simulation of the relaxation processes of 1 ms is ~10^a more ^J expensive than our (7400 water molecules + macromolecules)abilities in 2006

Moore's law: this might be possible not before 2050

---- phase-space dynamics

Integration of the Liouville Eq. has the same difficulties like in the case of MDS

Fortunately, this ansatz can be the starting point for further simplifications.

---- phase-space dynamics

Liouville equation

$$\frac{\rho}{t} = \left[\hat{L}_{M} + \hat{L}_{S} + \hat{L}_{MS} \right] \rho \ (\{R, P\}, \{r, p\}; t)$$

Liouville operators

 $\hat{\mathbf{L}}_{i} = \sum_{i} \left[\frac{\partial \mathbf{H}_{i}}{\partial \mathbf{r}_{i}} \frac{\partial}{\partial \mathbf{p}_{i}} + \frac{\partial \mathbf{H}_{i}}{\partial \mathbf{p}_{i}} \frac{\partial}{\partial \mathbf{r}_{i}} \right], \quad i = \mathbf{M}, \mathbf{S}, \mathbf{MS}$

Integration over all coordinates of the solvent

$$\rho_N(\{R_a, P_a\}; t) = \int d\{r_s, p_s\} \rho(\{R_a, P_a\}, \{r_s, p_s\}; t)$$

Initial conditions:

- Solvent is in equilibrium state Φ_{eq}
- Macromolecule and solvent do not interact before initial time
- At the initial time, the full distribution can be factorized as $\rho(0) = \rho_N(0) \Phi_{eq}$

Projection operator formalism:

$$\hat{\mathbf{P}}(...) = \int d\{\mathbf{r}_{s}, \mathbf{p}_{s}\}(...)$$
 $\hat{\mathbf{Y}} = \mathbf{1} - \hat{\mathbf{P}}$

---- Fokker-Planck equation & Friction tensor

Liouville equation

$$\frac{\partial \rho}{\partial t} = \left[\hat{L}_{M} + \hat{L}_{S} + \hat{L}_{MS} \right] \rho \quad (\{R, P\}, \{r, p\}; t)$$

Liouville operators

 $\hat{\mathbf{L}}_{i} = \sum_{i} \left[\frac{\partial \mathbf{H}_{i}}{\partial \mathbf{r}_{i}} \frac{\partial}{\partial \mathbf{p}_{i}} + \frac{\partial \mathbf{H}_{i}}{\partial \mathbf{p}_{i}} \frac{\partial}{\partial \mathbf{r}_{i}} \right], \quad i = \mathbf{M}, \mathbf{S}, \mathbf{MS}$

Integration over all coordinates of the solvent

$$\rho_N(\{\boldsymbol{R}_a, \boldsymbol{P}_a\}; t) = \int d\{\boldsymbol{r}_s, \boldsymbol{p}_s\} \rho(\{\boldsymbol{R}_a, \boldsymbol{P}_a\}, \{\boldsymbol{r}_s, \boldsymbol{p}_s\}; t)$$

Fokker-Planck equation

$$\frac{\partial \rho_{N}}{\partial t} + \frac{P_{a}}{M} \frac{\partial \rho_{N}}{\partial R_{a}} - \frac{\partial U(|R_{a} - R_{b}|)}{\partial P_{a}} \frac{\partial \rho_{N}}{\partial P_{a}} = \frac{\partial}{\partial P_{a}} \frac{\xi^{ab}}{\partial P_{a}} \left[\frac{\partial}{\partial P_{b}} + \frac{P_{b}}{k_{B}TM} \right] \rho_{N}$$

Bead-bead

dynamical coupling between solvent and molecule

interaction

Friction tensors

A. Uvarov and S. Fritzsche, Macromol. Theo. Sim. 13 (2004) 241; Phys. Rev. Letter (2006) submitted

Fokker-Planck equation & Friction tensors ---- phase-space dynamics

Series expansion of the time evolution operator: $\exp\left[-t\hat{Y}\hat{L}_{MS}\right] = \sum_{i=0}^{\infty} \frac{t^{i}}{j!} [\hat{Y}\hat{L}_{MS}]^{i}$

$$\xi_{\alpha\beta}^{(ab)} = \sum_{j} \xi_{\alpha\beta}^{(ab)} = \xi_{\alpha\beta}^{(ab)} + \xi_{\alpha\beta}^{(ab)} + \xi_{\alpha\beta}^{(ab)} + \dots$$

Fokker-Planck equation & Friction tensors

---- phase-space dynamics

$$\frac{\partial \rho_N}{\partial t} + \frac{P_a}{M} \frac{\partial \rho_N}{\partial R_a} - \frac{\partial U(|R_a - R_b|)}{\partial P_a} \frac{\partial \rho_N}{\partial P_a} = \frac{\partial}{\partial P_a} \xi^{ab} \left[\frac{\partial}{\partial P_b} + \frac{P_b}{k_B TM} \right] \rho_N$$

Translational motion

Rotational motion

- \checkmark friction tensors parameters
- \checkmark single-bead molecules
- ✓ dumbbell molecules
- ✓ N-bead macromolecules
- **O** various masses, shapes and beadbead interactions
- **O** different topologies
- 0 ...

105

120

0.0

30

60

75

Number of the beads, N

90

---- a few, short examples 1. Friction tensor for the various bead-solvent interaction Charge particles: (*Coulomb-like interaction*) Neutral particles: (Born-Mayer and van der Waals interaction) 2. Diffusion coefficient for the *"weak"* van der Waals interaction **<u>3. Transition from slip to stick boundary condition coefficient</u>** $c = k_B \overline{T}$ $\mathbf{D}^{(cm)}\pi\mathbf{\eta}\mathbf{R}_{hydr}$ Boundary condition coefficient, c 8 6 5 Boundary condition coefficient as function of the strength ratio $\varepsilon_{MS}/\varepsilon_{SS}$ – MDS data Phenom. theory (stick BC) Phenom. theory (slip BC) This work (case A) M/m=200—**▼—** This work (case B) 2 6 8 10 12 Interaction strength ratio, $\epsilon_{MS}/\epsilon_{SS}$

Fokker-Planck equation & Friction tensors

---- phase-space dynamics

$$\frac{\partial \rho_{N}}{\partial t} + \frac{P_{a}}{M} \frac{\partial \rho_{N}}{\partial R_{a}} - \frac{\partial U(|R_{a} - R_{b}|)}{\partial P_{a}} \frac{\partial \rho_{N}}{\partial P_{a}} = \frac{\partial}{\partial P_{a}} \xi^{ab} \left[\frac{\partial}{\partial P_{b}} + \frac{P_{b}}{k_{B} TM} \right] \rho_{N} \qquad \left\{ \mathbf{r}_{s} \right\} = \frac{\partial}{\partial P_{a}} \xi^{ab} \left[\frac{\partial}{\partial P_{b}} + \frac{P_{b}}{k_{B} TM} \right] \left\{ \mathbf{r}_{s} \right\} = \frac{\partial}{\partial P_{b}} \left\{ \mathbf{r}_{s} \right\} = \frac{\partial}$$

Translational motion

- $\checkmark\,$ friction tensors parameters
- \checkmark single-bead molecules
- ✓ dumbbell molecules
- ✓ N-bead macromolecules
- **O** various masses, shapes and beadbead interactions
- **O** different topologies

 \mathbf{O}

. . .

Rotational motion

- ✓ Restricted rotation of dumbbell molecules
- ✓ Bead-bead and bead-surface interactions
- **3** and 4-bead chains
- O different topologies
- 0 ...

Rotational motion of macromolecules

---- immobilized on the surface

Rotational diffusion coefficient:
$$D_{R} = \frac{\langle (\Delta \theta (\Delta t))^{2} \rangle}{\Delta t}$$

Orientation correlation function:
$$C(t) = \frac{1}{2} \langle 3\cos^2 \theta(t) - 1 \rangle$$

Phenomenological view point of the solvent

Rotational motion of macromolecule

---- immobilized on the surface

Rotational motion of macromolecule

---- Configuration-space distribution

Rotational motion of the macromolecule

---- a few, short examples

Rotational motion of the macromolecule

1. Rotational diffusion coefficient

2. Orientational correlation function

$$\mathbf{P}_{2}(t) = \frac{1}{2} \left(3 \left\langle \cos^{2} \theta(t) \right\rangle - 1 \right)$$

Dumbbell-type immobilized macromolecule: Time dependent orietational CF, $P_2(t)$

---- a few, short examples

bead-bead interaction:

Frenkel potential

$$\mathbf{U}_{BB}^{Fr} = \mathbf{k}_{Fr} (\mathbf{Q} - \mathbf{Q}_0)^2$$

bead-surface interaction:

Sin+cone potential

$$U_{BS} = \begin{cases} k_{Sin} Sin^2 \theta, & \text{if } \theta \le \theta_0 \\ 0, & \text{otherwise} \end{cases}$$

A semi-phenomenological approach to the structure and transport properties of macromolecules in solution

---- Summary

$$\frac{\partial \rho_N}{\partial t} + \frac{P_a}{M} \frac{\partial \rho_N}{\partial R_a} - \frac{\partial U(|R_a - R_b|)}{\partial P_a} \frac{\partial \rho_N}{\partial P_a} = \frac{\partial}{\partial P_a} \xi^{ab} \left[\frac{\partial}{\partial P_b} + \frac{P_b}{k_B T M} \right] f^{ab}$$

Translational motion

- ✓ friction tensor parameters
- ✓ single-bead molecules
- ✓ dumbbell molecules
- ✓ N-bead macromolecules
- \checkmark various thermo dynamical regimes

Rotational motion

Restricted rotation of dumbbell molecules
 Bead-bead and bead-surface interactions

- A. Uvarov, S. Fritzsche, *Macr. Theor. Sim.* 13 (2004), 241;
 A. Uvarov, S. Fritzsche, *Chem. Phys. Letter* 401 (2005) 296;
 A. Uvarov, S. Fritzsche, *Phys. Rev.* E73. (2006) 011111;
 A. Uvarov, S. Fritzsche, *Phys. Day. Letter* (2006) submitted
- A. Uvarov, S. Fritzsche, Phys. Rev. Letter (2006), submitted.
- A. Uvarov, S. Fritzsche, J. Chem. Phys. 121, (2004), 6566;
 A. Uvarov, S. Fritzsche, Progr. Coloid Polym Scien 133. (2006), 95;
 A. Uvarov, S. Fritzsche, Chem. Phys. Letter (2006), in print.

Structure and transport of macromolecules in solution

---- Goals for future studies

Salvation dynamics & transport properties of the dense MS friction, diffusion and conductivity of the solution
 different thermodynamics states of the MSs. behaviour of time-dependent correlation functions.

Semi-phenomenological approach for the ILs ▷ interaction among the molecular components of IL (cations and anions)
▷ interplay with various dissolved nanoparticles and clusters

Choice and parameterization of the interactions Coulomb > Van der Waals

Hydrogen-bonds

Orientational properties of free and immobilized macromolecules Extension of the semi-phenomenological approach on the rotational motion
 3- and 4- ... N- bead chains Complex molecular structures (different topologies)

Acknowledgements

<u>Universität Kassel</u>

Institute Molecular and Atomic Physics

- Prof. Dr. Stephan Fritzsche
- Prof. Dr. Burkhard Fricke
 - Drs: W.-D. Sepp, J. Anton, A. Surzikov,
 E. Rykhlinskaia, P. Kovals, T. Inghoff,
 C. Sarpe-Tudoran
 - T. Radke, L. Borowska, L. Tatarinova,...

- Dr. Alexander Blokhin
- Dr. Maxim Gelin
- Acad. Prof. Vitaliy Tolkachev

Thank you for your attention!

Appendix ---- a few additional results

A. Uvarov and S. Fritzsche, Macromol. Theo. Sim. 13 (2004) 241; Phys. Rev. Letter (2006) submitted

Fokker-Planck equation & Friction tensors ---- phase-space dynamics

Series expansion of time evolution operator: $\exp\left[-t\hat{Y}\hat{L}_{MS}\right] = \sum_{i=0}^{\infty} \frac{t^{i}}{i!} [\hat{Y}\hat{L}_{MS}]^{i}$

$$\xi_{\alpha\beta}^{(ab)} = \sum_{j} \xi_{\alpha\beta_{[j]}}^{(ab)} = \xi_{\alpha\beta_{0}}^{(ab)} + \xi_{\alpha\beta_{[1]}}^{(ab)} + \xi_{\alpha\beta_{[2]}}^{(ab)} + \dots$$

$$q^{(ab)} = \frac{R_{a} - R_{b}}{|R_{a} - R_{b}|};$$

$$\xi_{\alpha\beta_{[j]}}^{(ab)} = f_{[j]}(R_a, R_b; W;; CF_{[j+2]}^{(solvent)}) = A_{[j]}^{(ab)}(R_a, R_b; W; CF_{[j+2]}^{(solvent)}) \delta_{\alpha\beta} + B_{[j]}^{(ab)}(R_a, R_b; W; CF_{[j+2]}^{(solvent)}) q_{\alpha}^{(ab)}q_{\beta}^{(ab)}$$

---- a few, short examples

1. Friction tensor for the various "weak" bead-solvent interaction

Rotational motion of macromolecule

---- Configuration-space distribution

$$\Psi_{v_n^m}(\mathbf{Q}; \mathbf{U}_{BB}, \mathbf{U}_{BS})$$

Restricted boundary conditions

Bead-bead interaction:

- Hookean
- FENE
- Frankel

 $\mathbf{U}_{BB}^{Fr} = \mathbf{k}_{Fr} (\mathbf{Q} - \mathbf{Q}_0)^2$

ONA-type

$$U_{BB}^{DNA} = k_{DNA} \left(\frac{1}{4 \left(1 - \frac{Q}{Q_0} \right)} - \frac{1}{4} Q + \frac{Q^2}{2Q_0^2} - \frac{1}{4} Q \right)$$

Bead-surface interaction:

- Cone
- Effective double well (Sin)

 $U_{BS}^{(Sin)} = k_{BS} \sin^2 \theta$

Rotational motion of the macromolecule

---- a few, short examples

