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Zusammenfassende deutsche Darstellung der in englischer Sprache abgefassten Doktorarbeit:

Eine Semiphänomenologische Näherung zur Beschreibung
der Struktur und Transporteigenschaften von

Makromolekülen in Lösungen

Motiviert durch die Lebenswissenschaften (Life sciences) haben sich Untersuchungen

zur Dynamik von Makromolekülen in Lösungen in den vergangenen Jahren zu einem

zukunftsweisenden Forschungsgebiet etabliert, dessen Anwendungen von der Biophysik

über die physikalische Chemie bis hin zu den Materialwissenschaften reichen. Neben

zahlreichen experimentellen Forschungsprogrammen zur räumlichen Struktur und den

Transporteigenschaften großer Moleküle, wie sie heute praktisch an allen (Synchrotron–)

Strahlungsquellen und den Laboren der Biophysik anzutreffen sind, werden gegenwärtig

daher auch umfangreiche theoretische Anstrengungen unternommen, um das Diffusions-

verhalten von Makromolekülen besser zu erklären.

Um neue Wege für eine quantitative Vorhersagen des Translations– und Rotationsverhal-

tens großer Moleküle zu erkunden, wurde in dieser Arbeit ein semi–phänomenologischer

Ansatz verfolgt. Dieser Ansatz erlaubte es, ausgehend von der Hamiltonschen Mechanik

des Gesamtsystems ‘Molekül + Lösung’, eine Mastergleichung für die Phasenraumdichte

der Makromoleküle herzuleiten, die den Einfluß der Lösung mittels effektiver Reibungs-

tensoren erfaßt. Im Rahmen dieses Ansatzes gelingt es z.B. (i) sowohl den Einfluß der

Wechselwirkung zwischen den makromolekularen Gruppen (den sogenannten moleku-

laren beads) und den Lösungsteilchen zu analysieren als auch (ii) die Diffusionseigen-

schaften für veschiedene thermodynamische Umgebungen zu untersuchen. Ferner gelang

es auf der Basis dieser Näherung, die Rotationsbewegung von großen Molekülen zu

beschreiben, die einseitig auf einer Oberfläche festgeheftet sind.

Im Vergleich zu den aufwendigen molekulardynamischen (MD) Simulationen großer Mole-

küle zeichnet sich die hier dargestellte Methode vor allem durch ihren hohen ‘Effizienz-

gewinn’ aus, der für komplexe Systeme leicht mehr als fünf Größenordnungen betra-

gen kann. Dieser Gewinn an Rechenzeit erlaubt bspw. Anwendungen, wie sie mit

MD Simulationen wohl auch zukünftig nicht oder nur sehr zögerlich aufgegriffen wer-

den können. Denkbare Anwendungsgebiete dieser Näherung betreffen dabei nicht nur

dichte Lösungen, in denen auch die Wechselwirkungen der molekularen beads zu benach-

barten Makromolekülen eine Rolle spielt, sondern auch Untersuchungen zu ionischen

Flüssigkeiten oder zur Topologie großer Moleküle.

Keywords: Diffusion, Fokker–Planck Gleichung, hydrodynamische Wechselwirkung,

Makromolekül, molekulare beads, Reibung, Transporteigenschaften von Molekülen.

v



vi



Abstract:

A semi–phenomenological approach to the structure
and transport properties of macromolecules in solution

Being very important in life, the macromolecules are the point of interest of a lot of dis-

ciplines including biophysics, chemical physics, material science, etc. During the last few

years, therefore, a novel semi–phenomenological approach has been developed starting

from the microscopic view point on the system ’macromolecule+solvent’ and using the

Hamiltonian mechanics as well as the master equations for the phase–space distribution

functions of the macromolecules. Since then, the phenomenological approach has been

employed very succesfully to investigate the structure and transport properties of macro-

molecules in solution. Within the framework of the semi–phenomenological approach,

in particular, (i) the role of the macromolecule–solvent interaction on the translational

motion of macromolecules in solution as well as (ii) the diffusion properties of the vari-

ous macromolecules have been investigated for different thermodynamic regimes of the

solvent. Apart our investigations in the translational motion of the macromolecules in

solution, however, (iii) the properties of the rotational (orientational) motion of macro-

molecules, which is immobilized on a surface, have been also studied with respect to the

various intermolecule and macromolecule–surface interactions.

Compared with often expensive MD calculations, a great gain in efficiency is obtained

by several orders of magnitude and may thus allow investigations on more complex

systems for which other numerical techniques will remain unfeasible in the near future.

Special attention of this thesis work, moreover, was placed on the flexibility of our

approach which makes it possible to implement future investigations in the field of the

macromolecular solution.

Keywords: bead, diffusion, Fokker–Planck equation, friction, hydrodynamic interac-

tion, macromolecules, transport.
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Chapter 1

Introduction

A better understanding the dynamical behaviour of macromolecules, i.e. translational

and rotational motion of macromolecules, or formation and deformation of macromole-

cular shape, remains a central problem for the study of proteins and DNA in solution.

Apart from the fundamental research, of course, the knowledge of structural and dynam-

ical properties of macromolecules in solutions are really important both in the medical

and pharmaceutical applications as well as in industrial applications in order to build

so called ’designer enzymes’ for biocatalysis, or the biological purification of industrial

waste water, ect. During the past decay, therefore, a large number of experimental tech-

niques have been developed in order to describe and analyze the statical and dynamical

properties of macromolecular solutions. For instance, the dynamic light– , X–ray– and

neutron–scattering experiments have been carried out in order to describe the transla-

tional motion of the macromolecule, which determines the motion of the macromolecule

as whole (Sorlie and Pecora 1990; Harnau et al 1996; Yardimcii et al 2005). In order

to describe the formation and deformation of the macromolecular shape, i.e. internal

configurational changes of macromolecules, the dielectric relaxation (Gaiduk 1999) as

well as fluorescence depolarization techniques have been successfully used (Chirico et al

1999; Krishna et al 2000).

On the theoretical side, the evolution of the investigations of the statical and dynamical

properties of the macromolecules has crucially been influenced by the phenomenological

models of Rouse (1953) and Zimm (1956). By making use the fact that macromolecule is

large molecules containing many repeat units (Doi and Edwards; Grosberg and Khokhlov

1989), Rose (1953) considered macromolecule as a set of (identical) beads which are

coupled to each other by the pairwise Hookean potential. The solvent was modeled by

a Newtonian viscous fluid, i.e. unstructured and incompressible medium. On moving

through this solvent, moreover, the beads experience a hydrodynamic drag given by

Stokers (Grossberg and Khokhlov 1989) law in which the drag force on the bead and
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solvent is proportional to the relative velocity with the proportionality (friction) constant

ξ . Finally, the macromolecular solution was presumed to be sufficiently dilute that

different macromolecules did not interact with each other. Although the Rouse model of

the macromolecular solution looks oversimple, it have been widely and successfully used

by a lot of scientist in order to analyze the experimental data as well as predict some

statical and transport properties of the macromolecular solutions (Doi and Edwards

1986). Nevertheless, the Rouse model has several drawbacks and variances with the

experiments (Öttinger 1986).

In order to overcome the drawbacks, Zimm (1956) extended the Rouse model by taking

into account the (so–called) hydrodynamic interaction (Kirkwood and Riseman 1948)

between the beads of the macromolecule which ’arises’ due to any moving beads of the

macromolecule disturbs the solvent flow which, in its turn, influence on the motion of

another beads. Let us note, that, by including the hydrodynamic interaction, the Rouse

model has been considerably improved. In contrast to the Rouse model, for example,

the Rose–Zimm model of the macromolecular solution reproduced the experimentally

observed dependence of the intrinsic viscosity on the macromolecular weight even with

hydrodynamical interaction tensor in the preaveraged form when the equations of motion

for the beads may be linearize. (Doi and Edwards 1986). In fact, the Rouse–Zimm theory

has been a very successful theory of macromolecular dynamics.

Unfortunately, both Rouse as well as Zimm (phenomenological) methods are based on

the assumption that the solvent is a non–discrete and incompressible medium. However,

the need for taking the discrete (atomistic) structure of the solvent into account has been

recognized mainly due to molecular dynamic simulations (MDS) of Dünweg and Kremer

(1993), Polson and Galant (2006) ect. Often, the discrete nature of the solvent leads

moreover to rather remarkable deviations from a pure Brownian behaviour of the macro-

molecular beads and hence, may play an important role also in studying the dynamics

of macromolecules (Ould–Kaddour and Levesque 2001, 2003; Schmidt and Skinner 2003,

2004). In fact, the discrete nature of the solvent can change both the (conformational)

static as well as the dynamical properties of the macromolecules dramatically. (Shirayev

et al 2005)

Molecular dynamic simulation (MDS) is really powerful method for the investigation of

the statical and transport properties of the macromolecules in solution which bases on

pure microscopic view point of the overall system ’macromolecules+solvent’. In con-

trast to the phenomenological theories, the discrete structures of the solvent as well as

macromolecule are taken into account in MD simulation from the very beginning (cf.

Figure 1.1). In principle, the MDS approach is very attractive: Simply solving Newtons

equations of motion both for the beads of the macromolecule as well as for the solvent

particles numerically provides us, per definition, with correct statical as well as trans-

port properties of the macromolecular solution. During the past decade, therefore, a
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Figure 1.1: Microscopic model of the classical system ’N–bead (chain) macromole-

cule+solvent’: Macromolecule is a set of the beads which are specified by their position

and momentum coordinates {R a, Pa, a = 1, . . . , N}. Similarly, the solvent is taken as a

set of n (À N) spherical particles of mass m and with coordinates {rs, ps, s = 1, . . . , n}.

lot of MDS have been performed in order to analyze the dynamical behaviour of the

macromolecules in solution. Extended molecular dynamics simulations were done by

Dünweg and Kremer together with coworker (1990, 1993, 1999, 2003), Schmidt and Sk-

iner (2003, 2004), Polson and Gallant (2006) and others, dealing with questions such

as the transport properties and (de–) formation of the shape of the macromolecules in

solution, structure factors, and shorttime diffusion. However, each MD simulation is

really a valuable tool since it often requires larger–scale computations, and hence,cannot

be ’repeated’ so easily for different interactions or chemical solutions. Indeed, the small-

est time step in MD simulations has to be short compared to the fastest timescale of

the relevant physical processes involved (typically few femtoseconds) (Dünweg and Kre-

mer 1993; Binder 1995). Therefore, the MD simulations are typically limited to a few

nanoseconds. The (asymptotic) relaxation processes of the larger macromolecules, how-

ever, takes much more time. For instance, the relaxation time of the end-to-end vector,

which can easily be of the order of 10−5 seconds are out of reach for present day MD sim-

ulations and probably remain unaccessible for near future computer generations (Binder

1995, Znamenskiy and Kobrak 2004).

The aim of this thesis is therefore to gain a better understanding the statical as well as

the transport properties of macromolecules in solution by using a semi–phenomenological

approach. This approach is based on the microscopic view point on the system ’macro-

molecule+solvent’ (cf. Fig. 1.1) and starts from the Hamiltonian mechanics and the

master equations for the phase–space distribution functions of the macromolecules. The

semi–phenomenological approach have been recently derived and presented by us in the

Papers I, III, IV, VII which are main results of my research performed at the Kassel

University. Therefore, this thesis contains two part. In the first part, we present the

3



short introduction (Section 2.1) to the semi–phenomenological approach as well as two

applications (Section 2.2 ) of the approach to the translational motion of the macro-

molecules immersed in the solvent. In addition to the translational motion, we present

(Chapter 3) the properties of the rotational (orientational) motion of macromolecules in

solutions which have be also investigated by us during the last years (Papers II, V,

VI). A special place of this thesis is reserved for the description of the possible future

applications of the semi–phenomenological approach. In particular, in Chapter 4, four

scenarios for future studies is presented. In final of the first part of this thesis, a short

summary are given in Chapter 5. In addition, as second part of the thesis, the original

papers are added.

4



Chapter 2

A semi–phenomenological approach

2.1 Fokker–Planck equation and friction tensors

To understand the dynamical behaviour of macromolecules in solution, one may start

most generally from Hamiltonian mechanics and the master equations (Paper I) for

the phase–space distribution functions of the overall system ”macromolecule+solvent”.

Taking such a microscopic viewpoint, for instance, we were recently able to derive a

Fokker–Planck type equation (FPE) for the time evolution of the phase–space distribu-

tion function of a dumbbell–type molecule (Paper I), which where later (Paper IV)

also generalized for the macromolecule consisting out of a N pairwise interacting mole-

cular components (the so–called beads of the macromolecule). In a slightly simplified

form, this Fokker–Planck equation reads

∂ρN(Γ; t)

∂t
+

N∑
a=1

Pa

M

∂ρN(Γ; t)

∂Ra

−
N∑

a,b=1

∂ U (|Ra −Rb|)
∂Ra

∂ρN(Γ; t)

∂Pa

=
N∑

a,b=1

∂

∂Pa

ξ (ab)

(
∂

∂Pb

+
1

kBT M
Pb

)
ρN(Γ; t) (2.1)

where M denotes the mass of the beads, Ra and Pa, a = 1, . . . , N the positions and the

momenta of the individual beads, respectively, and where Γ ≡ {R1, . . . RN ; P1, . . . PN}
has been utilized in order to refer to the phase–space coordinates altogether. For each

pair (a, b) of beads, there is associated also a friction tensor ξ (ab) which characterizes

the (thermodynamically averaged) interaction of these two beads with the surround-

ing particles from the solvent. Finally, kB denotes the Boltzmann constant and T the

temperature of the overall system ’macromolecule + solvent’.
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The FPE (2.1) has be derived from the (exact) Liouville equation (Landau and Lifshitz

1980) for the phase–space distribution of overall system ‘macromolecule+solvent’ by

using the techniques of projection operators (Paper I; Szamel 1998; Evans and Morriss

1990) as well as the two assumptions, that (i) the macromolecule and the solvent particles

did not interact before some initial time, t < tin = 0, and that (ii) the solvent starts at

t = 0 from an Boltzmann equilibrium state with the distribution function

Φeq ({rs,ps} =
1

z
e−HS/kBT ,

where HS is the Hamiltonian of the solvent which depend on the all the position and

momenta, {rs,ps}, s = 1 . . . n of the solvent particles, and z =
∫

d{rs,ps} e−β HS

denotes the proper normalization integral for the phase–space distribution.

In the frame of the two basic assumptions from above, the FPE (2.1) describes the

time evolution of the phase–space distribution ρN(Γ; t) and, hence, includes all the

information about the dynamics of the N–bead macromolecule in solution. From this

(probability density) function, in fact, the probability to find the macromolecule at

time t within a small volume dΓ around the point Γ in phase space is simply given

by ρN(Γ; t) dΓ. For this to be right, of course, the distribution function should be

normalized, ∫
dΓ ρN(Γ; t) = 1 , (2.2)

by taking the integral over the complete phase–space of the macromolecule. In practise,

the knowledge of the phase–space distribution (or, at least, of some of its properties) plays

a key role for studying the dynamical behaviour of molecules in solution. As discussed

previously in the literature (Doi and Edwards 1986; Cortes et al 1985; Paper II), this

distribution function help calculate for instance the translational as well as rotational

properties of macromolecules. Moreover, knowing once the phase–space distribution

ρN(Γ; t) of a macromolecule, the time average 〈 . . . 〉 of any function A ≡ A({Γ}) can

be easily derived from the integral

〈A〉 =

∫
dΓA(Γ) ρN(Γ; t) . (2.3)

The FPE (2.1), moreover, has the nice feature that the friction tensors, ξ̂ (ab), whose

off–diagonal elements describe the hydrodynamic interaction between beads a and b,

contain in fact all information about influence of the solvent on the macromolecular

behaviour. As shown recently in Paper VII, the exact expression for the friction tensor

of a N−bead macromolecule

ξ̂ (ab)(Ra,Rb) =
∞∑

j=0

∫ ∞

0
dτ

τ j

j!
n0

∫
dk1dk2

(2π)6
k1 W (k1)W (k2)eik1Rae

bLBτeik2Rb k2

× 1
n

∑∫

s,t
d{rs,ps}e−ik1rse

bLSτe−ik2rt


∑

a′,s′

∂ W

∂ Ra′

[
− ∂

∂ps′

]


j

Φeq (2.4)
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can be written as an (infinite) series of terms which depend on the number density (con-

centration) n0 of the solvent and on the Fourier transform W (k) =
∫

dr e−ikr W (r) of

the bead–solvent interaction W (r) with k being the wave vector. Of course, the fric-

tion terms in (2.4) also contain the Liouville operators L̂B for the ’free macromolecule’,

respectively, L̂S of the solvent. Instead of the Liouville operators, moreover, the each

friction term in the series expansion (2.4) for the friction tensor of a macromolecule can

be written in terms of the bead–solvent interaction potential W and the (j + 2)−point

correlation functions of the solvent (Papers IV and Papers VI ) which, as defined in

the framework of the kinetic theory of the liquids (van Zon and Schofield 2001; Zaccarelli

et al 2001; Hansen and McDonald 1990) contain all the information about the solvent

including, for example, its relaxation time back into the equilibrium, temperature, vis-

cosity, and many further properties. The friction tensor ξ̂ (ab)(Ra,Rb) in Eq. (2.4) should

be one of the key ingredient for studying the dynamical properties of macromolecules in

solutions.

While, however, the infinite series (2.4) for the friction tensor can not be used directly

in the calculations of the dynamical properties of the macromolecule in solutions, this

equation gives rise to a series of approximations owing to the powers in the Fourier

shape of the bead–solvent interaction potential.

To obtain further insight into the behaviour of macromolecules in solutions, let us note

that the each term of the friction tensors ξ̂
(ab)
[j] αβ are symmetric in the cartesian indices α

and β and of rank 2 in the wave vector and, as shown in the Papers I and IV, may have

just six independent components. Furthermore, since these components only depend on

the positions of the two beads, these tensors can always be parameterized in terms of

two parameters (Grosberg and Khokhlov, Paper IV)

ξ̂
(ab)
[j] = A[j](∆ab) I + B[j](∆ab) q (ab) q (ab) (2.5)

with I being the 3×3 unit tensor. In the expression (2.5), ∆ab = |Ra−Rb| is the distance

between the beads a and b and q (ab) = Ra−Rb

∆ab
denotes a unit vector which points from

bead b to bead a. The parameters A[j] and B[j] still contain all information about the

solvent. If we consider only the first (j ≡ 0) term of the series (2.4) for the friction

tensor ξ̂ (ab)(Ra,Rb) of the macromolecule immersed in the solvent (the so–called zero–

order approximation), for example, we obtain the friction tensor (parameters) which are

appropriate in particular for a weak interaction of the macromolecule with the solvent

particles (Paper IV). Figure 2.1, for example, shows a quite different behaviour of the

’zero–order’ friction tensor parameters A(∆ab) / ξ0 and B(∆ab) / ξ0 for the high–density

as well as critical thermodynamic regimes of the solvent if we assume a Yukawa– or

Born–Mayer–type bead–solvent interactions.

As seen from this figure, moreover, the beads do not affect each other anymore for a
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Figure 2.1: Friction tensor parameters A[0] and B[0] normalized on the single–bead friction

coefficient ξ0 as function of the bead–bead distance ∆ab. They are shown for a Yukawa

(Y) and Born–Mayer (BM) bead–solvent potential. These friction parameters are shown

for three cases: (a) the long–wave part (k → 0) of the statical structure factor of the

high–density solvent g(k) was taken into account; (b) the same like (a) but for the solvent

at the critical point; (c) only short–wave part (k À 0) of the statical structure factor of

the high–density solvent (g(k) = 1 ) was taken into account. See text and Paper IV

for further discussion.

distance of say 6σ for the Yukawa bead–solvent potential. In contrast, however, they

will interact at this or even larger distances in the case of a Born–Mayer potential.

The Figure 2.1 also demonstrates that the friction parameters depend rather strongly

on the oscillating nature of the ”two–point” correlation function g(k) of the solvent (so–

called the structure factor or scattering function) for k ≤ 20σ of the solvent, i.e. on the

discrete nature of the solvent (Dünweg and Kremer 1993). As seen from Figure 2.1, the

oscillating of g(k) for small values of k leads to the qualitative different behaviour [sf.

Fig. 2.1 (a), (b)] than obtained if the solvent is considered as uniform and unstructured

medium, i.e. the (so–called) ’high–frequency’ approximation of the static factor g(k) = 1

is assumed constant (Figure 2.1 (c)). Moreover, Fig. 2.1 clearly shows the role of the

various thermodynamical regimes of the solvent on the behaviour of the macromolecule.

In particular, we will consider the solvent at the critical point (Drozdov and Ticker 2001;

Yamaguchi et al 2002) as well as the high–density solvent which is far from criticality.

[compare, for example, Fig. 2.1 (a) and (b), in which the friction tensor parameters of

the macromolecule have been calculated (Paper IV) for the solvent in the critical point

(cp) (the temperature kBTcp ≈ 1.2εB and the number density n0cp ≈ 0.30/σ3) and for

the high–density of the solvent (kB T ≈ 1.2 εB, n0 σ3 ≈ 0.86), respectively.]

Apart from its explicit dependence on the bead–solvent potential, the friction tensor

parameters can be also used to analyze the effects of the various part of the bead–solvent

interactions. As shown in the Paper IV, for instance, only the repulsive part of the

van der Waals interaction is generally responsible for the behaviour of the friction tensor

8



parameters. This results is fully in agreements with the molecular dynamic simulations

of Dünweg and Kremer (1993).

Beside of a simplified scenario of zero–order approximation, however, expression (2.4)

enables one also to analyze the first– and higher–order corrections to the friction tensor.

For instance, by utilizing the well–known property − ∂
∂pt

Φeq = β
m
ptΦeq of the equilib-

rium distribution of the solvent (Bird et al 1987; Grosberg and Khokhlov 1989) and by

restricting the summation to j ≤ 1, the friction tensor (2.4) of a N−bead macromolecule

read as (Paper VI)

ξ̂ (ab) = n0

∫ ∞

0
dτ

[∫
dk1

(2π)3
(k1k1)W (k1)W (k1) eik1Ra e−ik1Rbg(0)(k1; τ)

]

−βn0

∫ ∞

0
dτ

[
τ

∫
dk1dk2

(2π)6
(k1k2)W (k1) W (k2) eik1Ra eik2Rb

×
N∑

c=1

e−i(k1+k2)Rc W (k1 + k2) g(1)(k1,k2; τ)

]
(2.6)

where

g (0)(k1; τ) =
1

n

∑
s,t

∫
d{r,p}e−ik1rs e

bLS τ e−ik2rt Φeq (2.7)

is the two–point correlation function (CF) of the solvent, known also as the dynamic

structure factor (Grosberg and Khokhlov 1989), and

g(1)(k1,k2; τ) =
1

n

∑
s,t,u

∫
d{r,p}e−ik1rs eτ bLS L̂S e−ik2rtei(k1+k2)ru Φeq (2.8)

the three–point correlation function. Both of these correlation functions, Eq. (2.7) and

(2.8), are well–known from the theory of liquids (van Zon and Schofield 2001; Zaccarelli

et al 2001; Hansen and McDonald 1990) and contain all information about the solvent

as, for example, its relaxation time back into the equilibrium, the temperature, viscosity,

and many further properties which could be determined experimentally.

As mentioned above, the friction tensor is one of the key ingredient for studying the dy-

namical properties of macromolecules in solutions. It affects not only the relaxation time

(which is needed for the macromolecule in order to return back from a non–equilibrium

into the equilibrium state) or the center–of–mass and internal velocity autocorrelation

functions of the macromolecule but also its end–to–end vector and radius of gyration

(Paper I; Doi and Edwards 1986). In addition to the internal properties of the macro-

molecular behaviour, the friction tensors affects also the dynamical behaviour of the

macromolecule as a whole. In the next subsections, for example, we shall indicate how

the expression for the friction tensors can be utilized in order to calculate and analyze

9



the center–of–mass (cm) diffusion coefficient for a wide range of mass ratios as well as

for different macromolecules with different number of beads. Information about this

coefficient will help us understand the motion of the macromolecule as a whole within

the solvent.

2.2 Applications of the approach to the translational

motion of macromolecules

Various (large-scale) molecular–dynamic computations have been carried out during the

last decade in order to understand the dynamical properties of macromolecules in solu-

tion including case studies on the dynamical and statical structure factors (Ahrichs and

Dünweg (1999); Liu and Dünweg (2003); Yamaguchi et al 1999, 2002), the velocity and

force autocorrelation functions (Ould–Kaddour and Levesque 2001, 2003), the diffusion

coefficients (Schmidt and Skinner J L 2003, 2004; Srinivas et al 1999; Heyes et al 1998;

Easteal and Woolf 1990), and various other properties. Apart from the interaction para-

meters, these investigations differ by the size and mass of the macromolecules, as well as

by the internal structure of the macromolecule. A lot of MD simulations, in particular,

were devoted to investigate the behaviour of macromolecules immersed in a (so–called)

Lennard–Jones solvent for which the interaction among the solvent particles is modeled

by a ”truncated” Lennard–Jones (LJ) potential

V (r) =





4εS

[(
σ
r

)12 − (
σ
r

)6
]

if r ≤ rS

0 otherwise
(2.9)

where εS is the interaction strength and rS the cut–off radius beyond which the potential

becomes zero. Moreover, similar shape of the interaction has been assumed also for the

macromolecule–solvent potential

W (r) =





4 εM

[(
σ

r−lM

)12
−

(
σ

r−lM

)6
]

S(r − lM ) if lM ≤ r ≤ rM

0 otherwise ,

(2.10)

but with independent parameters εM , rM for the strength and the cut–off, and where

the (additional) length lM defines a ’hard–sphere like’ boundary condition for the macro-

molecule at small distances: W (r → lM) −→ ∞. In addition, the ‘switching’ function

S(r) was introduced into the expression (2.10) in order to ’non–linearly’ vary the attrac-

tion force between macromolecule and solvent particle if the interaction strength εM of

the bead–solvent interaction W is increased.

Let us note that the model of LJ solvent is very popular and useful since it gives many

general information about the statical as well as dynamical properties of the various

macromolecules immersed in the LJ solvent. To facilitate the comparison of the various

computations, however, a common ’unit system’ is typically applied which is based on the

10



parameters of the Lennard–Jones potential (2.9) among the solvent particles. In these

(LJ) units (m = σ = εS = 1), all lengthes are measured in units of σ and energies in

units of εS. For the other quantities, this leads to the derived units: τLJ = (mσ2/εS)1/2

(time); ξLJ = (εSm/σ2) (friction); DLJ = (m/(εS σ2))−1/2 (diffusion coefficients); ηLJ =

(mεS)1/2/σ2 (viscosity); etc. For the sake of convenience, we will use the same unit

system in order to allow for a direct comparison with MDS data.

2.2.1 Single–bead macromolecules

In a first application of this semi–phenomenological approach, which was presented in

the previous subsection, we shall focus on the dynamical properties of a single–bead

macromolecule (N ≡ 1) which interacts isotropically [cf. Figure 2.2] with the surrounding

Figure 2.2: Single–bead macromolecule which interacts isotropically with the surround-

ing solvent.

LJ solvent (2.9). For such a molecule, the friction tensor ξ̂ (aa) = ξ I just depends on a

single (friction) coefficient ξ as obtained by making use of the general expression (2.6)

for a = b,

ξ =
1
3

n0

∫ ∞

0
dτ

[∫
dk1

(2π)3
k2

1W (k1)2 g (0)(k1; τ)
]

−
∫ ∞

0
dτ

[
τ

1
3
βn0

∫
dk1dk2

(2π)6
(k1k2)W (k1) W (k2) W (k1 + k2) g (1)(k1,k2; τ)

]
. (2.11)

Similar to the N−bead macromolecule, this friction coefficient now depends on the two–

and three–point CF of the solvent. The functions g (0) and g (1) contain all information

about the solvent and can be calculated, at least in the limit of τ → ∞, by using

the (so–called) Mode Coupling Theory (MCT) of liquids (van Zon and Schofield 2001;

Zaccarelli et al 2001; Hansen and McDonald 1990). Here, we shall not discuss how one

can calculate these CF of the LJ solvent but simply note that they can be evaluated

numerically by using the mode–coupling formalism as described, for instance, by Ali et

al (2001).

11



Having the Fourier transform W (k) of the LJ bead–solvent potential (2.10) and the two

and three point correlation functions of the solvent, we can — by inserting these functions

into Eq. (2.11) — calculate immediately the friction coefficient ξ of the macromolecule

for different values M/m of the macromolecule–to–solvent mass ratio if we assume an

equal (and constant) mass density of the macromolecule and the solvent particles, i.e
M
R3 = m

(σ/2)3
, independent of radius R of the macromolecule. As known from the general

phenomenological Stokes–Einstein (SE) theory (Doi and Edwards 1986; Grosberg and

Khokholov 1998), the friction ξ is closely related to the diffusion coefficient D of the

macromolecule

Dξ = kB T . (2.12)

Below, on figure 2.3, we display the translational diffusion coefficient of the single–bead

molecule as function of the mass ratio of the macromolecule relative to the mass of the

solvent particle. Moreover, we compare our results with MD simulations of Schmidt and

Skinner (2003) and Brey and Ordóñez (1982). In both these simulations, a spherical–

symmetric macromolecule was assumed which interacts with the solvent particles due

to the LJ potential (2.10) with ‘switching’ function S(r) = 1 and with the interaction

strength εM = εS as well as with the cut–off parameters rS = 2.5 σ for the solvent–

solvent potential (2.9) and rM = 2.5 σ + lM for the macromolecule–solvent interaction

(2.10), respectively. The computations of Schmidt and Skinner (2003) and Brey and

Ordóñez (1982) differed however with respect to their temperatures T , viscosities η, and

the number densities n0 of the solvents. While Schmidt and Skinner applied the values

kB T ≈ εS, η ≈ 2.83 ηLJ, n0 ≈ 0.85, Brey and Ordóñez simulated the macromolecular

motion when kB T ≈ 2.95 εS, η ≈ 7.7 ηLJ, n0 ≈ 0.6, respectively. For all further details

in the initial set–up of the MDS, we refer the reader to the literature.

As seen from figure 2.3, an excellent agreements with the MDS simulations is obtained

for all medium and larger mass ratio M/m (and with minor deviation only for small

ratios), but independent on the particular choice of the temperature and the viscosity of

the solvent (Paper III).

Instead of the friction and/or diffusion coefficients of the macromolecule, the boundary

condition coefficient is sometimes used in order to describe the properties of macromole-

cules in solution. This coefficient

c =
ξ

π η R hydr

, (2.13)

which depends on the hydrodynamic radii of the macromolecule, is usually utilized to

specify the boundary conditions (BC) for the velocity of the solvent particles at the

surface of the macromolecule (Doi and Edvards 1986; Schmidt and Skinner 2003, 2004).

Figure 2.4 displays the BC coefficient for a single–bead macromolecule with mass M =
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Figure 2.3: Diffusion coefficient D of macromolecules in solution as function

of the macromolecule–to–solvent mass ratio M/m. The results from our semi–

phenomenological theory, calculated for a ”truncated” Lennard–Jones potential (2.10)

between the macromolecule and the solvent particles. See the text and Paper III for

further discussion.

100 m as function of the relative interaction strength εBS/εS of the LJ potentials (2.9)

and (2.10). In order to model strong but short-range attraction interaction between

macromolecule and solvent particles, however, we use the ’switching’ function

S(r) =





1 if r ≤ a = 6
√

2σ

(b2−r2)2 (b2+2r2−3a2)
(b2−a2)3

if a ≤ r ≤ b = 3σ
2

0 otherwise

(2.14)

which was introduced by Schmidt and Skinner (2004) in into the expression (2.10) in

order to ensure that the solvent particles remain attracted to the macromolecule if the

interaction strength εM of the bead–solvent interaction is increased.

The computations of the boundary condition coefficient c were based on expression (2.11)

for the friction coefficient and the two– and three-point CF which were evaluated numer-

ically. The hydrodynamical radius R hydr = lM + (1+ 6
√

2) has been used for the macro-

molecule by making use of the criteria of Schmidt and Skinner (2004) that the particles of

the first shell of solvation correspond to the minimum of the LJ macromolecule–solvent

potential (2.10) with switching function (2.14) and, hence, sit directly on the surface of

the macromolecule (Paper III).

Apart from our (semi–empirical) zero– and first–order computations of the BC coefficient,

Figure 2.4 displays also the results of the MD simulations by Schmidt and Skinner (2004)

as well as the constant coefficients for the stick and slip boundary condition, i.e. for a

purely phenomenological treatment of the properties of the solvent (Doi and Edwards

1986). Excellent agreement are found with the MD data by Schmidt and Skinner for all
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Figure 2.4: Boundary condition coefficient c of a single–bead macromolecule in solution

with mass M = 100 m as function of the bead–to–solvent interaction strength ratio

εBS/εS. See text and Paper VII for further discussion.

small and medium ratios of the LJ interaction strengthes. However, while the zero–order

approach starts to deviate from the numerical values already for ratios εBS/εS ≈ 2, the

first–order approximation (2.11) remains accurate up to εBS/εS ≈ 6 and is larger by

only 25 % for a ratio of about 8.7 of the bead–solvent to the solvent–solvent interaction.

As seen from the figure 2.4, moreover, the purely phenomenological theory behaves quite

differently and is appropriate only for very large ratios of the interaction strength and

if, for the present choice of interaction parameters, the stick boundary conditions are

applied.

Apart from the dependence of the diffusion coefficient from of the mass of the molecules

as well as from the bead–solvent interaction strength, we also investigated the transport

properties of macromolecule immersed in the LJ solvent with regards to different thermo-

dynamical properties of the solvent, such as their temperature T , number density n0, or

the viscosity η (Paper III). For these properties, good agreement with MD simulations

is usually found as far as theoretical data are available at all from the literature.

2.2.2 N–bead macromolecular chains

Apart from the single–bead molecule, the semi–phenomenological approach may be uti-

lized in order to understand the effects of the influence of the solvent on the transport

properties of large macromolecule with internal structure. In particular, the expressions

for the internal and center–of–mass frictions was recently derived in Paper I for the

dumbbell–type molecule under the assumption that bead–solvent interaction is weak
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Figure 2.5: Center–of–mass diffusion coefficient D
(cm)
N as function of N , the number of

beads in the macromolecule. The results from this work for ”truncated” Lennard–Jones

potential (2.10) (triangles) are compared with the MDS data (Dünweg and Kremer 1993)

(squares) and MCS data (Ahrichs and Dünweg 1999) (circles) as well as with the theo-

retical data from the Rouse model (solid line) and from the Zimm model with ”preav-

eraging” (dots line) and ”fluctuating” hydrodynamic interactions (BDS data) from (Liu

and Dünweg 2003) (triangles+dots line). See text and Paper IV for further discussion.

and, therefore, the zero–order approach for the general friction tensor (2.4) may be used.

In Paper IV, moreover, we extend the result from Paper Ifor the center–of–mass fric-

tion tensor on the case of general N–beads macromolecule. The particular feature of the

derived expression for the center–of–mass friction tensor

ξ
(cm)
N =

n0

3
N

∫ ∞

0

dk

(2π)3

[∫ ∞

0

dτ k2 W (k)2 SN(k, τ) g(k, τ)

]
(2.15)

is that it can be expressed in terms of the measurable parameters of the system ’macro-

molecule+solvent’ (Paper IV). As seen from the expression (2.15), the center–of–mass

friction coefficient depends on the structure factor SN(k, τ) = 1
N

〈∑N
a, b =1 eikRa e−ikRb(τ)

〉

describing both the geometrical configuration as well as dynamical properties of the

macromolecule (Doi and Edwards 1986). This cm friction coefficient also depends on the

dynamic structure factor g(k, τ) which contain all the information about the solvent.

This is the key results of the present section since the knowledge of the center–of–mass

friction coefficient plays a quite central role for understanding the motion of macromole-

cules in solution (Doi and Edwards 1986; Grosberg and Khokhlov 1989; Kenward and

Slater 2004). In figure 2.5, for example, the center–of–mass diffusion coefficient is shown

as function of the length of the chain N . Obviously, a very good agreement is found

again for any length of the macromolecular chain, when compared to the ’pure’ MD
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simulations by Dünweg and Kremer (1993) and as well as to the Monte Carlo Simula-

tions (MCS) by Ahrichs and Dünweg (1999). In addition, as seen from the Figure 5, the

data, which calculated from the Rouse (non–hydrodynamic) phenomenological theory

(Kirkwood and Riseman 1948; Rouse 1953) are always smaller than simulation data and

can give only a qualitative understanding of the behaviour of the cm diffusion coefficient

for the N–bead macromolecule. Similarly, the Zimm model with ”preaveraging” hydro-

dynamic interactions (Zimm 1956; Bixon 1973; Zwanzig 1974; Barkley and Zimm 1979)

predicts the result which is also far from the MDS data, the Zimm model with ”fluctuat-

ing” hydrodynamic interactions ((so–called) Brownian dynamic simulation (BDS) data

by Liu and Dünweg (2003)) lead to a reasonable appears for the cm diffusion coefficient

for the N–bead macromolecule, but only if the number of the beads ≥ 110.

The semi–phenomenological description of the structure and transport properties of the

macromolecular solutions, as derived in this thesis,has several advantages when compared

with MD simulations. While the treatment of (all) the particles from the macromolecules

and the solvent is typically unfeasible (or would be very expensive even for a restricted

size of the overall system), the phenomenological theory can be utilized efficiently in order

to explore the effects of additional interactions as well as for determining some suitable

parameterizations for the interaction potentials involved. For this reason, the use of

our semi–phenomenological methods may help understand a number of properties of

the macromolecular solutions without that large–scale MD studies become necessary. In

addition, in order to facilitate a further analysis of our semi–phenomenological approach,

several computer codes were developed during the last years and are now available for

calculating the transport properties of different macromolecules solutions. We therefore

believe that these method will be very powerful also for calculating and analyzing the

statical and dynamical properties of the macromolecules, clusters and nanoparticles in

solutions.
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Chapter 3

Rotation diffusion of

macromolecules

Apart our researches in the translational motion of the macromolecules in solution

(Papers I, III, IV, VII), the properties of the rotational (orientational) motion of macro-

molecules have been also investigated by us during the last years. In fact, accurate studies

on the rotational dynamics of macromolecules in solutions are still a challenge for the

modern polymer, protein and DNA research. Of course, the reason for this interest is

that a better understanding of the rotational properties of the macromolecules in solu-

tions may help illuminate the nature of the coupling between macromolecules and their

solvent environment as well as the internal structure of the macromolecules. During the

past decade, therefore, a number of the experimental methods have been developed and

utilyzed in order to investigate the rotational properties not only free macromolecules in

solutions but also macromolecules which immobilized on a surface, i.e the macromole-

cules with restricted mobility. In particular, attention has been paid by the dielectric

relaxation, the dynamic scattering (Dı́az-Leyva et al 2004) and the fluorescence depo-

larization experiments especially upon the rotational diffusion coefficient as well as the

various combinations of the first and second rank of the orientational correlation func-

tions [cf. Section 4.2 of the next Chapter]. On the theoretical side, in addition, several

— often quite large — Molecular (Satoh 2006; Kaznessis et al 1998a, 1998b; Dove and

Pawley 1983;) and Brownian dynamical simulations (Tao et al 2005; Diaz et al 1987;

Ermak and McCammon 1978) have been carried out in order to study the (restricted)

rotational diffusion of the free as well as immobilized macromolecules immersed in the

solvent. Both the experiments as well as the dynamical simulations have been moreover

supplemented by a number of analytical case studies including the work of Kinosita et

al (1977) and Wang and Pecora (1980) on the (restricted) rotational diffusion of rigid

rod–like molecule. This work was later extended by Kumar and coworkers (1986, 1989)

17



as well as by Fujiware and Nagayama (1985), who explored the restricted rotational dif-

fusion of symmetric top molecules as well as of flexible molecules which were modeled as

a set of the beads connected by the rigid rods. Moreover, the rotational behaviour of the

spherical and rigid–rod molecules in strong electric fields was investigated by Kalmuck

and Déjardin in 1999 as well as Koenderink with coworkers (2002), respectively. In all

these investigations, however, the macromolecules were considered so far as rigid parti-

cles without any ’internal’ motion, that is without any changes in the distances between

neighboured beads [cf. Figure 3.1].

Figure 3.1: Two models of the macromolecule immobilized on a surface: (a) the non–rigid

dumbbell and (b) the rigid–rod model.

Therefore, starting from Paper II, we pay attention to the (restricted) rotational motion

of nonrigid macromolecules and analyze the effect of the bead–bead interaction poten-

tials and the values of the restriction angle on the rotational diffusion coefficient as well

as on the configuration distribution function. By starting from the microscopic theory of

the macromolecular motion, i.e. from a Fokker–Planck equation (2.1) for the phase–space

distribution function of the nonrigid macromolecule, we derived an explicit expression

for the configuration–space distribution function of a non–rigid dumbbell–type molecule

which is immobilized on a surface [cf. Figure 3.1]. This function contains all the infor-

mation about the interaction among the beads as well as the effects from the surface and

the surrounding solvent. As derived in Paper II, moreover, this configuration–space

distribution

ψ(Q, θ, ϕ; t) =
∞∑

n=1

∞∑
m=−∞

e−νm
n (νm

n +1)DR t

× (Am
n cos mϕ +Bm

n sin mϕ) P m
νm

n
(cos θ)Ψνm

n
(Q), (3.1)
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can be written in terms of the rotational diffusion coefficient of the dumbbell

DR = D

〈
1

Q2

〉
, (3.2)

as well as the radial distribution functions Ψνm
n

(Q). In expression (3.1), moreover,

Am
n , Bm

n are expansion coefficients and P m
νm

n
(cos θ) denote the associated Legendre func-

tion of degree νm
n which is noninteger and strongly depends on the restriction angle θ0.

In Paper II we numerically determined the values of νm
1 < νm

2 < νm
3 . . . (i.e. the

sequence of ν’s which satisfy the (restricted) boundary conditions θ ≤ θ0 for a given m)

and found that the values of νm
n increase when the maximal angle θ0 decrease, i.e. when

the cone for the rotational motion of the molecule becomes smaller.

To obtain further insight into the rotational behaviour of the molecules, we considered

several particular cases for the most of the commonly applied bead–bead interaction po-

tentials including (i) a Hookean (Grosberg and Khokhlov 1989), (ii) a finitely–extensible

nonlinear elastic (FENE) (Kaznessis 1998a, 1998b), (iii) a Frenkel (Doi and Edwards

1986) as well as (iv) a dna–type (Bustamante et al 1992; Vologodskii 1994) bead–bead

potential. All these potentials have their origin in the field of physical chemistry where

they were constructed in order to simulate the chemical bonds and transport coefficients

of the macromolecules in different (chemical) environments. In addition to the bead–

bead interaction potential UBB, moreover, we assumed the (bead–surface) potential UBS

which describes the interaction between ”upper” beads and the surface [cf. Figure 3.1].

In particular, we took the Cone (Paper II) as well as the effective double well (Sin)

bead–surface interaction potential (Tirado et al 1984; Papers V and VI).

Having selected a bead-bead and bead-surface potentials, we calculated the (set of) radial

distribution functions Ψνm
n

(Q) which are the keys for studying the configurational and

relaxation properties of the rotational motion of nonrigid macromolecules in solution.

It was found, in particular, that all distribution functions with order m 6= 0 are rather

sensitive both to the opening angle of the cone θ0 as well as to the particular choice of

the bead–bead potential. Moreover, the structure of the radial distribution functions

becomes less pronounced for, say, 40 o ≤ θ0 ≤ 90 o (Paper V).

Apart from its dependence on the restricted angle θ0, the Radial distribution functions

Ψνm
n

(Q) should be used in order to calculate and analyze both the rotational diffusion

coefficient DR and the orientational correlation function

P2(t) =
1

2
(3 〈cos θ(t)〉 − 1) (3.3)

which is often used in order to characterize the rotational motion of macromolecules

in solution, if immobilized on a surface (Uvarov, Gelin and Blokhin 1999; Ermak and

McCammon 1978; ). Let us now note, however, that in order to calculate the rotational
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diffusion coefficient or any other measurable function for the macromolecule we — at

least in principle — need to calculate the infinite set of the radial distribution functions

Ψνm
n

(Q). Fortunately, it was found that maximal values of the radial distribution func-

tions decreases with increasing of the n and m quite quickly. As following from Paper

V, in particular, the radial distribution functions Ψνm
n

(Q) is almost zero for any values

θ0 and Q when, in particular, n ≥ 4 and m ≥ 4.

Having available the radial distribution functions Ψνm
n

(Q), we may evaluate now (Paper

VI) the time behaviour of the OCF for any restricted angles. Figure 3.2 shows the

normalized orientational correlation function (OCF) for two of such angles, θ0 = 30 o

and 66.4 o,

C(orien)(t) = 〈P2(t)/P2(0)〉 (3.4)

as function of time t and compares them with those from the Brownian dynamical

simulations by Carrasco and de la Torre (1984).

Figure 3.2: Time behaviour of the orientational correlation function (OCF), C(orien)(t),

of a nonrigid dumbbell macromolecule which interacts with the surface via the effective

double well (Sin) potential. OCF from our semi–phenomenological theory are compared

with the BDS by Carrasco and de la Torre (1984). See text and Paper VI for further

discussion.

This figure 3.2 shows a very good agreement of our calculations with the BDS data is

found in for θ0 = 30o and with some minor deviations also for θ0 = 66.4o. As seen from

Figure 3.2, moreover, the OCF from the triexponential approximation by Carrasco and

de la Torre (1984) are always larger than our computations, especially for rather large

values of θ0. Apart from orientational correlation function C(orien), moreover, we also

used the derived Radial distribution functions Ψνm
n

(Q) in order to analyze the properties

of the rotational diffusion coefficient DR with regards to the different bead–bead and
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bead–surface potentials. For this coefficient, good agreement with Brownian dynamic

simulation (BDS) as far as theoretical data are available from the literature. [cf., for

example, Table 1 in Paper VI].

This demonstrates that our approach enables one to understand and calculate the ro-

tational (and further) properties of macromolecules without that extensive Brownian

dynamical simulations are always necessary. In the future, moreover, we hope that the

Radial distribution functions from above will help to interprete (NMR) experiments from

dielectric relaxation and correlation spectroscopy as carried out, for instance, for biologi-

cal molecules. In addition, we are presently also continue this work to better understand

the rotational dynamics of N–bead chains or other macromolecular structures.
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Chapter 4

Outlook: Scenarios for future

studies

4.1 Towards dense macromolecular solutions

As discussed in the previous chapters 2 and 3, the dynamical behavior of the macromole-

cular solutions can be described and analyzed in terms of the microscopic Fokker–Planck

equation (2.1). This equation describes for the time evolution of the phase–space distri-

bution function of the macromolecule while all information about surrounding solvent is

accumulated into the friction tensors, which appear in the rhs. of the FPE. Until now,

however, we have considered only the case of the dilute or semi–dilute macromolecular

solutions. For such solutions the inter–molecular interaction, i.e. interaction between

different macromolecules, may be disregarded and, hence, all statical and dynamical

properties of the solutions can be described in terms of an (isolated) single macromole-

cule. In contrast to the dilute solutions, however, the dense solutions is characterized by

several addition affects which comes due to the interaction between different macromole-

cules as well as due to the fact that macromolecules can not intersect each other. It was

found by using the microrheology experimental techniques (Amblard et al 1996; Helfer

2000), for example, that even at moderate concentrations of the macromolecules, they

start to interpenetrate each other and to become entangled. This ’entanglements’ gives

rise the unusual (anomalous) dynamics as well as to some novel viscoelastic effects of

the macromolecular solutions. These anomalous have been observed experimentally by

measuring the time–dependent correlation functions of entangled polymer melts. These

experiments showed the appearance of ’plateaus’ in the center–of–mass mean–square

displacement (Lodge et al 1990), and in the shear moduli (Ferry 1980; Graessley 1974).

Up to now, the most fruitful theoretical treatment of the dynamical behaviour of the
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macromolecules in the high–density solutions is the (so–called) reptation model of the

polymers which was firstly suggested by de Gennes (1979). The basic idea of this model

is that the entanglements between a chain and its neighbors prevent any large–scale

motions perpendicular to its local direction and, therefore, the chains can only reptate

in a snakelike motion parallel to their own curve. In other words, the local beads of

the macromolecule can only diffuse longitudinally along the line of the chain. Doi and

Edwards (1986) have expressed these ideas in mathematically well–defined form which

allowed a calculation of aa dynamical properties of the macromolecular solutions. Let us

note, moreover, that the reptation theory of the macromolecular solution has been found

useful to predict the statical and dynamical properties of entangled polymers which were

later established in the Monte Carlo (Kolinski et al 1987; Paul et al 1991; Shaffer 1994)

and molecular dynamic simulations (Kremer and Grest 1990; Pütz et al 2000; Bulacua

and van der Giessen 2005) as well as in the experiments (Lodge et al 1990; Helfer 2000).

In spite of several theoretical, MDS as well as experimental works, were devoted to the

reptation theory, a microscopic foundation of the reptation model is still lacking. Such

a microscopic theory should be able to derive from first principles the existence of the

reptative motion of the macromolecule as a consequence of the repulsive interactions. As

mentioned in the chapter 2 of this work, our semi–phenomenological approach is based

on such a microscopic view point of the macromolecular solutions from the beginning

and, therefore, can be utilized in order to describe and analyze the behaviour of the

macromolecule in the dense solutions. Let us note that the Fokker–Planck equation

for the distribution function of the high–density macromolecular solutions have been

recently derived by us (Uvarov and Fritzsche 2006e). Similar to the dilute solutions, the

rhs. of this FPE contains the friction tensor of the macromolecule which describes all

possible effects coming from the neighboring macromolecule as well as solvent particles.

In these works, it was found that starting from some ’critical’ number density ncrit

of the macromolecules in solution, the hydrodynamic interaction starts to be strongly

screened, i.e. the effect of solvent on the macromolecular friction becomes negligible

for any particular choice of the bead–solvent interaction and the friction is determined

by the critical number density ncrit and the interactions between macromolecules only.

In contrast to the reptation theory, which is assumed such property of the fiction and

diffusion of the macromolecules in the dense solution, we derived this result by starting

from the microscopic view point and by using the semi–phenomenological approach.

Actually, this extension of our semi–phenomenological approach for studying the statical

and dynamical properties of the ’entangled’ macromolecules in the semi– and high–

density solutions is currently under way in our group and will be published soon (Uvarov

and Fritzsche 2006e).
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4.2 Behaviour of time–dependent correlation func-

tions

As follows from the statistical physics (Landau and Lifshitz 1980; Kreuzer 1981), several

properties corresponding the time–behaviour of the macromolecules in solutions can be

described and understand in terms of the time–dependent correlation functions (CF).

These CFs describe the relaxation of the macromolecule from non–equilibrium to the

equilibrium states by indicating the effects of the ’memory’ in the behaviour of the same

or different quantities (Berne 1977; Cortes et al 1985; Uvarov et al 1999). The behaviour

of the correlation functions, moreover, can be directly measured in the experiments

which make the study of the CFs properties are really important. In particular, the

self–density equilibrium time CF, which is defined as probability for finding a selected

test macromolecule at a position within dr of r(t) at a time within dt of t given that it

was initially located at r(0), is nothing else like the Fourier shape of the intermediate

scattering function which may be directly obtained from the scattering experiments

(Lindenberg and Cukier 1977; Rathgeber et al 2004). Moreover, dielectric relaxation,

dynamic light scattering and fluorescence depolarization experiments measure various

combinations of the first and second rank of the CFs

C(t) =
〈
W

(j1)
k1 k2

(Ω(0))W
(j2)
k3 k4

(Ω(t))
〉

(4.1)

of the orientation of some vector fixed to the macromolecule as defined in various papers

(cf. for example, Wang and Pecora 1980; Szabo 1984; Kumar 1986, 1989; Blokhin et al

1999). In equation 4.1, the solid angle Ω(t) determines the orientation of the vector fixed

to the macromolecule at time t and W(j1) refers to the Wigner rotation matrix of rank

j1 (Varshalovich et al 1989; Boas 1983).

As known from the theoretical investigations, however, the behaviour of correlation func-

tions closely relates to the transport properties of macromolecular solution. In particular,

by using the Mori–Zwanzig projection operator formalism (Mori 1965a, 1965b; Zwanzig

1961), several so–called Kubo or Green–Kubo relations for the transport coefficients may

be derived in terms of the autocorrelation functions (ACFs), including viscosity (in terms

of the ACF of the off–diagonal elements of the instantaneous pressure tensor ), thermal

conductivity (in terms of the ACF of the internal energy density of the solution) and

diffusion coefficient (in terms of the velocity ACF) as well as many further transport co-

efficients (Evans and Morriss 1990). As found by Dünweg and Kremer (1991), moreover,

the hydrodynamic diffusion tensor can be described in terms of autocorrelation function

of transversal velocity field modes. The Green–Kubo relations between transport coef-

ficients of the macromolecular solution and the correlation functions, in fact, are very

general results and independent on the microscopic mechanism of the energy dissipation

and friction in the system ’macromolecule+solvent’ (Evans and Morriss 1990).
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Recently, in Paper I, we have considered the long–time behaviour of the autocorrelation

function (ACF) for the center–of–mass, C
(cm)
αβ (t), and the internal momenta, C

(int)
αβ (t) for

a dumbbell–type macromolecule as defined by:

C (i)(t) ≡ 〈
P (i)(0) P (i)(t)

〉
; i = cm, int . (4.2)

where P (i)(t) refer to the center–of–mass (cm) or the internal (Q) momentum of the

dumbbell at the time t. In this case study, in particular, we found that the internal

momentum (auto–) correlation function C (int)(t), which is closely related to the internal

friction tensor ξ̂ (int) of the macromolecule (Paper I; Uvarov et al 1999), decays alge-

braically both for Yukawa and Born–Mayer bead–solvent interactions but with different

decay rate. From our analyses, in particular, it was found that the asymptotic time

behaviour (→ ∞) of the internal momentum ACF decays like C (int; BM)(t → ∞) ∼ t−3

for the Born–Mayer (BM) potential. In contrast to the BM interaction potential, the

decay rate increases, C (int; Y)(t →∞) ∼ t−3/2, for the Yakawa (Y) bead–solvent potential

which becomes more stronger than Born–Mayer potential for large distance between the

beads of the dumbbell macromolecule. Let us note, that such behaviour of algebraic

tail of ACF was predicted empirically from molecular dynamics simulations and theo-

retical works by several authors (cf. for example, Erpenbeck 1982 1985; Hoef et al 1992;

Gelin and Kosov 2006) in contrast to the (unphysical) exponential decay as known from

the phenomenological theory (Doi and Edwards 1986; Grossberg and Khokhlov 1989).

Up to now, however, the investigations of these CFs was not the general focus of our

work. Therefore, all our studies of in the topic of CF was restricted by the (simplest)

dumbbell–type molecule but should be extended to deal with the (general) N–bead case

of the macromolecule in order to better understand the dynamics of macromolecular

chain and other macromolecular structures.

4.3 Nanoparticles and macromolecules immersed

into ionic liquids

In the past years much attention was paid for studying the properties of ionic liquids (IL)

which have great potential in fundamental researches in physical chemistry and chemical

engineering (Wasserscheid and Welton 2002). Although many characteristics of ionic

liquids are similar to those found for (conventional) macromolecular solvent, they shows

a number of ’anomalous’ properties. One of this properties, for example, is that each

molecule within the liquids still appear as ion, giving rise to solutions with high polarity

and viscosity as well as rather low vapor pressure. Despite of the potentials application

of IL, however, a detailed understanding of their structure and dynamical properties is

still missing and a challenge of present–day research. During the past decade, therefore,
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a number of theoretical and experimental techniques have been developed in order to

analyze and describe the physical and chemical properties of IL in the solid, liquid as well

as gas phase (Wasserscheid and Welton 2002; Dupon 2004; Giernoth et al 2005). On the

theoretical side, in particular, many of these case studies were based on the molecular

dynamic (MD) simulations which often required large–scale computations and, hence,

can not be ’repeated’ so easily for different interactions and solutions (Znamenskiy and

Kobrak 2004; Del Pópolo and Voth 2004). Much less attention, in contrast, has been

paid to analytical investigations among the molecular components of ILs and to their

statical and transport properties of nanoparticles and macromolecules if immersed in

ILs.

Therefore, another future applications of the semi–phenomenological approach is exten-

sion of our theory to support also analytical investigations of the dynamical properties

complex macromolecules, colloids as well as nanoparticles immersed into the solvents

with ’specific’ properties such as ionic liquids, polar and non–polar solutions ect. By us-

ing, for example, the fact, that the microscopic friction ξ̂ is explicitly expressed in term

of the bead–solvent interaction potential [cf. equations (2.6), (2.11) as well as (2.15)], it

is possible to investigate and analyze the effect of each interaction (Coulomb, van der

Waals, hydrogen–bonds ect) on the structural and transport properties of the macro-

molecules immersed in specific solvent. When combining with the MD simulation data,

moreover, the semi–phenomenological approach help to ’restrict’ the possible values in

the parametrization of the interactions in order to qualitatively predict the formation

and deformation properties of dissolved particles (macromolecules, colloids, . . . ).

Apart from the structure and transport properties of macromolecules dissolved in IL,

additional task refer to the extention of our semi–phenomenological approach in order

to investigate the orientational (rotational) properties of free macromolecules in IL or if

macromolecule (in such liquids) are immobilized to some surface. In fact, experiments

and MD simulations on the re–orientation of macromolecules in IL have gained both

a lot of interest over the years (Morrow and Maginn 2002; Ito et al 2004; Mali et al

2005). Of course, the reason for this interest is that a better understanding of the

orientational properties of the immersed macromolecules may help illuminate the nature

of the coupling between macromolecules and their ionic environment. Actually, the is

extention of our semi–phenomenological approach for studying the translational as well

as rotational properties of the macromolecule immersed in IL is currently under way in

our group. Several computer codes, which are now available for calculating, have been

developed during the last years in order to analyze the effects of the each interaction

(Coulomb, van der Waals, hydrogen–bonds ect) on the structural, translational as well

as rotational properties of the macromolecules immersed in specific solvent.
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4.4 Internal structure and transport properties of

macromolecule in solutions. Topological effects

Of course, the possible applications of the semi–phenomenological approach are not

restricted to the examples from above but can be used also to study other tasks in the

field of the macromolecular physics. For instance, this approach can be used in order to

investigate the influence of the different internal geometrical structures of macromolecule

on the statical and dynamical (rotational&translational) properties of macromolecules

in solution. As known from literature (cf. for example, Doi and Edwards 1986; Paper I,

Paper IV), the internal geometrical structure of the macromolecule is fully determined

by the interaction potential among the beads of the macromolecule. Therefore, by using

a similar ansatz for macromolecules we shall be able to analyze the coupling between

rotational and translational motion of macromolecules ( Beloborodov et al 1998) as

well as to calculate friction tensor, diffusion coefficient and time–dependent correlation

functions for rings (Doi and Edwards 1986), dendrimers (Satmarel et al 2004; Gurtovenko

et al 2003), or even for ’fractal’–shape macromolecules (Jurjiu et al 2002; Blumen et al

2003) immersed into different solvents.
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Chapter 5

Summary

The influence of the bead–solvent interaction on the dynamics of macromolecules, which

are immersed into a solution, has been investigated by using Hamiltonian mechanics

and master equations for the phase–space distribution functions. In this approach, the

macromolecules is taken as a set of beads which are coupled to each other by a force

and which are surrounded by — a large number of — solvent particles. Starting from

the Hamiltonian of the overall system ’macromolecule + solvent’, then, a Fokker–Planck

equation (FPE) was derived for the time evolution of the phase–space distribution func-

tion of the (N–bead) macromolecule. In this derivation, three realistic assumptions were

made: (i) The macromolecule and the solvent particles did not interact before some

initial time up to which the solvent stayed in the equilibrium; (ii) The interaction be-

tween the beads and the solvent particles is considered to be weak when compared to

the bead–bead interaction, which keep the macromolecule together; (iii) The relaxation

of the solvent proceeds much faster in time than those of the beads. These three as-

sumptions are made very frequently in studying the translational as well as rotational

properties behaviour of macromolecules in solutions.

For the basic assumptions from above, the dynamics of the macromolecule is determined

purely by the friction tensors that appear on the right–hand side of the FPE and which

can be expressed in terms of the bead–solvent interaction potential as well as the dynamic

structure factor of the solvent. Using the explicit expression, as obtained earlier for

the friction tensors of the molecule in solution, we showed that the behaviour of the

friction tensor parameters depend on the distance between the beads as well as on the

thermodynamic regime of the solvent. From our analysis of the friction tensors, moreover,

the discrete nature of the solvent can be seen clearly at small distances between the bead

and solvent particles.

For a moderate bead–solvent interaction, all coefficients obtained agree excellent with

Brownian and molecular dynamic (MD) simulations carried out over the years. We
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therefore conclude that our semi–phenomenological approach can be utilized also for

studying other dynamical properties of macromolecules in solution. Compared with

often expensive MD calculations, a great gain in efficiency is obtained by several orders

of magnitude and may thus allow investigations on more complex systems for which

other numerical techniques will remain unfeasible in the near future.

Special attention of this thesis work was placed on the flexibility of our approach which

makes it possible to implement future investigations in the field of the macromolecular

solution, as described in Chapter 4. These implementation is very reasonable, because

few steps of the possible future applications are already realized in the frame of the

semi–phenomenological approach. In particular, we derived the Fokker–Planck equation

(FPE) for the phase–space distribution function of the high–density macromolecular

solution (cf. Section 4.1). Together with the FPE, we also derived the friction tensors

in terms of the macromolecule–solvent and macromolecule–macromolecule interactions.

Moreover, first step has been made in order to analyze the influence of the bead–solvent

interaction on the time evolution of the center–of–mass and internal correlation functions

of the macromolecules immersed in the solvent (Section 4.2). Finally, we would like to

mention that the ability of the semi–phenomenological approach is not exhausted by

applications, mentioned in those thesis work only.
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Introduction

In the past two decades, one of the main goals of kinetic

theory has been to derive master equations for the phase-

space distribution function by starting from first principles,

i.e., from the Hamiltonian of the overall system. From these

equations, the hope (and research program) is then to obtain

non-phenomenological expressions for the transport coeffi-

cients, including information about the relaxation of the

system towards its equilibrium state. Until now, this pro-

gram has been realized successfully for a system of (i) rigid

spherical particles with allowed binary collisions[1] (Boltz-

mann-type equations); (ii) point-like charged particles with

either a truncated Coulomb potential[2] (Landau equations)

or a full Coulomb interaction[3] (Lennard-Balesku equa-

tions); or (iii) for weakly interacting spherical particles

(Fokker-Planck-type equations). Apart from being a – more

or less – realistic gas model, the latter case (iii) of weakly

interacting particles also incorporates the motion of a Brow-

nian particle in a bath.[4] In addition to these cases, some

effort has also been undertaken to derive (iv) a Fokker-

Planck equation for non-spherical particles, including the

rotational degrees of freedom.[5,6] Obviously, all these

approaches go beyond the phenomenological theory for

Summary: Hamiltonian dynamics and a chain model are
used to study the dynamics of macromolecules immersed in
a solution. From the Hamiltonian of the overall system,
‘‘macromoleculeþ solvent,’’ a master and a Fokker-Planck
equation are then derived for the phase-space distribution of
the macromolecule. In the Fokker-Planck equation, all the
information about the interaction among the beads of the
macromolecule as well as the effects of the surrounding
solvent is described by friction tensors, which are expressed
in terms of the bead-solvent interaction and the dynamic
structure factor of the solvent. To explore the influence of the
bead-solvent potential on the dynamics of macromolecules,
the friction tensors are calculated for a dumbbell molecule
and for three choices of the interaction (Yukawa, Born-
Mayer, and Lennard-Jones). Expressions are derived, in
particular, for the friction tensor coefficients of the center-of-
mass and the relative coordinates of the dumbbell. For the
long-term behaviour of the internal momentum autocorre-
lation function, moreover, an ‘‘algebraic decay’’ is found, in
contrast to the (unphysical) exponential decay as known from
phenomenological theory.

Yukawa, Born-Mayer and Lennard-Jones bead-solvent inter-
action potentials.
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an ensemble of an interacting particle, which has just

been immersed into an uncompressible and unstructured

bath.

To understand the dynamics of macromolecules, they are

often described in terms of a few – or even some larger

number – of (molecular) subsystems, called the beads of

the (macro-)molecule. If immersed in a solution, of course,

the dynamic behaviour of the macromolecules is deter-

mined not only by the interaction among the (neighboured)

beads, but also by the interaction of the beads with the

surrounding solvent particles. In the past, this bead-solvent

interaction has often been treated theoretically in terms of

stochastic forces which only include the (time-)averaged

interaction with the solution.[7,8] As known from molecular

dynamic simulations (MDS), however, the discrete (ato-

mistic) structure of the solvent leads to clear deviations

from a pure Brownian behaviour of the beads[9–12] and,

hence, may play an important role in studying the macro-

molecular dynamics. In the last few years, therefore, several

attempts were made to derive a Fokker-Planck equation

(FPE) for the phase-space distribution of the interacting

beads, starting from the first principles of statistical

Hamiltonian mechanics.[13–18] Until today, however, such

Fokker-Planck (-type) equations are difficult to apply to any

particular system in practice, since they usually contain

terms (projection operators) which refer to the total Hamil-

tonian of the system and which are known as the generalized

friction tensors in the literature.

In a previous case study,[19] we first considered a macro-

molecule in solution which interacts with the surrounding

medium by a harmonic potential. For such a potential, it was

shown that the center-of-mass of the macromolecule

follows a generalized Langevin equation, whereas a set of

deterministic equations were derived for all the internal

coordinates. In practice, of course, this means that a

dissipative motion of the molecule cannot be obtained by

using only a harmonic bead-solvent interaction owing to

the – somehow oversimplified – coupling of the solvent

particles to the molecular beads.[20,21] In the present paper,

therefore, we study the effects of the bead-solvent potential

on the dynamic behaviour of macromolecules for a more

realistic choice of the interaction. We exclusively assume

below that the bead-solvent interaction is weak when

compared to the coupling among the beads. With this

assumption in mind, we are able to derive a Fokker-Planck

equationfor the timeevolutionofthephase-spacedistribution

functionofthemacromolecule. Inthisequation, thedynamics

purelydependonthe friction tensors (i.e., the right-handsides

of the FPE), which now contain all the information about the

interaction of the macromolecule with the particles of the

solvent. For a weak interaction with the solvent, explicit

expressions for the friction tensors are derived in terms of the

bead-solvent potential as well as the dynamic structure factor

of the solvent. They will be discussed below and compared

with those from phenomonological theory.

In the next section, we will start from Liouville’s equa-

tion for the time evolution of the phase-space distribution

function of the overall system ‘‘macromoleculeþ solvent.’’

Using the case of a simple 2-bead dumbbell molecule, we

are able then to reduce this Liouville equation to a Fokker-

Planck(-type) equation, which, in turn again, can be gene-

ralized for a chain of N pairwise interacting beads. Below,

we discuss these FPE along with the (included) friction or

diffusion tensors, which can be calculated for any bead-

solvent potential. To explore the dependence of this

interaction in greater detail for a single dumbbell molecule,

the section on the effects of the bead-solvent interaction on

the behavior of the friction tensors provides the friction

tensor components for three different types of bead-solvent

interactions, including a Yukawa, a Born-Mayer, and a

Lennard-Jones potential. In addition, several further proper-

ties such as the center-of-mass and internal momentum

correlation functions are also discussed. Finally, a few

conclusions are given.

Fokker-Planck Equation and Friction Tensors
for Isolated Macromolecules

To describe the dynamics of macromolecules in solution,

let us start from a microscopic view point and first, derive a

Fokker-Planck equation (FPE) for an isolated molecule,

which has been immersed in of a bath of solvent particles.

For the sake of simplicity, we assume here that the molecule

just consists ofN spheric-symmetrical particles of mass, M.

As usual, these (so-called) beads of the macromolecule are

specified by their position and momentum coordinates {Ra,

Pa, a¼ 1,. . ., N} and are supposed to interact with each

other through a spherical potential,U(jRa�Rbj). Similarly,

the solvent is taken as a set of n(>>N) spherical particles of

mass m and with coordinates {rs, ps, s¼ 1,. . ., n}. In

addition to the bead-bead interaction, U, we also assume a

(pair-wise) spherical potential, V(jrs� rtj), between all the

solvent particles as well as the potential, W(jRa� rsj),
between any bead, a, and the particles, s, from the solvent.

To keep the macromolecule alive within the bath over a

longer time, obviously, the bead-solvent potential, W,

has to be weak when compared with the (attractive)

bead-bead interaction potential, U. For such an overall

system ‘‘moleculeþ solvent,’’ the Hamiltonian is simply

given by:

H ¼ HB þ HS þ HBS ð1Þ

where

HB ¼
XN
a¼1

P2
a

2M
þ
XN
a<b

UðjRa � RbjÞ ð2Þ

HS ¼
Xn
s¼1

p2
s

2m
þ
Xn
s<t

Vðjrs � rtjÞ ð3Þ
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HBS ¼
XN
a¼1

Xn
s¼1

WðjRa � rsjÞ ð4Þ

describe the kinetic and the interaction energies of the bead

(B) and solvent (S) particles, respectively. As for the

Hamiltonian, we may write down a similar equation also for

the Liouville operator:

@r
@t

¼ L̂Lr ¼ ðL̂LB þ L̂LS þ L̂LBSÞr ð5Þ

which, to the right, acts on the phase-space distribution

function, r. Apart from the time, t, of course, this distri-

bution function r({Ra, Pa}, {rs, ps}; t) will depend on the

position and momentum coordinates of all the particles.

Similar to in Equation (1), the (total) Liouville operator, L̂L,

consists of three parts:

L̂LB ¼
XN
a¼1

XN
b¼1; b6¼a

@UðjRa � RbjÞ
@Ra

( )
@

@Pa

� Pa

M

@

@Ra

" #

ð6Þ

L̂LS ¼
Xn
s¼1

Xn
t¼1; t 6¼s

@Vðjrs � rtjÞ
@rt

( )
@

@ps
� ps

m

@

@rs

" #
ð7Þ

L̂LBS ¼
XN
a¼1

Xn
s¼1

@WðjRa � rsjÞ
@Ra

@

@Pa

� @

@ps

� �
ð8Þ

owing to the bead-bead, solvent-solvent, and bead-solvent

interaction, respectively.

In general, of course, beads of various sizes and

masses will be present in a macromolecule. However, to

simplify our further treatments, we assume (i) that all

beads have an equal mass M (much) larger than the mass of

the solvent particles: M >> m and (ii) that the macro-

molecule and the solvent particles did not interact in the past

before some initial time, t< tin¼ 0, until which the solvent

was in equilibrium. Under these circumstances, namely,

we are able to derive a Fokker-Planck type equation

for the phase-space distribution (function) of the macro-

molecule:

rNðfRa;Pag; tÞ �
ð
dfrs; psgrðfRa;Pag; frs; psg; tÞ ;

ð9Þ

by starting from Equation (5). In this reduced form, the

distribution function rN({Ra, Pa}; t) just depends on the

coordinates of the N beads of the macromolecule but not on

the coordinates of the solvent particles.

As seen from Equation (9) for the reduced distribution

function, however, the separation of the bead and solvent

particles requires integration over all the coordinates of

the solvent and, hence, can be carried out explicitly, only if

the (full) phase space distribution factorizes at some time

tin¼ 0 (in the past) into a product of two distribution

functions for the solvent and the macromolecule, respec-

tively. As usual, we may assume a Boltzmann-like distri-

bution function for the initial state of the solvent,

Feqðfrs; psg ¼ 1
z
e�bHS ; where HS is the Hamiltonian of the

solvent, b ¼ 1
kBT

the (inverse) temperature of the system,

and z ¼
Ð
dfrs; psge�bHS denotes the proper normalization

integral for the phase-space distribution. Having, how-

ever, with the factorization, rðfRa;Pag; frs; psg; 0Þ ¼
rNðfRa;Pag; 0ÞFeqðfrs; psgÞ; at some given initial time

tin¼ 0, we can also separate the coordinates of the beads

(from those of the solvent particles) for all later times. This

can be seen, for instance, by introducing the projection

operator P̂P ¼ Feqðfrs; psgÞ
Ð
dfrs; psg and its complement

ŶY � 1 � P̂P into the Liouville Equation (5) from which then

follows:[12,17]

Feq

@ rNðtÞ
@t

� @P̂PrðtÞ
@t

¼ ðL̂LB þP̂PL̂LBSÞP̂PrðtÞ

þ P̂PL̂LBS

ðt
0

dteðL̂LB þL̂LS þŶYL̂LBS ÞtŶYL̂LBSP̂Prðt � tÞ

ð10Þ

i.e., the well-known master equation for the phase-space

distribution function of the macromolecule.

Despite averaging over the solvent coordinates, however,

the master Equation (10) is – by itself – of little help for

exclusively analyzing the time evolution, rN(t), of the ma-

cromolecule, since all three parts of the Liouville operator,

L̂L, still appear on the rhs of this equation. Therefore, in order

to continue the separation of the coordinates, we first need

to return to the (previous) assumption of a weak bead-

solvent potential, W, when compared with the bead-bead

interaction, U. With this assumption in mind, we may

omit the third term ŶYL̂LBS from the exponent and re-

write Equation (10) in a form, in which the interaction of

the macromolecule with the surrounding solvent par-

ticles can be treated in terms of the (so-called) ‘‘bath

operators.’’ These operators only depend on the bead-

solvent potential, W, and, thus, can be used to derive a

master equation for any number of beads in the macro-

molecule. However, since such a derivation of a (reduced)

master equation is quite tedious for the general case of N

interacting beads, we first consider a (much simpler) 2-bead

dumbbell molecule from which the (correct) result for N

beads can be obtained later also by a proper generalization

of the final expressions.

For a dumbbell model of the macromolecule (N¼ 2), the

notation is considerably simplified; using namely the Liou-

ville operators [Equation (6)–(8)] for just two beads with

the coordinates, (R1, P1) and (R2, P2), respectively, and

by omitting the third term in the exponent, the master
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Equation (10) becomes:

@f ðtÞ
@t

þ P1

M

@f ðtÞ
@R1

þ P2

M

@f ðtÞ
@R2

� @U

@R1

@f ðtÞ
@P1

� @U

@R2

@f ðtÞ
@P2

¼ @

@P1

ðt
0

dt½̂IIð11ÞðtÞ þ ÎI
ð21ÞðtÞ�f ðt � tÞ

þ @

@P2

ðt
0

dt½̂IIð12ÞðtÞ þ ÎI
ð22ÞðtÞ�f ðt � tÞ ð11Þ

where, as a short-hand notation, we introduce f(t): r2(R1,

R2, P1, P2; t) to refer to the (phase-space) distribution

function of the two beads and where the (four) bath

operators:

ÎIðabÞ ¼
Xn
s; s0¼1

ð
dfrs; psg

@WðjRa � rsjÞ
@Ra

eðL̂LBþL̂LSÞt

� @WðjRb � rs0 jÞ
@Rb

@

@Pb

� @

@ps0

� �
a; b ¼ 1; 2 ð12Þ

describe the influence of the solvent on the dynamics of the

dumbbell. In Equation (12), the bath operators still contain a

(double) summation over all the solvent particles and,

therefore, require further consideration. A simplification of

these operators can be achieved, for instance, for a parti-

cular choice of the equilibrium distribution function, Feq

(see below), and if, as usual, the bead-solvent potential,

W(jRa� rsj), is assumed to be spheric-symmetrical. For

such a potential, of course, the Fourier transform in terms of

the wave vector k is given by:

WðjRa � rsjÞ ¼
1

V

X
k

WðkÞei kðjRa�rsjÞ ð13Þ

where V¼ L3 represents the (finite) volume of the whole

system ‘‘macromoleculeþ bath,’’ given within a box of size

L, and where k ¼ ðkx; ky; kzÞ ¼ 2p
L
ðnx; ny; nzÞ cycles over all

possible (integer) triples with �1< ni<1 and i¼ x, y, z.

Substituting Equation (13) into Equation (12), the bath

operators (a, b¼ 1, 2) then become:

ÎIðabÞ ¼ 1

V2

X
k;k0

X
s;s0

kWðkÞWðk0Þ
ð
dfrs; psge ikðRa�rsÞ

� eðL̂LB þ L̂LSÞteikðRb�rs0 Þk0
@

@Pb

� @

@ps0

� �
ð14Þ

For a spherical-symmetric potential, moreover, the

Fourier components W(k) in Equation (13) are known to

be real and symmetrical:

WðkÞ ¼ W*ðkÞ ¼ Wð�kÞ ð15Þ

and, thus, the bath operators in Equation (14) are nonzero,

only if kþ k0 ¼ 0 or k¼�k0, respectively. This is seen, for

instance, from the fact that the bath operators are just

multiplied by a factor e�ik � a, if all the solvent particles are

shifted by a constant amount, rs! rsþ a. In addition to the

properties of the Fourier transform of the bead-solvent

potential, W, we may also use the well-known relation

�@Feq

@ps
¼ b ps Ueq

m
for the (solvent) equilibrium distribution

function, in order to bring the bath operators in Equation

(14) into the form:

ÎI
ðabÞ ¼ 1

V2

X
k

W 2ðkÞei k�Ra eL̂LB t e�i k�Rb

�
X
s

e�i k�rs

 !
eL̂LS t

X
s

ei k�rsk
@

@Pb

þ b ps
m

� �* +
eq

ð16Þ

where the brackets h. . .ieq refer to the average over all the

solvent particles in the bath. However, we may still proceed

one step further in simplifying these operators, using a

second relation for the Liouville operator of the solvent and

the corresponding equilibrium distribution function:

eL̂LSt
X
s

eik�rs
bps
m

¼ i
@

@t
eL̂LS t

X
s

eik�rs ð17Þ

to obtain the bath operators in their final form:

ÎIðabÞ ¼ n

V2

X
k

W2ðkÞeik�RaeL̂LB te�ik�Rb

� gðk; tÞk @

@Pb

þ ib
gðk; tÞ
@t

� �
ð18Þ

where:

gðk; tÞ ¼ 1

n

X
s

e�ik�rs

 !
eL̂LS t

X
s

eik�rs

* +
eq

¼ 1

n

X
ss0

e�ik�ðrsð0Þ�r
0
sðtÞÞ

* +
eq

ð19Þ

is known as the dynamic structure factor or the scattering

function of the solution. We shall return later to this function

and discuss its properties in more detail. For the moment, let

us just mention that the bath operators ÎIðabÞ still include –

via the scattering function g(k, t) – the effects of the solvent

on the dynamics of the macromolecule. By summarizing all

the steps of the derivation above, we now recognize that the

bath operators can be expressed in terms of the Fourier

transform of the bead-solvent potential as well as the

scattering function of the bath. Since the (same) scattering

function also arises independently as the Fourier transform

of the density distribution of the solvent particles, Equation

(18) and (19) help simplify the study of the bead-solvent

interaction and its influence on the dynamic behaviour of

the molecules. On the other hand, however, the ‘‘bead ope-

rator’’ L̂LB still appears explicitly in Equation (18). To also

remove this part of the Liouville operator from the

expressions of the bath operators, we also have to separate

– additionally – the center-of-mass motion of the overall

macromolecule from the internal motion of the beads, as

will be shown below.
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Instead of the individual coordinates, Ri, and momenta,

Pi(i¼ 1, . . ., N), of the beads, of course, we may use the

center-of-mass and internal coordinates to describe the

molecular motion as a whole. For a dumbbell molecule with

just two beads, such a definition of the center-of-mass (C)

and internal (Q) coordinates is particularly simple:

RC ¼ R1 þ R2

2
; Q ¼ R1 � R2 ð20Þ

PC ¼ P1 þ P2

2
; PQ ¼ P1 � P2 ð21Þ

and leads immediately to a Liouville operator, L̂LB, of the

(two) beads that also consists of two parts:

L̂LB ¼ L̂LCB þ L̂LQB ð22Þ

with

L̂LCB ¼ �PC

M

@

@RC

and L̂LQB ¼�PQ

M

@

@Q
þ 2

@ UjQj
@Q

@

@PQ

ð23Þ

Apart from the operators, we now must also treat

the phase-space distribution r2ðR1;R2;P1;P2; tÞ ! f ðtÞ
� f ðRC;Q;PC;PQ; tÞ in terms of the new coordinates

where, for the sake of simplicity, we make use of the same

symbol f ðtÞ as before.

There are various simplifications of the master Equation

(11) and the bath operators in Equation (18), which can

be made within the center-of-mass coordinates. Taking

Equation (18), for instance, we see that the Liouville ope-

rator, L̂LB, of the two beads only appears in the exponent, i.e.,

eL̂LBt ! eL̂L
C
B t � eL̂L

Q
B
t ð24Þ

from which the first part, eL̂L
C
B t; needs to be eliminated from

the master Equation (11) to separate the internal dynamics

of the macromolecule from its overall motion. Since this

first part, which includes a partial derivative with respect to

the center-of-mass coordinate, RC, acts to the right in

Equation (18) on both, e�ik�RC as well as the phase-space

distribution function of the dumbbell, f(RC, Q, PC, PQ, t),

we can only eliminate this term when the distribution

function is replaced by its Fourier transform (with respect

to RC):

f ðRC;Q;PC;PQ; tÞ ¼
1

V

X
l

f ðl;Q;PC;PQ; tÞ eil�RC ð25Þ

from which, finally eik�RCeL̂L
C
b
te�iðk�lÞ�RC ¼ eil�RCeiðk�lÞ� PCt

M

and

ÎI
ðabÞ
l ¼ n

V2

X
k

W2ðkÞeil�RCeiðk�lÞ�PCt
M eeðaÞ

ik�Q
2 eL̂L

Q

B te�eðbÞik�Q
2

� gðk; tÞk 1

2

@

@PC

þ eðbÞ @

@PQ

� �
þ ib

gðk; tÞ
@t

� �
;

a; b ¼ 1; 2 ð26Þ

is obtained. In Equation (26), we make use of the

function eðxÞ ¼ ð�1Þx�1
. In the thermodynamic

limit, n!1, V!1, n
V
! n0, and 1

V

P
kð: : :Þ !R

dk
ð2pÞ3ð: : :Þ, therefore, the master Equation (11) of the

dumbbell can be written in terms of an (infinite) system of

equations:

@f ðl; tÞ
@t

þ i
PC

M
f ðl; tÞ � L̂L

Q
S f ðl; tÞ

¼ 1

2

@

@PC

ðt
0

dt ÎI
ðCÞ
l ðtÞf ðl; t � tÞ

þ @

@PQ

ðt
0

dt ÎI
ðQÞ
l ðtÞf ðl; t � tÞ ð27Þ

which now contains both the Fourier components of the

phase-space distribution function, f ðl; tÞ as well as those

of the bath operators, ÎI
ðC;QÞ
l ðtÞ, respectively. In practice, of

course, we are interested only in the asymptotic form of

these equations, i.e., we expand the function eilRC in

Equation (27) in the series and neglect all terms of an order

higher than the first one. For the bath operators, ÎIðCÞ and ÎIðQÞ,
the Fourier components, ÎI

ðC;QÞ
l ðtÞ, can then be written in

terms of four (sub-)operators:

ÎI
ðCÞ
l ¼ ÎI

ð11Þ
l þ ÎI

ð12Þ
l þ ÎI

ð21Þ
l þ ÎI

ð22Þ
l ð28Þ

ÎI
ðQÞ
l ¼ ÎI

ð11Þ
l þ ÎI

ð12Þ
l � ÎI

ð21Þ
l � ÎI

ð22Þ
l ð29Þ

where the two superscripts, 1 and 2, refer to the (two) beads

of the dumbbell. In detail, these four (sub-)operators are

given by:

ÎI
ð11Þ
l ðtÞ ¼ n0

ð
dk

ð2pÞ3
kW2ðkÞei ðk�lÞ�PCt

M e
ik�Q

2 eL̂L
Q

B te�
ik�Q

2

� gðk; tÞk 1

2

@

@PC

þ @

@PQ

� �
þ ib

@gðk; tÞ
@t

� �
ð30Þ

ÎI
ð12Þ
l ðtÞ ¼ n0

ð
dk

ð2pÞ3
kW2ðkÞei ðk�lÞ�PC t

M e
ik�Q

2 eL̂L
Q

B te
ik�Q

2

� gðk; tÞk 1

2

@

@PC

� @

@PQ

� �
þ ib

@gðk; tÞ
@t

� �
ð31Þ

ÎI
ð21Þ
l ðtÞ ¼ n0

ð
dk

ð2pÞ3
kW2ðkÞeiðk�lÞ�PCt

M e�
ik�Q

2 eL̂L
Q
B
te�

ik�Q
2

� gðk; tÞk 1

2

@

@PC

þ @

@PQ

� �
þ ib

@gðk; tÞ
@t

� �
ð32Þ
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ÎI
ð22Þ
l ðtÞ ¼ n0

ð
dk

ð2pÞ3
kW2ðkÞeiðk�lÞ�PCt

M e�
ik�Q

2 eL̂L
Q
S
te

ik�Q
2

� gðk; tÞk 1

2

@

@PC

� @

@PQ

� �
þ ib

@gðk; tÞ
@t

� �
ð33Þ

With Equation (27), of course, we are still at the level

of a master equation for the (Fourier components of

the) phase space distribution function. To finally arrive

at a Fokker-Planck(-type) equation for the macromolecule,

we first need to remove the explicit dependence of the

bath operators in Equation (30)–(33) on the scattering

function g(k, t) and, particularly, on its time derivative

[as found within the square brackets]. For this purpose, we

may consider the time behaviour of g(k, t) which is

determined by the relaxation time, tR as required to bring

the solvent back into its equilibrium state[7,22] and, hence,

is non-negligible only within a short time interval

½0::tR�.[23,24] On such a short time-scale, in contrast, the

internal positions of the (massive) beads of the macro-

molecule will not be able to change much, i.e., we may

assume in good approximation eL̂L
Q

S t � 1 for all

times, 0� t� tR, within the relaxation of the solvent. With

these two assumptions on the shape of the scattering

function, g(k, t), and the internal dynamics of the

macromolecule in mind, we are now able also to separate

the time integration in Equation (27) from the coordina-

tes and the momenta of the beads and, especially, to remove

the (unknown) time derivative of the scattering function.

For the sake of brevity, however, we cannot display

all the steps in the manipulation of the master Equation

(27) in detail here; instead, since all the bath operators

in Equation (30)–(33) have a very similar structure, we

may discuss the main steps just for the first term, ÎI
ð11Þ
l ðtÞ,

and leave similar manipulations for the other terms to the

reader.

Substituting Equation (30) into the set of master

equations [Equation (27)], we obtain:ðt
0

dtÎIð11Þ
l ðtÞf ðl; t � tÞ

¼ n0

ðt
0

dt
ð

dk

ð2pÞ3
kW 2ðkÞeiðk�lÞ�PCt

M e
ik�Q

2 eL̂L
Q

B te�
ik�Q

2

� gðk; tÞk 1

2

@

@PC

þ @

@PQ

� �
þ ib

@gðk; tÞ
@t

� �
f ðl; t � tÞ

ð34Þ

which, in practice, includes two terms due to the scattering

function and its time derivative. For the second term, we can

perform an integration by parts (over the time) to bring

Equation (34) into the form:

which now includes only a time integration
R t

0
dtgðk; tÞ:::

over the scattering function. As discussed above, we can

carry out this time integration by assuming that (i) the

scattering function g(k, t) is zero for all times t> tR and (ii)

the macromolecule does not change its internal shape on

such a short time scale, i.e., by adopting a d-like behaviour

for g(k, t) we obtain
R t

0
dtgðk; tÞ̂IIð11Þ

l ðtÞf ðl; t � tÞ !
ÎI
ð11Þ
l ð0Þf ðl; tÞ

R1
0

dtgðk; tÞ.
In addition, by taking into account the symmetry

properties for both, the scattering function, g(k, t)¼g(�k,

t) [cf. Equation (19) and ref.[8]] and of the bead-solvent

potential,WðkÞ ¼ Wð�kÞ, we obtain
Ð

dk
ð2pÞ3kWðkÞ2

gðk; tÞ
¼ 0. That is, only the third term of Equation (35) will

ibn0

ðt
0

dt
ð

dk

ð2pÞ3
kW2ðkÞeiðk�lÞ�PCt

M e
ik�Q

2 eL̂L
Q

B te�
ik�Q

2
@gðk; tÞ

@t
f ðl; t � tÞ

¼ ibn0

ð
dk

ð2pÞ3
kW2ðkÞ gðk; tÞeiðk�lÞPCt

M e
ik�Q

2 eL̂L
Q

B te�
ik�Q

2 f ðl; 0Þ � gðk; 0Þf ðl; tÞ
� �

� ibn0

ð
dk

ð2pÞ3
kW2ðkÞ

ðt
0

dtgðk; tÞ @

@t
eiðk�lÞPCt

M e
ik�Q

2 eL̂L
Q

B te�
ik�Q

2 f ðl; t � tÞ
� �� �

¼ ibn0

ð
dk

ð2pÞ3
kW 2ðkÞ gðk; tÞeiðk�lÞPCt

M e
ik�Q

2 eL̂L
Q

B te�
ikQ

2 f ðl; 0Þ � gðk; 0Þf ðl; tÞ
� �

� ibn0

ð
dk

ð2pÞ3
kW2ðkÞ

ðt
0

dtgðk; tÞeiðk�lÞPCt
M e

ik�Q
2 eL̂L

Q
B
te�

ik�Q
2

@f ðl; t � tÞ
@t

� �

þ b n0

ð
dk

ð2pÞ3
kW2ðkÞ

ðt
0

dtgðk; tÞeiðk�lÞ�PCt
M e

ik�Q
2 eL̂L

Q
B
te�

ik�Q
2

� ðk� lÞ � PC

M
þ 1

2
k � PQ

M

� �
f ðl; t � tÞ ð35Þ
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survive finally:

ibn0

ðt
0

dt
ð

dk

ð2pÞ3
kW2ðkÞeiðk�lÞ�PCt

M e
ik�Q

2 eL̂L
Q
B
te�

ik�Q
2

� @gðk; tÞ
@t

f ðl; t � tÞ

¼bn0

ð
dk

ð2pÞ3
kW2ðkÞ

ðt
0

dtgðk; tÞeiðk�lÞ�PCt
M e

ik�Q
2 eL̂L

Q
B
te�

ik�Q
2

� ðk� lÞPC

M
þ 1

2
k
PQ

M

� �
f ðl; t � tÞ ð36Þ

Similar manipulations can be applied to all other

(sub-)components in Equation (31)–(33) of the bath

operators. Sorting out these details, therefore, we may

write the asymptotic form of the two bath operators in

Equation (28) and (29) as:

ÎI
ðCÞ
l ¼ n0

ð
dk

ð2pÞ3
kW2ðkÞ½2 þ eik�Q þ e�ik�Q�

�
ð1

0

dtgðk; tÞ
� �

k
1

2

@

@PC

þ b
PC

M

� �
ð37Þ

ÎI
ðQÞ
l ¼ n0

ð
dk

ð2pÞ3
kW2ðkÞ½2 � ðeik�Q þ e�ik�QÞ�

�
ð1

0

dtgðk; tÞ
� �

k
@

@PQ

þ 1

2
b
PQ

M

� �
ð38Þ

Combining the (system of) master Equation (27) with the

bath operators in Equation (37) and (38), we may now

return to the (original) phase-space distribution function,

f(t): f(RC, Q, PC, PQ; t), of the dumbbell and will arrive at

a Fokker-Planck (FPE) equation of the macromolecule:

@f

@t
þ PC

M

@f

@RC

� L̂L
Q
B f ¼

1

2

@

@PC

x̂xðCÞðQÞ 1

2

@

@PC

þ b
PC

M

� �
f

þ @

@PQ

x̂xðQÞðQÞ @

@PQ

þ 1

2
b
PQ

M

� �
f ð39Þ

where x̂xðCÞðQÞ and x̂xðQÞðQÞ are called the friction tensors for

the center-of-mass and internal coordinate of the dumbbell,

respectively. As seen from Equation (37) and (38), more-

over, these tensors have the components:

x̂xðCÞaa0 ¼ n0

ð
dk

ð2pÞ3
kaka0W

2ðkÞ

� ½2 þ eik�Q þ e�ik�Q�
ð1

0

dtgðk; tÞ
� �

ð40Þ

x̂xðQÞaa0 ¼ n0

ð
dk

ð2pÞ3
kaka0W

2ðkÞ

� ½2 � ðeik�Q þ e�ik�QÞ�
ð1

0

dtgðk; tÞ
� �

ð41Þ

Instead of the internal coordinates, RC and Q, of course,

the FPE can also be expressed in the phase-space

coordinates of the individual beads.

@f

@t
þ P1

M

@f

@R1

þ P2

M

@f

@R2

� @U

@R1

@f

@P1

� @U

@R2

@f

@P2

¼ @

@P1

x̂xðþÞ @

@P1

þ b
M

P1

� �
f þ @

@P2

x̂xðþÞ @

@P2

þ b
M

P2

� �
f

þ @

@P1

x̂xð�Þ @

@P2

þ b
M

P2

� �
fþ @

@P2

x̂xð�Þ @

@P1

þ b
M

P1

� �
f

ð42Þ

where the friction tensor components are given by:

x̂xðþÞ
aa0 ¼ 1

4
x̂x
ðCÞ
aa0 þ x̂x

ðQÞ
aa0

� �
¼ n0

ð
dk

ð2pÞ3
kaka0W

2ðkÞ
ð1

0

dtgðk; tÞ
� �

ð43Þ

x̂xð�Þ
aa0 ¼ 1

4
x̂xðCÞaa0 � x̂xðQÞaa0

� �
¼ n0

ð
dk

ð2pÞ3
kaka0W

2ðkÞ

� eik�Q þ e�ik�Q

2

� � ð1
0

dtgðk; tÞ
� �

ð44Þ

Equation (39) and (42) represent two FPE which describe

the time evolution of the phase-space distribution function

for a dumbbell molecule. In these equations, all the effects

of the solvent onto the beads of the molecule are now

incorporated into the (two) frictions tensors in Equation

(40) and (41) in the center-of-mass and relative coordinates

[cf. Equation (39)] or into Equation (43) and (44), res-

pectively, if the distribution function given in terms of

the cartesian coordinates of the individual beads [cf.

Equation (42)].

Equation (42)–(44) can easily be generalized for a

macromolecule, which is formed by N beads:

@rN
@t

þ
XN
a¼1

Pa

M

@rN
@Ra

�
XN
a;b¼1

@UðjRa � Rbj
@Ra

@rN
@Pa

¼
XN
a;b¼1

@

@Pa

x̂x
abðjRa � RbjÞ

@

@Pb

þ b
M

Pb

� �
rN ð45Þ

if friction tensors, x̂xðabÞ, with components:

x̂xðabÞaa0 ¼ n0

ð
dk

ð2pÞ3
kaka0W

2ðkÞ

� eik�Ra þ e�ik�Rb

2

� � ð1
0

dtgðk; tÞ
� �

ð46Þ

are introduced for the center-of-mass of the macromolecule

and for each pair of interacting beads. These friction

tensors, x̂xðabÞaa0 , contain [via the bead-solvent potential, W,

and the dynamic structure factor of the solvent, g(k, t)] all
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information about the influence of the solvent on the

dynamic behaviour of the macromolecule. In fact, a detail-

ed knowledge of the friction tensor plays a key role in

studying the dynamic properties of the macromolecule. For

example, the behaviour of the friction tensor does not affect

only the end-to-end vector or the radius of gyration of the

macromolecule, but also its momentum correlation func-

tions. In the next section, therefore, we will consider a few

of these properties of the friction tensors in more detail.

Effects of the Bead-Solvent Interaction on the
Behavior of the Friction Tensors

Having derived the Fokker-Planck equations [Equation

(39) and (42)] for the dumbbell molecule (in two different

sets of coordinates), we see that – for a weak bead-solvent

interaction – the dynamics of the macromolecule is deter-

mined entirely by the friction tensors in Equation (40) and

(41) [or the two tensors in Equation (43) and (44),

respectively]. Therefore, to gain further insight into the

behaviour of the molecules, we shall investigate the proper-

ties of these friction tensors. In the following subsection, we

start with analysis of the (two) limits of a zero and very large

separation of the two beads in the dumbbell to obtain a

proper parametrization of the friction tensor components.

Such a parametrization helps calculate, for instance, va-

rious derived quantities such as the (normalized) correlation

functions of the center-of-mass or internal momenta. The

main emphasis of this section, however, will be placed later

on the question, how the bead-solvent potential, W, effects

the friction tensor components, if taken as functions of the

internal separation of the beads. To this end, we consider

three particular choices of the bead-solvent interaction in

more detail. However, all of our discussions here will be

restricted to the case of a (2-bead) dumbbell molecule. The

generalization of these results for larger macromolecules

and other (chain) structures is presently underway and will

be presented elsewhere.

General Properties of the Friction Tensors

We start our discussion by considering a dumbbell in the

two limits of a zero and a large separation of the two beads.

If we assume, for instance, that the interaction potential

U! 0 for both, a small (Q! 0) and a very large (Q!1)

separation of the two beads, the friction tensor x̂xð�Þ
aa0 in

Equation (44) vanishes, and the Fokker-Planck equation

[Equation (42)] becomes either an equation for a single

particle:

@f

@t
þ P

M

@f

@R
¼ @

@P
x̂xsingle @

@P
þ b

M
P

� �
f ð47Þ

with mass, 2M, and a (scalar) friction coefficient, x̂xsingle, or,

respectively, a Fokker-Planck-type equation for two free

particles:

@f

@t
þ P1

M

@f

@R1

þ P2

M

@f

@R2

¼ @

@P1

x̂x
@

@P1

þ b
M

P1

� �
f þ @

@P2

x̂x
@

@P2

þ b
M

P2

� �
f

ð48Þ

where, again, the friction tensor components become

constant, i.e., they do not depend on the bead-bead distance

of the macromolecule [cf. Equation (43) and (44)]:

x̂xaa0 ¼ n0

ð
dk

ð2pÞ3
kaka0WðkÞ2

ð1
0

dtgðk; tÞ
� �

ð49Þ

Both cases, therefore, describe a (dumbbell) macromo-

leculewithout a hydrodynamic interaction among the beads

and have been discussed frequently in the literature.[4,20,21]

In general, however, the friction tensors [Equation (40)

and (41)] are rank 2, symmetrical tensors and, thus, may

have six independent components. Since for a dumbbell,

these components may depend only on the distance jQj of

the two beads, they can be written always in terms of just

two parameters[7]

x̂xðiÞaa0 ¼ A ðiÞdaa0 þ B ðiÞqaqa0 ð50Þ

where qa ¼ Qa
jQj denotes the (normalized) components of the

vector, which points from bead 1 to bead 2, and where

i¼ [C, Q, �] refers to the various types (or representations)

of the friction tensors above. Independent of the particular

type, the parameters, A(i) and B(i), can be determined from

the two equations:

X
a

x̂xðiÞaa ¼ 3AðiÞ þ BðiÞ ð51Þ

and

X
a;a0

x̂xðiÞaa0qaqa0 ¼ AðiÞ þ BðiÞ ð52Þ

We can utilize the parametrization [Equation (50)] of the

friction tensors to simplify their expressions in Equation

(40) and (41) which were given in terms of the Fourier

transform of the bead-solvent interaction potential and the

scattering function, respectively. Concerning the scattering

function, g(k, t), we just note that – owing to the veryÂdif-

ferent masses of the bead and solvent particles – we may

adopt an exponential dependence, gðk; tÞ ¼ e�k2DBt on the

diffusion coefficient, DB, of the solvent.[23,24] Of course,

this simple dependence of the scattering function on the

property of the surrounding bath reflects the fact that

the solvent particles relax much faster to equilibrium than

the beads of the macromolecule. But by assuming such an

approximation for the scattering function, we also have
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Ð1
0

dtgðk; tÞ ¼ 1
k2DB

, which now enables us to reduce the

3-dimensional integration in the friction tensors [Equation

(40) and (41)] to a 1-dimensional integral, taken over the

modulus of the wave vector. Using polar coordinates and by

carrying out the integration over the angles, Wk and jk,

explicitly, these two friction tensors become:

x̂xðCÞaa0 ¼
n0

ð2pÞ2
DB

ð1
0

dkk2W 2
k

� 4
1

3
þ sinðkQÞ � kQ cosðkQÞ

ðkQÞ3

 !
daa0

"

þ 4
sinðkQÞ
kQ

� 3
sinðkQÞ � kQ cosðkQÞ

ðkQÞ3

 !
qaqa0

#

ð53Þ

x̂xðQÞaa0 ¼
n0

ð2pÞ2
DB

ð1
0

dkk2W 2
k

� 4
1

3
� sinðkQÞ � kQ cosðkQÞ

ðkQÞ3

 !
daa0

"

þ 4 3
sinðkQÞ � kQ cosðkQÞ

ðkQÞ3
� sinðkQÞ

kQ

 !
qaqa0

#

ð54Þ

For a slow relaxation of the beads, when compared to

the solvent particles, these tensors still incorporate all

the influence of the solvent on the dynamic behaviour of the

macromolecule. However, before we analyze the depen-

dence of the friction tensors for a few particular choices of

the bead-solvent interaction potential, let us first consider

the (normalized) correlation functions (CF) for the center-

of-mass, C
ðCÞ
ab ðtÞ, and the internal momenta, C

ðQÞ
ab ðtÞ,

respectively. These (auto-)correlation functions are defined

by:[14]

C
ðiÞ
ab ðtÞ � P ðiÞ

a ð0ÞP ðiÞ
b ðtÞ

D E
¼ 1

2
eð� x̂x

ðiÞ
tÞ

� �
ab

* +
;

i ¼ C;Q ð55Þ

where the angular brackets, h. . .i, refer to the average over

the equilibrium state of the macromolecule. If, for example,

we take G to denote all the coordinates and momenta of the

macromolecule, this bracket can be written as:

. . .h i � h�1

ð
dG . . . feqðG; tÞ; feqðG; tÞ ¼ e�bHB ð56Þ

where h ¼
Ð
dGfeqðG; tÞ accounts for the proper normal-

ization of the average. As seen from Equation (55),

moreover, such a momentum CF describes the correlation

between some current momentum, P(t), and the corre-

sponding momentum, P(0), at the initial time. Substituting

the friction tensors in Equation (50) into the autocorrelation

function in Equation (55), we therefore obtain:

C
ðiÞ
ab ðtÞ � C ðiÞðtÞdab ¼ 1

6
e �AðiÞðQÞtð Þ 2 þ e �BðiÞðQÞtð Þ

� �D E
dab

ð57Þ

for the parametrization of the CFs.

In general, of course, we are more interested in the

asymptotic form of the correlation functions instead of their

explicit time behaviour. We can derive the asymptotic

behaviour for any bead-solvent potential by using a Taylor

expansion at Q¼ 0 from which, for t!1, only the first

(non-vanishing) term will survive. For example, if we con-

sider the center-of-mass momentum correlation function,

CðCÞðtÞ, and truncate the Taylor expansion after the first

term [cf. Equation (53)], we obtain A(C)(Q)¼A(C)(0)þ
O(Q), B(C)(Q)¼O(Q), independent of the particular bead-

solvent interaction potential, and thus:

CðCÞðtÞ � 1

3
e�AðCÞð0Þ t ð58Þ

for its asymptotic behaviour (t!1). In this equation,

AðCÞð0Þ ¼ 4
3

n0

ð2pÞ2
DB

Ð1
0

dkk2W2
k is called the decay para-

meter of the center-of-mass momentum CF; it shows that

the correlation function, C
ðCÞ
ab ðtÞ, always decays exponen-

tially. A similar behaviour is found for the internal

momentum CF,C
ðQÞ
ab ðtÞ, for the center-of-mass momentum,

PC, which tends to zero also for any choice of the bead-

solvent interaction potential, but with a different decay rate.

Therefore, a more detailed investigation of the bead-solvent

potential and their effects on the friction tensors is needed to

understand the dynamics of the macromolecules and their

relaxation, when immersed in a solvent. In the following,

we consider three realistic choices for such an interaction

potential and calculate both the friction tensors [Equation

(53) and (54)] as functions of the bead-bead separation as

well as the asymptotic behaviour of the internal momentum

auto-correlation function.

Yukawa and Born-Mayer Potential

There are several bead-solvent interaction potentials

known from the literature which have been used to

describe the dynamics of macromolecules. They often

have their roots in the field of physical chemistry to help

simulate the chemical bonding in different (chemical)

environments. Three frequently applied interaction poten-

tials are the screened Coulomb (Yukawa), Born-Mayer,

as well as the Lennard-Jones potential (Figure 1). While

the Yukawa (Y) potential has been found useful to describe

the (repulsive) interaction between charged particles, the

Born-Mayer (BM) potential is used for dilute solutions, and

the Lennard-Jones (LJ) potential is useful for modelling

long-range van-der-Waals interaction between neutral

particles.
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We start with the Yukawa potential:

WYðrÞ ¼ e�eYr

r
ð59Þ

which describes a 1/r Coulomb repulsion for a

small distance, r, between the bead and solvent partic-

les, while, due to the exponential dependence of the

nominator, the interaction is screened for larger r.

The constant, eY, is called the screening parameter and

provides, by its inverse 1/eY, a characteristic length for the

screening.

To calculate the friction tensors [Equation (53) and (54)],

we first have to evaluate the Fourier transform of the bead-

solvent interaction:

Wk ¼
4p
k

ð1
0

drWðrÞr sin kr ð60Þ

which, for the Yukawa potential, simplifies to:

WY
k ¼ 4p

e2
Y þ k2

ð61Þ

and can be used to evaluate the integrals over k analytically

for both tensors, Equation (53) and (54), respectively.

Using, moreover, the general parametrization [Equation

(50)] of the friction tensors for a dumbbell molecule, we can

express the friction tensor parameters Að::Þ and Bð::Þ

explicitly:

AðQ;YÞðQÞ ¼ 16p3g
3eY

� �

��6 þ Q3e3
Y þ 3Q2e2

Ye
�QeY þ 6QeYe

�QeY þ 6e�QeY

Q3e3
Y

ð62Þ

BðQ;YÞðQÞ ¼ 16p3g
eY

� �

� 6 � Q3e3
Ye

�QeY � 3Q2e2
Ye

�QeY � 6QeYe
�QeY � 6e�QeY

Q3e3
Y

ð63Þ

AðC;YÞðQÞ ¼ 16p3g
3eY

� �

� 6 þ Q3e3
Y � 3Q2e2

Ye
�QeY � 6QeYe

�QeY � 6e�QeY

Q3e3
Y

ð64Þ

BðC;YÞðQÞ ¼ 16p3g
eY

� �

��6þQ3e3
Ye

�QeYþ3Q2e2
Ye

�QeYþ6QeYe
�QeY þ 6e�QeY

Q3e3
Y

ð65Þ

xðC;YÞð0Þ ¼ 32p3g
3eY

ð66Þ

where g ¼ n0=ð2pÞ2
DB; and an additional superscript, Y,

now refers to the particular choice of the Yukawa potential.

In Figure 2 and 3, these parameters are displayed as function

of the distanceQ between the two beads of the dumbbell. To

facilitate the comparison of the friction tensor parameters

for the different choices of the bead-solvent potential, we

give the distanceQ here in terms of the characteristic length

s¼ 1/e of the potential and normalize all friction tensor

parameters onto the scalar friction coefficient xðCÞðQ ¼ 0Þ.
As seen from Figure 2, the two diagonal parameters,

AðQ;YÞðQÞ and AðC;YÞðQÞ, are always positive. For the

Figure 1. The bead-solvent interaction potentials as defined
by Equation (59), (70), and (79), respectively. For discussion
see text.

Figure 2. Normalized friction tensor parameters, AðQÞ=xðCÞð0Þ
and BðQÞ=xðCÞð0Þ, for the internal coordinate as function of the
bead-bead separation. These parameters are shown for a Yukawa
(Y) and Born-Mayer (BM) bead-solvent potential; see text for
discussion.
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friction tensor of the internal coordinate, moreover, the

AðQ;YÞðQÞ parameter increases from zero up to 1/2, when

one follows along Q from Q¼ 0 (single-particle case) to

the case of two free particles. At a distance of about 10/eY,

there is then no correlation left between the two beads of the

dumbbell. The non-diagonal parameter, BðQ;YÞðQÞ, in

contrast, first increases up to about 2/eY and then decreases

quickly to zero. We can interpret this behaviour in the

following way: the two beads affects each other strongly

at small distances and then become less correlated as

the separation increases. Figure 3 shows, in contrast, the

AðC;YÞðQÞ parameter for the center-of-mass friction tensor

which decreases from 1 to 1/2 at a separation of about

Q > 5=eY where the two beads do not longer ‘‘feel’’ each

other anymore.

Instead of the (internal) friction tensor, which refers to

the relative coordinate Q¼R1�R2, the diffusion tensor

D̂D
ðQÞ
aa0 is often used within phenomenological theory. In

practice, of course, the diffusion tensor is not much more

than the inverse of the friction tensor and, hence, can be used

alternatively. As known from phenomenological theory,[7,8]

the diffusion tensor (for the relative coordinate) depends

approximately like 1
Q

(known as Oseen tensor) on the

distance between the beads. From the parametrization of

the friction tensor [Equation (50)], we easily see that an

analogue form must also apply for the diffusion tensor:

D̂D
ðQÞ
aa0 ¼ DðAÞdaa0 þ DðBÞqaqa0 ð67Þ

where D(A) and D(B) are used as the corresponding parame-

ters. Figure 4 compares the diffusion tensor parameters,

D(A;Y) and D(B;Y) calculated for the Yukawa potential, with

the corresponding parameters of the (phenomenological)

Oseen tensor; apparently, the largest deviations from the

phenomenological theory arise at small distances between

the beads. This can be understood quite easily as – at such

small distances – the discrete (molecular) character of the

solvent, which is not included of course in any phenomen-

ological theory, becomes especially pronounced. In a phe-

nomenological approach, instead, the solvent around the

macromolecule always appears as an uncompressible and

unstructured medium, giving rise to a random Brownian

force between the solvent particles and the beads.[7] For

large distances between the beads, however, the discrete

structure of the solvent becomes negligible and our results

for the diffusion tensor (components) agree well with the

phenomenological theory.

Apart from the shape of the friction or diffusion tensor

parameters of the dumbbell, we are interested also in the

long-term behaviour of the CF for the internal momentum

of the two beads. Similar as for the center-of-mass mo-

mentum CF, the asymptotic behaviour for the internal

momentum CF,CðQÞðtÞ; is determined only by the first (non-

vanishing) term in the Taylor expansion of the correspond-

ing friction tensor parameters, A(Q) and B(Q) In the case of a

Yukawa potential, therefore, we may expand these para-

meters,A(Q;Y) andB(QY), as given by Equation (62) and (63),

respectively, and truncate the Taylor series after the first

non-vanishing term

AðQ;YÞðQÞ � �mYQþ OðQ2Þ;
BðQ;YÞðQÞ � �nYQþ OðQ2Þ ð68Þ

where the constants, mY ¼ @AðQ;YÞ=@Q and nY ¼ @BðQ;YÞ

=@Q, are taken at Q¼ 0. With this parametrization of the

friction tensor and by making use of an integration by parts

[cf. Equation (56) and (57)], the asymptotic form of the

internal momentum CF [Equation (57)] for a Yukawa

potential becomes:

CðQ;YÞðt ! 1Þ � 1

3
feqð0Þ 2m�3

Y þ ðmY þ nYÞ�3
h i

t�3 ð69Þ

Figure 3. Normalized center-of-mass friction tensor para-
meters, AðCÞ=xðCÞð0Þ and BðCÞ=xðCÞð0Þ, for the internal coordinate
as function of the bead-bead separation. These parameters are
shown for a Yukawa (Y) and Born-Mayer (BM) bead-solvent
potential; see text for discussion.

Figure 4. Normalized diffusion tensor parameters, DðAÞ=xðCÞð0Þ
and DðBÞ=xðCÞð0Þ, for the internal coordinate as function of the
bead-bead separation. These parameters are shown for a Yukawa
(Y) and Born-Mayer (BM) bead-solvent potential.
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where a more detailed derivation has been moved to

Appendix A. This is indeed a very interesting result. The

internal momentum correlation function remains its

algebraic tail even for long times, a result which cannot

be obtained from the (traditional) phenomenological theory

of the dynamics of macromolecules. In phenomenological

theory, namely, the internal momentum CF always decays

exponentially and, hence, must vanish must faster.[7,25]

Beside of the Yukawa potential, we may also assume a

Born-Mayer potential:

WBMðrÞ ¼ e�eBMr ð70Þ

for the bead-solvent interaction which decays exponentially

from one to zero (Figure 1). Again, the inverse of the (Born-

Mayer) parameter, sBM ¼ 1
eBM

, describes a characteristic

decay length. By using the Fourier transform [Equation

(60)] of this potential:

W BM
k ¼ 8peBM

ðe2
BM þ k2Þ2

ð71Þ

we can follow similar lines as before and evaluate the

corresponding parameters of the friction tensors:

AðQ;BMÞðQÞ ¼ 8p3g
3e3

BMQ3e3
BM

� �
� �48 þ Q3e3

BM þ 24Q2e2
BMe�Q eBM þ 48QeBMe�QeBM

	
þ 7Q3e3

BMe�QeBM þ Q4e4
BMe�QeBM þ 48e�QeBM



ð72Þ

BðQ;BMÞðQÞ ¼ � 8p3g
e3

BMQ3e3
BM

� �
� �144 þ 6Q4e4

BMe�QeBM
	

þ 144eBMQe�QeBM

þ 72e2
BMQ2e�QeBM þ 24e3

BMQ3e�QeBM

þ Q5e5
BMe�QeBM þ 144e�QeBM



ð73Þ

AðC;BMÞðQÞ ¼ � 8p3g
3e3

BMQ3e3
BM

� �
� �48 � Q3e3

BM

	
þ 24Q2e2

BMe�QeBM þ 48QeBMe�QeBM

þ 7Q3e3
BMe�QeBM þ Q4e4

BMe�QeBM þ 48e�QeBM



ð74Þ

BðC;BMÞðQÞ ¼ 8p3g
e3

BMQ3e3
BM

� �
�144 þ 6Q4e4

BMe�QeBM
	

þ 144eBMQe�QeBM þ 72e2
BMQ2e�QeBMþ 24e3

BMQ3e�QeBM

þ Q5e5
BMe�QeBM þ 144e�QeBM � ð75Þ

xðC;BMÞð0Þ ¼ 16p3g
3e3

Y

ð76Þ

They are shown, again as functions of the characteristic

length, s¼ 1/e, in Figure 2 for the internal parameters of the

friction tensor and in Figure 3 for the center-of-mass

friction tensor parameters. From Figure 2 and 3, we see that

– although similar in their qualitative behaviour – these

parameters have a quite different quantitative behaviour,

when compared to the parameters for the Yukawa potential.

While, for example, the two beads do virtually not ‘‘feel’’

each other anymore at a distance of about 8 s in the case of a

Yukawa potential, they still interact and are affected at this

and even larger distances with a Born-Mayer potential.

Concerning the diffusion parameters, DðA;BMÞ and DðB;BMÞ,
the deviations from the phenomenological theory are even

more pronounced in this case as seen from Figure 4.

Like for the Yukawa potential, we may calculate the

long-term behaviour of the internal momentum correlation

function, CðQ;BMÞðtÞ. By expanding the friction tensor

parameters [Equation (72) and (73)] and truncating their

Taylor expansions after the first non-vanishing term, the

asymptotics of the friction tensor parameters become:

AðQ;BMÞ ¼ mBMQ2 þ OðQ3Þ;
BðQ;BMÞ ¼ nBMQ2 þ OðQ3Þ ð77Þ

leading to a long-term behaviour of the relative momentum

CF like [cf. Appendix A for details of the derivation]:

CðQ;BMÞðt ! 1Þ �
ffiffiffi
p

p

24
feqð0Þ

� 2m�3=2
BM þ ðmBM þ nBMÞ�3=2

h i
t�3=2 ð78Þ

where mBM ¼ ð1=2!Þ@2AðQ;BMÞ=@Q2 and nBM ¼ ð1=2!Þ@2

BðQ;BMÞ=@Q2, taken at Q¼ 0. As with the asymptotic

behaviour [Equation (69)] for the Yukawa potential, the

internal momentum CF, CðQ;BMÞðtÞ, decays algebraically

for the Born-Mayer potential, i.e., with a so-called

algebraic tail, but with a different decay rate. In practice,

this rate increases when the bead-solvent potential becomes

stronger for large distances among the beads. Again, such a

result could not be derived from phenomenological theory,

but has been found numerically in a number of molecular

dynamics simulations.[26–28]

Lennard-Jones Potential

In the previous section, we got a (first) impression how the

bead-solvent interaction, W, may influence the dynamics of

macromolecules, if immersed in a solution. To obtain a

deeper insight into the effects of the bead-solvent interac-

tion, we shall now analyze the Lennard-Jones (LJ) potential

which has, very frequently in the past, been applied to

model the long-range van-der-Waals interactions between

neutral particles (Figure 1). Using the characteristic

interaction strength, e, and the decay length, sLJ, for the

parametrization, the Lennard-Jones potential is given by:

WLJðrÞ ¼ e
sLJ

r

� �12

� sLJ

r

� �6
� �

ð79Þ

including a strong repulsive part � 1
r12 for short distances

between the particles and a far-ranging attractive part � 1
r6.
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Due to computational problems, instead of the Lennard-

Jones potential [Equation (79)] one often uses some poten-

tial which behaves similar to the LJ potential but which is

more appropriate for the theoretical and numerical works

(such as SHRAT potential or Gaussian like potential).[29–31]

Figure 5 displays the Fourier transform of the Lennard-

Jones potential, which was calculated numerically as

function of the modulus of the wave vector, k. This function

was then utilized to compute the friction tensor parameters

for both, the center-of-mass [Equation (53)] and the relative

coordinates [Equation (54)], respectively.

For the Lennard-Jones potential, the parameters of the

friction tensor components, Að::;LJÞðQÞ and Bð::;LJÞðQÞ, are

shown in Figure 6 and 7, respectively; they have been

determined numerically along a 1-dimensional grid and are

shown as a function of the separation, Q, of the two beads.

When compared with the corresponding parameters for the

Yukawa and Born-Mayer potential (cf. Figure 2 and 3), the

shape of the friction tensor (parameters) is quite different. If

we compare, for example, the parameter, AðQ;LJÞðQÞ, for the

internal momentum friction tensor components in Figure 2

and 6, we can see that, for any given potential, these

parameters increases from zero (single-particle case) up to

1/2 (the case of two free particles). However, the distance, at

which the two beads can be considered free, is very different

for a Yukawa, Born-Mayer and Lennard-Jones potential.

From Figure 6, we see that the two beads of the dumbell

‘‘feel’’ each other only at very small distances, say,Q� sLJ,

i.e., that the behaviour of the friction tensor parameters of

the center-of-mass and internal coordinates are purely

determined by the repulsive part of the Lennard-Jones

potential. The far-ranging attractive part, in contrast, does

not matter much, a fact which has been found empirically in

molecular dynamics computations[9,10] before, where one

often takes into account only the repulsive part of the

Lennard-Jones (bead-solvent) potential.

Instead of the friction tensor of the internal coordinate, as

mentioned before, the diffusion tensor, D̂D
ðQÞ
aa0 , is often used in

phenomenological theory. To analyze the influence of the

bead-solvent interaction on the diffusion of macromole-

cules, Figure 8 displays the parameters of the diffusion

tensor dependent on the bead-bead separation and com-

pares them with the behaviour of the Oseen tensors from

phenomenological theory. As seen from this figure again,

the discrete nature of the solvent becomes important for a

small separation of the two beads, say, for Q� 2sLJ, and

leads to a clear reduction in the diffusion parameters,DðA;LJÞ

and DðB;LJÞ. Obviously, this discrete structure of the solvent

has to be taken into account explicitly, if the statistical and

dynamic properties of macromolecules in solution are to be

Figure 5. Fourier transform of the Lennard-Jones potential in
Equation (79) as function of the modulus of k.

Figure 6. Friction tensor parameters, AðQ;LJÞ=xðC;LJÞð0Þ and
BðQ;LJÞ=xðC;LJÞð0Þ, for the internal coordinate and for the
Lennard-Jones interaction potential as function of the bead-bead
separation.

Figure 7. Center-of-mass friction tensor parameters,
AðC;LJÞ=xðC;LJÞð0Þ andBðC;LJÞ=xðC;LJÞð0Þ, for the internal coordinate
and for the Lennard-Jones interaction potential as function of the
bead-bead separation.
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described properly. At large bead distances, however, the

phenomenological theory provides a reasonable approach

and can be used to model the relaxation and the diffusion of

macromolecules.

Conclusion

The influence of the bead-solvent interaction on the dyn-

amics of macromolecules, which are immersed in a solu-

tion, has been investigated by using Hamiltonian mechanics

and master equations for the phase-space distribution

functions. In such a model, the macromolecules are taken

as a chain of beads which are coupled to each other by a

force and which are surrounded by – a large number of –

solvent particles. Starting from the Hamiltonian of the

overall system ‘‘macromoleculeþ solvent,’’ a Fokker-

Planck equation (FPE) is then derived for the time evolution

of the phase-space distribution function of the (N-bead)

macromolecule. In this derivation, three realistic assump-

tions were made: (i) the interaction between the beads and

the solvent particles is considered to be weak when com-

pared to the bead-bead interaction, which keeps the

macromolecule together; (ii) the relaxation of the solvent

proceeds much faster in time than those of the beads; and

(iii) the dynamics of the solvent is described properly in

terms of a diffusion equation. The dynamics of the macro-

molecule is then determined purely by the ‘‘friction

tensors’’ that appear on the right-hand side of the FPE and

that can be expressed in terms of the bead-solvent interac-

tion potential as well as the dynamic structure factor of the

solvent.

To understand the effects of the bead-solvent interaction

on the dynamic behaviour of macromolecules in detail, we

have considered a few typical bead-solvent interaction

potentials for a dumbbell molecule here; the generalization

of this work to larger molecules will be considered in the

future. Apart from a few general properties of the friction

tensors, which are independent on the bead-solvent

potential, the influence of the interaction has been studied

for the three cases of a Yukawa, a Born-Mayer as well as a

Lennard-Jones potential. For these cases, the behaviour of

the friction tensors dependent on the bead-bead separation

has been analyzed and compared with results from pheno-

menological theory. Analytic expressions for the friction

tensor parameters are obtained, in particular, for a Yukawa

and Born-Mayer potential, whereas they had to be determi-

ned numerically for a Lennard-Jones potential. Moreover,

the asymptotic time behaviour (t!1) of the internal

momentum (auto-)correlation function is investigated and

an algebraic tail, i.e., a non-exponential decay of the corre-

lation between the two beads, is confirmed as known

empirically from molecular dynamics simulations. For

the Lennard-Jones potential, in addition, the internal

and center-of-mass friction coefficients were computed

numerically which show that only the repulsive part of the

potential determines the behaviour of the friction tensor

parameters.

From our analysis of the friction tensors, the discrete

nature of the solvent can be seen clearly at small distances

between the bead and solvent particles. Of course, this

behaviour has to be compared with that from of the pheno-

menological theory, where the solvent is always treated as

an incompressible and viscous fluid. The use of Fokker-

Planck-(type) equations in the description of the dynamic

behaviour of macromolecules may, therefore, help combine

the various physical models which have been applied in

the past for both, the solvent and the macromolecules. In

addition, we are presently continuing this work to better

understand the dynamics of N-bead chains or other

macromolecular structures.

Appendix A: Asymptotic Behavior of the Relative
Momentum Correlation Function

Using Equation (56) for the definition of the phase-space

average, we may re-write the internal momentum correla-

tion function [Equation (57)] of the dumbbell macromole-

cule in the integral form:

CðQÞðtÞ ¼ 1

6
h�1

ð
dG eð�AðQÞðQÞtÞ 2 þ eð�BðQÞðQÞtÞ

� �n o
e�bHd

ðA1Þ

where h ¼
R
dGfeqðG; tÞ denotes the normalization integral

of the (equilibrium) distribution function, and Hd is the

Hamiltonian of the dumbbell:

Hd ¼
P2
C

2M
þ

P2
Q

2M
þ UðjQjÞ ðA2Þ

Figure 8. Normalized diffusion tensor parameters, DðAÞ=xðCÞð0Þ
and DðBÞ=xðCÞð0Þ, for the internal coordinate as function of the
bead-bead separation. These parameters are shown for a Lennard-
Jones interaction potential.
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given in terms of the relative coordinates,

G ¼ RC;Q;PC;PQ

� 

. We can evaluate the integral in

Equation (A1), since the two friction tensor parameters,

AðQÞðQÞ and BðQÞðQÞ [cf. Equation (54) and (53)] do not

depend on either the center-of-mass coordinate RC, or the

momenta, PC and RQ, or the orientation of the relative

coordinate, Q¼R1�R2. In fact, these two parameters are

simply functions of the bead-bead separation. Therefore, by

carrying out the integration over the center-of-mass and the

two momentum coordinates of the dumbbell, we first

obtain:

CðQÞðtÞ ¼ 1

6

ð
dQe�bUðQÞ

� ��1

�
ð
dQ eð�AðQÞðQÞtÞ 2 þ eð�BðQÞðQÞtÞ

� �n o
e�bUðQÞ

ðA3Þ

and, finally,

CðQÞðtÞ¼1

6
h�1
Q

ð1
0

dQ eð�AðQÞðQÞ tÞ 2þeð�BðQÞðQÞ tÞ
� �n o

Q2reqðQÞ

ðA4Þ

if we introduce polar coordinates, Q ¼ ðQ; WQ;jQÞ, and if

the integral is taken over the polar angles (i.e.,
R
. . . sin

WQdWQdjQ). In this expression for the internal momentum

CF, reqðQÞ ¼ e�bUðQÞ and hQ ¼
R1

0
dQQ2reqðQÞ denotes

the normalization integral. As mentioned before, the

asymptotic behaviour of this CF for t!1 is determined

by the first (non-vanishing) term in the Taylor expansion of

the friction tensor [Equation (54)]. We can perform this

Taylor expansion, for instance in the case of a Yukawa

interaction potential, for the friction tensor parameters

[Equation (62) and (63)], respectively; if we truncate the

expansion after the first non-vanishing term and denote

the constant coefficient of the expansion by mY ¼
@AðQ;YÞ=@Q Q¼0

�� and nY ¼ @BðQ;YÞ=@Q Q¼0

�� , the friction

tensor parameters become:

AðQ;YÞðQÞ ¼ mYQþ OðQ2Þ;
BðQ;YÞðQÞ ¼ nYQþ OðQ2Þ ðA5Þ

For longer times and a Yukawa-type bead-solvent potential,

therefore, the relative momentum correlation function (A4)

takes the form:

CðQ;YÞðt ! 1Þ � 1

6
h�1
Q

�
ð1

0

dQ eð�mYQtÞ 2 þ eð�nYQtÞ
� �n o

Q2reqðQÞ ðA6Þ

We still can simplify this expression by integrating it by

parts:

CðQ;YÞðt ! 1Þ � 1

6
h�1
Q

�
ð1

0

dQ eð�mY Q tÞ 2 þ eð�nY Q tÞ
� �n o

Q2reqðQÞ

¼ 1

6
h�1
Q

ð1
0

Q2reqðQÞ
d

dQ
. . .f gdQ

¼ 1

6
h�1
Q Q2reqðQÞ . . .f g
	 
1

0
þ 1

6
h�1
Q

ð1
0

. . .f gdðQ2reqðQÞÞ

ðA7Þ

where f . . . g ¼ feð�mYQtÞð� 2
mY t

� 1
ðmYþnYÞ te

ð�nYQ tÞÞg is

used as a short-hand notation in the second and third line

above. The internal momentum CF now consists of two

terms, from which the first term ½Q2reqðQÞf. . .g�
1
0 ¼ 0

vanishes identically. The second term is

CðQ;YÞðt ! 1Þ � 1

6
h�1
Q

�
ð1

0

eð�mYQtÞ � 2

mYt
� 1

ðmY þ nYÞt
eð�nYQtÞ

� �� �
dðQ2reqðQÞÞ

ðA8Þ

and can be simplified further by means of a second

integration by parts to the final form:

CðQ;YÞðt ! 1Þ � 1

3
h�1
Q reqð0Þ 2m�3

Y þ ðmY þ nYÞ�3
h i

t�3

ðA9Þ

of the asymptotic behaviour of the internal momentum CF

in the case of a Yukawa-type bead-solvent interaction poten-

tial. The same steps [Equation (A5)–(A9)] can be carried

out for the Born-Mayer interaction potential and finally

yields:

CðQ;BMÞðt ! 1Þ �
ffiffiffi
p

p

24
feqð0Þ

� 2m�3=2
BM þ ðmBM þ nBMÞ�3=2

h i
t�3=2 ðA10Þ
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The influence of the bead-bead interaction on the rotational dynamics of macromolecules which are
immersed into a solution has been investigated by starting from the microscopic theory of the
macromolecular motion, i.e., from a Fokker-Planck equation for the phase-space distribution
function. From this equation, we then derived an explicit expression for the configuration-space
distribution function of anonrigid molecule which is immobilized on a surface. This function
contains all the information about the interaction among the beads as well as the effects from the
surrounding solvent particles and from the surface. For the restricted rotational motion, the
dynamics of the macromolecules can now be characterized in terms of a rotational diffusion
coefficient as well as a radial distribution functions. Detailed computations for the rotational
diffusion coefficient and the distribution functions have been carried out for HOOKEAN, finitely
extensible nonlinear elastic, and a DNA type bead-bead interaction. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1787831#

I. INTRODUCTION

Understanding the dynamical behavior of macromol-
ecules, i.e., translational and rotational motion of macromol-
ecules, or formation and deformation of their shape, remains
a central problem for the study of proteins and DNA in so-
lution. During the last years, therefore, a large number of
experiments and molecular dynamic simulations have been
carried out in order to describe the statical and the dynamical
properties of macromolecules.1–18 For instance, the dynamic
light scattering experiments have been carried out in order to
describe the translational motion of the macromolecule,
which determines the motion of the macromolecule as
whole.1–3 In order to describe the formation and deformation
of the macromolecular shape, i.e., internal configurational
changes of macromolecules, the dielectric relaxation as well
as fluorescence depolarization techniques have been success-
fully used.4–11

To understand the properties of the macromolecules by
means of theoretical methods, they are often treated in terms
of a several number of molecular subsystems which are usu-
ally referred to as thebeadsof the macromolecule. When
immersed into a solvent, of course the shape and the dynami-
cal behavior of the macromolecules will be determined not
only by the interaction of the beads with the surrounding
solvent but also by the interaction among their~neighboring!
beads. Various models have been developed in the past for
studying the translational motion of macromolecules in
solution.19–23Apart from the translational motion of the mol-
ecules, their rotational properties have been studied by vari-
ous authors, including the work of Wang and Pecora24 on the
restricted rotational diffusion of rigid rodlike molecule. This
was later extended by Kumar and co-workers as well as by
Fujiwara and Nagayama, who explored the restricted rota-

tional diffusion of symmetric top molecules25,26as well as of
flexible molecules which were modeled as a set of the beads
connected by the rigid rods.27 Moreover, the rotational be-
havior of the spherical and rigid-rod molecules in strong
electric fields was investigated by Koenderinket al.28 and
Kalmykov and De´jardin,29,30 respectively. In addition, the
~restricted! rotational diffusion was investigated also by us-
ing Brownian dynamics simulation techniques.31 For in-
stance, de la Torre and co-workers as well as Peters and Ying
considered the rotational properties of dimer-type and trimer-
type macromolecules.32–36 In all these investigations, how-
ever, the macromolecules were considered so far as rigid
particles without any ‘‘internal’’ motion, that is without any
changes in the distances between neighbored beads.

In the present paper, we pay attention to theinternal
dynamics of macromolecules which are immersed in a solu-
tion. For this part of the overall dynamics, we analyze the
effects of the bead-bead interaction potential as well as the
interaction with the particles from solvent. In particular, we
will consider the~restricted! rotational motion ofnonrigid
macromolecules and derive an expression for therotational
diffusion coefficientof the macromolecules. Apart from the
properties of the solvent and its interaction with the mol-
ecules, of course, this coefficient is affected also by the bead-
bead interaction potential. Detailed computations for the ro-
tational diffusion coefficient are carried out for a
HOOKEAN,19,20 a finitely extensible nonlinear elastic
~FENE! ~Refs. 17, 18, and 21! as well as a~so-called! DNA-
type potential37–39 among the beads. All of these potentials
have their roots originally in physical chemistry where they
have been utilized in molecular dynamic simulations in order
to describe the chemical bonds in various types of~chemical!
environments. Results from our theory are then compared
with other computations from Doi-Edwards theory19–21,32,40a!Electronic mail: uvarov@physik.uni-kassel.de
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which are based, however, on arigid-rod modelof the mac-
romolecules.

The paper is organized as follows: In the following sec-
tion, we will start from the most basic equation, the Fokker-
Planck equation for the time evolution of the phase-space
distribution function, in order to deal with aN-bead macro-
molecule which is immersed in a solution. Since this equa-
tion contains the full dynamical information about the mac-
romolecule, it could be used immediately—at least in
principle—for describing the molecular motion in the sol-
vent. By assuming, however, that the mass of the macromol-
ecule is~much! larger than the mass of the solvent particles,
it is more convenient toreducethis Fokker-Planck equation
to a ~noninertial! diffusion equation~DE! which, in turn, de-
scribes the time evolution of thecoordinate-spacedistribu-
tion function of theN-bead macromolecule. For this diffu-
sion equations, a remarkable feature is that the generalized
diffusion tensor, which accounts for the effects of the solvent
on the dynamical behavior of the macromolecule, now de-
pends explicitly on its end-to-end vector. In Sec. II B, there-
fore, we make use of the diffusion equation to analyze first
the internal dynamics of just a two-beaddumbbellmolecule
in some detail. For such a dumbbell, an expression for
the diffusion tensor is then obtained in terms of the~self-!
diffusion tensors of the two beads as well as the tensor which
arises from their hydrodynamic interaction. In this subsec-
tions, in addition, we also discuss a few further properties of
a dumbbell such as its anisotropic diffusion in the case of
nonspherical beads, or the proper choice of a single anisot-
ropy parameter for describing the mobility of the macro-
molecule in the solution. In Sec. III, later, we will investigate
the rotational motion of a dumbbell molecule which is im-
mobilized on a surface. A general expression for the
configuration-space distribution function of the macromol-
ecule is derived and discussed, which can be calculated for
any given bead-solvent and/or bead-surface potential, respec-
tively. However, in order to obtain some deeper insight in
how the interaction among the beads will influence the rota-
tional motion of the macromolecule, a particular choice has
to be made for the bead-bead potential. Therefore, detailed
computations for the rotational diffusion coefficient of the
macromolecules have been carried out in Sec. III B for the
linear HOOKEAN potential, the nonlinear FENE as well as
for a DNA-like bead-bead potential and are compared with
calculations from Doi-Edwards theory.19–21,32,40 Finally, a
few conclusions are given in Sec. IV.

II. BASIC MODEL EQUATIONS

A. General diffusion equation
for a N-bead macromolecule

In the microscopic theory, thedynamicalbehavior of a
N-bead macromolecule in solution is described most gener-
ally in terms of a Fokker-Planck equation~FPE! for the time
evolution of its phase-space distribution functionrN(G;t)
~Refs. 19, 22, and 41!

]rN~G;t !

]t
5L̂rN~G;t !. ~1!

In this equation, the Fokker-Planck operatorL̂ has the form

L̂52 (
a51

N Pa

M

]

]Ra
1 (

a,b51

N
]U~ uRa2Rbu!

]Ra

]

]Pa

1 (
a,b51

N
]

]Pa
ĵ ~ab!S ]

]Pb
1

1

kBTM
PbD , ~2!

if we assume an equal massM and a pairwise interaction
U(uRa2Rbu) for all the N beads of the molecule. Here, as
usual,Ra , Rb ,... andPa , Pb ,... (a,b51,...,N) are taken to
denote the positions or, respectively, the momenta of the in-
dividual beads, whileG[$R1 ,...,RN ;P1 ,...,PN% will be
used below as an abbreviation to describe the phase-space
coordinates alltogether. For each pair (a,b) of beads, more-
over, there is a friction tensorĵ (ab) which characterizes the
~thermodynamical averaged! interaction of these two beads
with the surrounding particles from the solvent. In Eq.~2!,
moreover,kB is the Boltzmann constant andT the tempera-
ture of the overall system ‘‘macromolecule1solvent.’’

The FPE~1! enables one to describe in fact all the dy-
namical properties of aN-bead molecule which is immersed
in the solvent. In practise, however, it appears rather unfea-
sible to deal with the coordinates and the momenta of all the
beads simultaneously. Since the molecular beads usually
have a much larger mass and size than the particles from the
solvent, we may use instead a very good approximation for
the momentum distribution in order to simplify the FPE~1!
to a diffusion equation which just depends on the coordinates
of the beads. For most solutions, namely, we may assume
that the relaxation to the equilibrium~values! happens much
faster for the momenta of the molecular beads rather than for
their positions and, hence, that the phase-space distribution
function rN(G;t) can be factorized

rN~G;t !5%N~$Ra%;t !•pN;eq~$Pa%! ~3!

into a coordinate-space distribution%N($Ra%;t) and the
momentum-space distribution functionpN;eq($Pa%), taken at
the equilibrium. Owing to the factorization~3!, moreover,
both the distribution functions%N and pN;eq should be nor-
malized independently to one as, for instance, by

E d$Ra%%N~$Ra%;t !51. ~4!

With the Eqs.~1!–~3! in mind and by using the techniques of
projection operators, now an equation of motion can be de-
rived for the coordinate-space distribution function22,42

]rN~$Ra%;t !

]t

5 (
a,b51

N
]

]Ra
D̂~ab!S ]

]Rb
2

1

kBT

]U

]Rb
D rN~$Ra%;t !, ~5!

which is called the noninertial diffusion equation~DE! and
where the configuration-dependent diffusion tensor of the
macromolecule,D̂(ab)[D̂(ab)($Ra%), is closely related to the
friction tensor

D̂~ab!ĵ ~ab!5kBTI ,
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with I being the 333 unit tensor. In fact, a detailed knowl-
edge of the configuration-space distribution function plays a
key role in studying the various properties of macromol-
ecules in solution. In particular, the coordinate-space distri-
bution function can be used to analyze and/or to calculate the
translationalandrotational dynamics of macromolecules. In
practice, of course, such computations may become rather
tedious if eitherN represents a large number of interacting
beads or, in particular, if the rotational motion of macromol-
ecules is concerned. For all further considerations below, we
therefore restrict ourselves to the much simpler two-bead
dumbbell molecule which enables us to study the basic fea-
tures of the rotational motion of macromolecules in more
detail.

B. Rotational diffusion equation
for the dumbbell-type molecule

Since, in the following, we are interested only in the
dynamics of the dumbbell molecule, let us first separate from
each other the center-of-mass~c.m.! and the internal~Q! mo-
tion ~cf. Fig. 1!. Instead of the Cartesian coordinatesRa , a
51, 2 of the two beads, we then make better use of the
center-of-mass and the relative coordinates,

Rc.m.5
R11R2

2
, ~6!

Q5R22R1 , ~7!

where the latter one is known also as theend-to-end vector
of the ~dumbbell! molecule. If we assume, furthermore, that
the internal dynamics of the macromolecule does not depend
on its particular position within the solution, we may factor-
ize ~once more! the coordinate-space distribution function
r2($Ra%;t) of the dumbbell into

r2~$Ra%;t !5f~Rc.m. ;t !c~Q;t !, ~8!

where f(Rc.m. ;t) denotes the distribution function of the
center-of-mass coordinate andc(Q;t) the distribution func-
tion for the internal motion, sometimes briefly referred to as
~again! the configuration-space distribution function. In ac-
cordance with Eq.~4!, these functions are taken to be nor-
malized due to

E dRc.m.f~Rc.m. ;t !51 ~9!

and

E dQc~Q;t !51, ~10!

respectively.
Owing to the separation~8! of the configuration-space

distribution functionr2($Ra%;t), it can be shown that the
distribution functionc(Q;t) obeys a diffusion equation simi-
lar to Eq.~5! above. Inserting Eq.~8! into this equation and
by making use of the chain rule for a few times, we then find
that the~internal! configuration-space distribution function,
c5c(Q;t), fulfills the equation

]c

]t
5

]

]Q
D̂~Q!~Q!S ]

]Q
2

F~Q!

kBT Dc, ~11!

which is called below the diffusion equation for the internal
motion of the dumbbell. In Eq.~11!, moreover, the vector
F(Q)52]U/]Q denotes the force, which acts on the beads
of the dumbbell, andD̂(Q)(Q) is the generalized diffusion
tensor for the relative~internal! motion of the two beads. For
a dumbbell molecule, this latter tensor can be written as

D̂~Q!~Q!5D̂~11!1D̂~22!2D̂~12!2D̂~21!, ~12!

i.e., in terms of the diffusion tensors of the individual beads
D̂(aa) (a51,2) and the tensorsD̂(ab) (aÞb) which describe
the hydrodynamic interaction among them.

The generalized diffusion tensor~12! contains all the
information about the influence of the solvent on theinternal
motion of the dumbbell molecule. In the following, there-
fore, let us analyze this tensor in more detail and discuss how
it can be parametrized in terms of just a single parameter.

1. Properties of the diffusion tensor
for the internal motion of the dumbbell

As seen from Eq.~12!, the generalized diffusion tensor
for the internal motion of a dumbbell molecule depends first
of all on the diffusion tensors of the individual beads which,
in turn, may depend on their particular shape. For a spherical
bead, for instance, the influence of the solvent should not
depend on the direction in which it moves19–21 and, there-
fore, the diffusion tensor is expected to be a function of just
a single parameter,

D̂~aa!5DI , ~13!

which is called theself-diffusion coefficientof the bead. For
a nonspherical bead, in contrast, such as a spheroid, rod,
ellipsoid, or some other shape, its motion in the solvent will
be quite different for different directions. In the most general
case, the moments of inertia are different for all of the three
principal axes of the macromolecule and, hence, three pa-
rameters might be needed to characterize the diffusion tensor
for a nonspherical bead completely.19,40 If the moments of
inertia are equal for any two of the principal axes, we may
use the parametersD i andD' in order to describe the mo-
bility of the bead along its symmetry axis or, respectively,
along any other direction which is perpendicular to it. For
such a~nonspherical! symmetry top, then, theanisotropic
diffusion tensor becomes42–47

FIG. 1. Model of the nonrigid dumbbell molecule. For each bead of the
macromolecule, the anisotropic diffusion tensor~14! can generally be de-
scribed in terms of two parametersD i for the diffusion along the end-to-end
vectorQ andD' for the diffusion in its perpendicular plane.
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D̂~aa!5D iua
^ ua1D'~ I2ua

^ ua!, ~14!

whereua is the unit vector in parallel to the main symmetry
axis of the bead. In addition, here we use the operation^ to
denote a tensor~dyadic! product which turns two vectors into
a second-rank tensor. Since, for~almost! spherical beads, we
may assumeD i.D'[D, we find—as expected—that the
diffusion tensor of a spherical bead~13! appears just a par-
ticular case of the anisotropic diffusion tensor~14!. Apart
from the tensors of the two individual beads, however, the
generalized diffusion tensor~12! of the internal motion of the
dumbbell still depends on the hydrodynamic interaction as
described by the diffusion tensorsD̂(ab), aÞb, a,b51,2.
There are various explicit tensor expressions known from the
literature which describe the hydrodynamic interaction of the
beads.22,31,48–52All of them can be represented in the form,

D̂h~Q!5D̂~12!1D̂~21!52Dh;1~Q!I12Dh;2~Q!q^ q, ~15!

where Dh;1(Q) and Dh;2(Q) are two functions which de-
pend purely on the bead-bead distanceQ. These functions
contain all the information about the solvent in which the
macromolecule is immersed~for instance, about its viscosity
or the bead-solvent interaction potential!. In the second term
of Eq. ~15!, the vectorq5Q/uQu denotes the normalized end-
to-end vectorQ which points from bead 2 to bead 1. If,
moreover, one of the principal axes of the two beads is par-
allel to q, i.e., uaiq (a51,2), then, the diffusion tensor~12!
of the internal motion of the dumbbell becomes

D̂~Q!~Q!5D i
~Q!~Q!q^ q1D'

~Q!~Q!~ I2q^ q!, ~16!

where the functionD i
(Q)(Q) is introduced to describe the

mobility of the dumbbell along the directionq,

D i
~Q!~Q!52@D i2Dh;1~Q!2Dh;2~Q!#. ~17!

Similarly, in this case, the functionD'
(Q)(Q) is used to char-

acterize the mobility of the dumbbell along any direction
perpendicular toq,

D'
~Q!~Q!52@D'2Dh;1~Q!#. ~18!

As seen from Eqs.~16!–~18!, the diffusion of a macro-
molecule hasalways an anisotropic nature, a well-known
feature which was considered before in Refs. 42–47 by in-
troducing an anisotropy parameterL<1 which is generally a
function of the distanceQ of the two beads,

L~Q!~Q!5
D i

~Q!~Q!

D'
~Q!~Q!

~19!

owing to the hydrodynamic interaction.
To deal with the hydrodynamic interaction in the case of

two spherical-symmetric beads with radiuss and a self-
diffusion coefficientD, two approximations are often used.
In the first one, which was formulated originally by Oseen
and later modified by Burger,31,50,51 it is assumed that the
radiuss of the beads is much smaller than their distanceQ,

Dh
OB~Q!5

3

4
D

2s

Q

Q2

Q21s2
I1

3

4
D

2s

Q

Q2

Q21s2
q^ q,

~20!

i.e., the Oseen tensor is valid only forQ@s. A second and
more general approximation for the hydrodynamic interac-
tion ~tensor! was given by Rotne and Prager48 and by
Yamakawa49 for beads of equal size,

Dh
RPY~Q!5

3

4
D

2s

Q
35 F S 11

2s2

3Q2D I1S 12
2s2

Q2 D q^ qG if Q>2s

F Q

2s S 8

3
2

3Q

4s D I1
Q

4s
q^ qG if Q,2s

~21!

and can be applied for any bead-bead distanceQ. For a first
comparison of these approximations, Fig. 2 displays the an-
isotropy parameterL (Q)(Q) as a function of the distanceQ
of the beads which, for the sake of simplicity, is taken in
terms of their radiuss. As seen from this figure—and, in
fact, if a hydrodynamic interaction is at all assumed for the
dumbbell—the anisotropic parameterL (Q)(Q) is always
positive and less than 1. We can interpret this behavior of
L (Q)(Q) in the way that the dumbbell can rotate more easily
than it would move along its axisq, in particular, for rather
small distances of the two beads. Only when the bead-bead
distance becomes larger than, say, 8s ~i.e., in the case of the
so-called extended macromolecule!, we may neglect the hy-
drodynamic interaction among the beads. In this latter case,

we haveL (Q)(Q)51, the same value as for an~equilibrium!
isotropic Brownian motion of each spherical bead of the
dumbbell.

Let us now return to the diffusion equation~11! for the
internal motion of the dumbbell which describes the time
evolution of the configuration-space distribution function
c(Q;t). This equation still depends—via the force
F~Q!—on the interaction potentialUB(Q) among the beads
as well as, if appropriate, on the interaction with some exter-
nal field Uext(Q). We shall return later to the influence of
these potentials on the motion of the dumbbell and shall
discuss their properties in more detail. For the moment, we
just mention that the full interactionU5UB(Q)1Uext(Q)
depends on the end-to-end vectorQ, but does not depend
explicitly on the timet or the momenta of the individual
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beads. In the following subsection, we make use of Eq.~11!
to describe the~restricted! rotational motion of the dumbbell
which is immobilized on a surface. For such a molecule, the
rotation of the ‘‘free end’’ does influence not only the dielec-
trical relaxation17,18,29,30of the molecule but may cause also
a depolarization of the fluorescence light.5–8,53,54

2. General diffusion equation for a dumbbell molecule
in polar coordinates

To describe the restrictedrotational motion of a dumb-
bell macromolecule, it is convenient to use polar coordinates.
In the following, therefore, we take the second bead~with
index 2!, which is sticked to the surface, as the originO of
the coordinates and useu and w to denote the azimuth and
polar angles of the end-to-end vectorQ. Then, as usual, the
differential operator]/]Q is given by55

]

]Q
5q

]

]Q
1eu

1

Q

]

]u
1ew

1

Q sinu

]

]w
, ~22!

whereq[eQ is ~still! the unit vector along the internal coor-
dinateQ, while eu andew are the unit vectors of the corre-
sponding angles. In order to rewrite the diffusion equation
~11! in terms of the polar coordinates, moreover, we make
use of two known properties of the dyadic product of the unit
vectorq,56 namely,

~q^ q!"q5~q"q!q5q, ~23!

]

]Q
•~q^ q!5

2

Q
q. ~24!

By using the expressions~22!–~24! and inserting the diffu-
sion tensor~16! for the internal motion of the dumbbell, the
diffusion equation~11! now becomes

]c

]t
5D'

~Q!S Dc1
1

kBT
cDU1

1

kBT
¹c•¹U D

1~D i
~Q!2D'

~Q!!F ]2c

]Q2
1

1

kBT

]2U

]Q2
c1

1

kBT

]U

]Q

]c

]QG
1S ]D i

~Q!

]Q
1

2~D i
~Q!2D'

~Q!!

Q D S ]c

]Q
1

1

kBT

]U

]Q
c D , ~25!

where D denotes the Laplacian in a coordinate-free
notation.55 This equation is the basic result of this section,
and we will refer to it below as the internal diffusion equa-
tion for the ~internal! motion of a dumbbell molecule which
is immersed in a solvent. Like in the general case~11!, the
diffusion equation~25! describes the time evolution of the
configuration-space distribution function of the dumbbell
with an anisotropic diffusion tensor. While, however, Eq.
~11! is described in terms of the end-to-end vectorQ and the
forceF~Q! onto the dumbbell, the internal diffusion equation
~25! only depends on the bead-bead distanceQ but not on the
polar anglesu andw of the vectorQ. The use of polar coor-
dinates, therefore, makes Eq.~25! much more convenient in
order to describe the rotational motion of anonrigid dumb-
bell molecule. In the following section, we will utilize the
internal diffusion equation~25! to derive expressions for the
configuration-space distribution~function! of the dumbbell
as well as the rotational diffusion coefficient. In the past, this
coefficient has played a key role in studying the rotational
properties of macromolecules since it does determine not
only their relaxation time to return back from a nonequilib-
rium into the equilibrium state28–30,57but also provides infor-
mation about fluorescence anisotropy decay due to rotational
diffusion of the macromolecule.5–8,53,54

III. INFLUENCE OF THE BEAD-BEAD POTENTIAL
ON THE RESTRICTED MOTION OF NONRIGID
MACROMOLECULES

During the last decades, the rotational motion of macro-
molecules has often been studied within a~so-called! rigid-
rod model.19,24–27,29,30,53,54,57–59In this model, the macromol-
ecule is taken usually as a set of spherical beads of massM
which are connected to each other by rigid rods of lengthL
in order to form a chain. Various correlation functions have
been calculated within this model to describe, for instance,
the reorientation of macromolecules in solution. Since for
rigid rods, however, the distance between any two neigh-
bored beads is fixed from the very beginning, this model
cannot be used~of course! to analyze the dynamical behavior
of nonrigid macromolecule for which the distance between
the beads may depend on time. To better understand the ro-
tational motion of such macromolecules, therefore, we con-
sider a nonrigid dumbbell molecule with spherical beads and
with one of them~bead no. 2! attached to a surface. In fact,
this is perhaps the simplest model for a nonrigid macromol-
ecule which is immobilized on a surface. The two models of
the nonrigid and the rigid-rod dumbbell molecule, both im-
mobilized on some surface, are shown in Fig. 3. For the

FIG. 2. Anisotropy parameterL (Q) @Eq. ~19!# for a nonrigid dumbbell mol-
ecule as function of the~dimensionless! distanceQ/s of the two beads. This
parameter is shown for three cases:~i! no hydrodynamic interaction among
the beads,~ii ! the Oseen hydrodynamic tensor@Eq. ~20!#, and ~iii ! the
Rotne-Prager tensor@Eq. ~21!#.
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nonrigid dumbbell, obviously, the dynamical behavior will
depend not only on the polar angleu and azimuth anglew
~like in the rigid-rod model! but also on the variable distance
Q among the beads. In the following, therefore, we first need
to analyze the internal diffusion equation~25! for the non-
rigid dumbbell molecule.

A. Configuration-space distribution function
of the nonrigid macromolecule

As mentioned before, the isotropic diffusion tensor~13!
is appropriate to describe an ‘‘extended dumbbell’’ for which
the bead-bead separation is much larger than the radii of the
beads. In this case, the internal diffusion equation~25! can be
further simplified to

]c

]t
5DDc1

D

kBT
“•~c“U !

5DDc1
D

kBT
cDU1

D

kBT
“c•“U, ~26!

where D denotes again the Laplacian andD is the self-
diffusion coefficient of the ‘‘free’’ beads of the dumbbell.
Since, of course, any solution to this equation will depend on
the interactionU(Q)5U(Q,u,w) among the beads, we shall
first consider the bead-bead potential in some more detail
before we continue our discussion ofc to which we will
refer below as the configuration-space distribution function
of the dumbbell molecule. Note that any potentialU
5U(Q), which does not depend explicitly on time (]U/]t
50), gives rise to a stationary solution of the internal diffu-
sion equation~26! or, in other words,U(Q) determines the
solution of Eq.~26! completely whenevert→`. Moreover,
such a stationary solution must correspond to an equilibrium
configuration distribution function of the macromolecule
ceq(Q) and, therefore, must reflect its configuration proper-
ties at the equilibrium state,

ceq~Q!5e2U~Q!/~kBT!. ~27!

There is a further simplification possible if, instead of the
equilibrium distribution function~27!, we make use of the
radial ~equilibrium! configuration distribution of the macro-
molecule,Ceq(Q). This radial distribution function only de-
pends on the bead-bead distanceQ and describes the equi-
librium distance between the two beads of the dumbbell. In
general, of course, the full interactionU(Q) may contain

both, the bead-bead potentialUB(Q) as well as some exter-
nal potentialUext(Q) which, for a immobilized macromol-
ecule on some surface~cf. Fig. 3! is given by the interaction
of the ‘‘upper’’ bead of the dumbbell with the surface. Be-
low, we use the symbolUBS to denote this externalbead-
surfaceinteraction. In this paper, the aim is to consider the
rotational motion of a nonrigid macromolecule as function of
the solid angleV5~u,w! and if the polar angle is restricted
by some upper bound,u<u0<p/2. In the literature, such a
restricted rotational motion is sometimes called also the
diffusion-in-a-cone. To model this restricted rotation, we as-
sume that~i! the bead-bead interaction only depends on the
distanceQ of the two beads—but not on the anglesu and
w—and that, for a sufficiently small angleu0 , ~ii ! due to the
symmetry of the system ‘‘dumbbell1surface’’ ~cf. Fig. 3!,
the bead-surface interaction is supposed to be a function of
only the polar angleu, i.e., UBS5UBS(u). With these two
assumptions in mind, we may write the bead-surface poten-
tial for the diffusion-in-a-cone model as

UBS5H UBS~u! if u<u0

` if u.u0.
~28!

Using, moreover, the explicit form~43! of the bead-surface
potential, we are able to rewrite the boundary conditions for
the anglesu andw of the molecular motions as

0<u<u0 , 0<w<2p. ~29!

In addition, we assume some boundary condition also for the
separation of the two beads

0<Q<Q0 , ~30!

whereQ0 is taken as the maximal distance beyond which the
beads of the dumbbell cannot be stretched. In practice, of
course, this maximum is finally determined always by the
bead-bead interaction potentialUB itself. Since the
configuration-space distribution functionc(Q,u,w;t) is
taken as a continuous functions, and especially when it
comes close to the boundaries~29! and ~30!, it must satisfy
for the polar angleu the reflection~or von Neumann! condi-
tion,

]c~Q,u,w;t !

]u U
u5u0

50 ~31!

and for the azimuthal anglew the periodic boundary condi-
tion,

c~Q,u,w50;t !5c~Q,u,w52p;t !. ~32!

For the bead-bead distanceQ, moreover, the distribution
function c(Q,u,w;t) must satisfy the boundary condition,

]c~Q,u,w;t !

]Q U
Q5Q0

50. ~33!

Using these three boundary conditions~31!–~33!, we are
able then to derive the internal diffusion equation~26! for the
configuration distribution functionc5c(Q,u,w;t) of a non-
rigid dumbbell molecule. Inserting the Laplacian in polar
coordinates,

FIG. 3. Two models of the macromolecule immobilized on a surface:~a! the
nonrigid dumbbell and~b! the rigid-rod model.
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D5
1

Q2

]

]Q H Q2
]

]QJ 1
1

Q2 sinu

]

]u H sinu
]

]uJ
1

1

Q2 sin2 u

]2

]w2
, ~34!

into Eq. ~26!, this diffusion equation becomes

]c

]t
5R̂~Q!c1Ô~u!c1

D

Q2 sin2 u

]2c

]w2
, ~35!

where, if we make use of the new variablem5cosu, polar
diffusion operator takes the form,

Ô~m!5
d

dm F ~12m2!
d

dmG1
d

dm F ~12m2!
dUBS~m!

dm G
1

1

kBT

dUBS~m!

dm

d

~dm!
, ~36!

while the radial diffusion operatorR̂(Q) is given by

R̂~Q!5D
]

]Q S Q2
]c

]Q D
1

D

kBT
c

]

]Q S Q2
]UB

]Q D D

kBT
Q2

]c

]Q

]UB

]Q
. ~37!

Solutions for the diffusion equation~35! can be obtained by
a separation of the variables. If we simply try for the phase-
space distribution functionc(Q,u,w;t) the separation ansatz

c~Q,u,w;t !5C~Q!U~uF~w!T~ t !, ~38!

and the internal diffusion equation~35! split into four ordi-
nary differential equations, one for each of the variables

dT~ t !

dt
52lDT~ t !, ~39!

d2F~w!

dw
52m2F~w!, ~40!

Ô~m!U~m!1Fn~n11!1
m2

12m2GU~m!50, ~41!

and

1

D
R̂~Q!C~Q!@lQ22n~n11!#C~Q!50, ~42!

where the operatorsÔ(m) and R̂(Q) are taken from Eqs.
~36! and ~37!, respectively, and wherem, n, and l are the
corresponding separation constants. We shall return later to
these constants and discuss their properties in more detail.
For the moment, we just mention that these constants are
closely related to the boundary conditions~31!–~33! which
restrict the internal motion of the dumbbell. The four Eqs.
~39!–~42! above fully describe the behavior of the
configuration-space distribution functionc(Q,u,w;t) of the
dumbbell molecule if immobilized on the surface. These
equations, derived in this work, make it possible to obtain
the configuration-space distribution functionc(Q,u,w;t) of
the dumbbell molecule in the presence of both, the bead-

beadUB and bead-solventUBS interaction. While the first
Eq. ~39! determines the~trivial! time evolution of the distri-
bution functionc(Q,u,w;t), the second and third one~40!–
~44! are the two ‘‘angular equations’’ which only depend on
theorientationof the molecule, i.e., the direction of the end-
to-end vectorQ. In addition to these angular equations, we
have to consider also theradial Eq. ~42! which describe the
behavior of the configuration-space distribution function
c(Q,u,w;t) as function of the distance of the two beads.

Having obtained the Eqs.~39!–~42! for a dumbbell mol-
ecule, we see that theorientational dynamics of such mol-
ecules is entirely determined by the bead-solvent interaction
potentialUBS(u). To obtain further insight into the behavior
of the molecules, let us now consider the particular case for
the bead-solvent interaction potential as given by

UBS5H 0 if u<u0

` if u.u0.
~43!

In the literature, such a interaction potential is sometimes
called also the ‘‘pure’’ cone potential. From a physical view-
point, of course, this potential can be used only by assuming
that the bead-surface interaction is negligible when com-
pared with the bead-bead interaction,uUBu@uUBSu and,
therefore, the total interaction potentialU'UB(Q) is just
determined by the bead-bead interaction for all the polar
anglesu<u0 under consideration. With this assumption in
mind and by using the cone bead-solvent potential~43!, the
orientational equation~41! can be simplified considerably
and now becomes

d

dm F ~12m2!
dU~m!

dm G1Fn~n11!1
m2

12m2GU~m!50.

~44!

The configuration-space distribution functionc(Q,u,w;t) of
the molecule, as mentioned before@cf. Eq. ~38!#, can be ob-
tained from the solution of the~set of! the Eqs.~39!, ~40!,
~42!, and ~44!. Here, we need not to go into further details
concerning the solution of the Eqs.~39!, ~40!, ~42!, and~44!
from above. Instead, we may display the general solution of
the configuration-space distribution,

c~Q,u,w;t !5 (
n51

`

(
m52`

`

e2ln
mDt~An

m cosmw1Bn
m sinmw!

3Pn
n
m

m
~m!Cl

n
m ,n

n
m~Q!, ~45!

in terms of the radial distribution functionsCl
m
n ,n

n
m(Q)

which must obey Eq.~42! for any given set of separation
constantsl and n. The functionsPn

n
m

m
(m) in Eq. ~45! are

called the associated Legendre function of degreenn
m and

orderm and are well known as solutions of the angular equa-
tion ~44!.

As said before, the separation constants must be ob-
tained from the three boundary conditions~31!–~33!. Since
the azimuthal anglew is not restricted in the rotational mo-
tion of the dumbbell, the configuration-space distribution
should have a period of 2p and, hence, the constantm must
be an integer. In order to find also the values ofnn

m , i.e., the
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sequence ofn’s which satisfy the boundary conditions for a
given value ofm, we may utilize the condition~31! for the
polar angle in terms of the variablem05cosu0,

]Pn
n
m

m
~m!

]m
U

m5m050

~46!

and by using the orderingn1
m,n2

m,n3
m
¯ . Equation ~46!

determines the number and the values of the separation con-
stantsn completely for any givenm. Note that, in contrast to
a free ~i.e., nonrestricted! diffusion of the dumbbell, these
constants are in general no longer integers and that, for any
fixed m andn, they are functions of the angleu0 . Such type
equations@such as Eq.~46!# are often obtained in the topic of
the restriction rotational diffusion@cf. Eq. ~6! in Ref. 24 or
Eq. ~38! in Ref. 25#. The general difference between Eq.~46!
and mentioned above equations is that Eq.~46! is just only
the particular case of the choice of both the boundary condi-
tion ~31! as well as the bead-surface interaction potential
~43!. Unfortunately, however, the roots of the Eq.~46! cannot
be obtained analytically but have to be determined numeri-
cally. In Table I, therefore, we display these rootsnn

m (m
50, 1, and 2! for a few values ofn and for several maximal
anglesu0 which may restrict the rotational diffusion of the
molecules. These roots are numerically derived by following
the method of the solution of such type equations which is
described in Ref. 24 in detail. As seen from Table I, the value
of the rootsnn

m increases when the maximal angleu0 de-
creases, i.e., when theconefor the rotational motion of the
molecule becomes smaller. A more detailed discussion about
these roots and the properties of the associated Legendre
function with a noninteger degree can be found in Refs. 24–
27. From this discussion, here we only summarize those
properties as needed in the following calculations. As known
from the hydrogen atom, for instance, the rootsnn

m are sym-
metric with respect to a sign change of the orderm,

nn
m5nn

2m . ~47!

In addition, the associated Legendre function obey the sym-
metry,

Pn
n
m

m
~m!5P

2n
n
m21

m
~m!, ~48!

even ifnn
m has a noninteger value. In the general form~45! of

the configuration-space distributionc(Q,u,w;t), moreover,
there arise the coefficientsAn

m and Bn
m which have to be

derived from the initial conditionc~Q;0!5d@Q2Q~0!# as
well as normalization condition~10! and which are given
by24

An
m5

cosmw~0!

pHn
me

Pn
n
m

m
@m~0!# ~49!

and

Bn
m5

sinmw~0!

pHn
m

Pn
n
m

m
@m~0!#, ~50!

where m~0!5cosu~0! and w~0! is the polar and azimuthal
angle at the initial timet in50, respectively, and

e5H 2 if m50

1 otherwise.
~51!

In Eqs.~49! and~50!, furthermore,Hn
m denotes a normaliza-

tion factor which follows from the known orthogonality
properties of the associated Legendre functions24,27

E
m0

1

dmPn
n1

m
m

~m!Pn
n2

m
m

~m!5Hn1

m dn1n2
~52!

and with

dn1n2
5H 1 if n15n2

0 if n1Þn2,
~53!

being the usual Kronecker symbol. Instead of the associated
Legendre functionsPn

n
m

m
(m), we could use also the general-

ized spherical harmonicsYn
n
m

m
(V) with the solid angleV

5$u,w% and a noninteger degreenn
m in order to describe the

restricted rotational diffusion of the macromolecules im-
mersed in the solvent. These generalized harmonics are sim-
ply related to the associated Legendre functionsPn

n
m

m
(m)

by24,27

Yn
n
m

m
~V!5A 1

2pHn
m

eimwPn
n
m

m
~m!. ~54!

As discussed in Ref. 24, the degreenn
m of the associated

Legendre functions has the form

nn
m52~n21!1m ~55!

when u may take the full range of the polar angle, i.e., 0
<u<u05p/2. Therefore, the generalized spherical harmon-
ics ~54! will always approach to thestandardspherical har-
monics where both, the degree and order are proper
integers.55 Using the generalized spherical harmonics~54!,
we can now rewrite the configuration-space distribution
function ~45! for the nonrigid macromolecule in the form,

TABLE I. Values of the separation constantsnn
m , which obey the boundary

conditiondPn
n
m

m /dmum5m0
50, and given as a function of the maximal polar

angleu0 of the cone.

nn
m\u0 30° 50° 70° 90°

n1
0 0.00 0.00 0.00 0.00

n1
1 2.90 1.63 1.12 1.00

n1
2 5.60 3.37 2.30 2.00

n2
0 6.65 3.75 2.53 2.00

n2
1 9.45 5.41 3.65 3.00

n2
2 12.15 7.21 4.53 4.00

n3
0 12.32 7.19 5.10 4.00

n3
1 15.56 9.22 6.30 5.00

n3
25n4

0 a 18.53 10.49 7.60 6.00
n4

1 21.60 12.71 9.03 7.00
n4

25n5
0 a 24.62 14.73 10.28 8.00

n5
1 27.30 16.44 11.47 9.00

aIn this table, the following properties apply:nn
m5nn21

m12 for n>4, for anym
andu0 ; cf. Ref. 24 for more details.
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c~Q,u,w;t !5 (
n51

`

(
m52`

`

e2ln
mDtYn

n
m

m
@V~0!#

3Yn
n
m

m
@V~ t !#Cl

n
m ,n

n
m~Q!. ~56!

Apart from the two separation constantsm andnn
m , we have

to determine of course also the constantsln
m before we may

use the configuration-space distribution function~56! for
analyzing thetime evolutionof the macromolecule. Similar
as above for the constantsm and then, the separation con-
stantsln

m should be obtained from the corresponding bound-
ary conditions~30! and ~33! which restrict the distance be-
tween the two beads of the dumbbell. To find these constants,
we first introduce theradial equilibrium distribution function
Ceq(Q) as the integral about the configuration-space equilib-
rium function of the macromolecule,ceq(Q,u,w), taken
over the polar anglesu andw,

Ceq~Q!5E
0

2p

dwE
0

u0
sinuduceq~Q,u,w!. ~57!

Obviously, this radial function only depends onQ and just
describes the distribution of the bead-bead distance within
the equilibrium. Inserting the function~57! into the radial
diffusion equation~35! and by carrying out the integration
overQ, we find that this radial equilibrium function must, for
any given bead-bead potentialUB(Q), obey~i! the condition

E
0

Q0
R̂~Q!Ceq~Q!50, ~58!

and that it~ii ! fulfills the equation,

lE
0

Q0
dQQ2Ceq~Q!5n~n11!E

0

Q0
dQCeq~Q!. ~59!

Since, however,

*0
Q0dQCeq~Q!

*0
Q0dQQ2Ceq~Q!

5K 1

Q2L
eq

~60!

is just the average of the function 1/Q2 at the equilibrium,
Eq. ~59! simplifies to

l5L2n~n11!, ~61!

whereL5A^1/Q2&eq is the inverse~parameter! of the equi-
librium distanceQ of the two beads. We may now combine
the general form of the configuration-space distribution func-
tion ~56! with the expression~61! for the constantl to finally
obtain the internal configuration-space distribution function
c(Q,u,w;t) of the nonrigid dumbbell.

c~Q,u,w;t !5 (
n51

`

(
m52`

`

e2nn
m

~nn
m

11!DRtYn
n
m

m
@V~0!#

3Yn
n
m

m
@V~ t !#Cn

n
m~Q!, ~62!

where

DR5DK 1

Q2L
eq

~63!

is the diffusion coefficient for therotational motion or, for
short, the rotational diffusion coefficient of the dumbbell.
The expression for the rotation coefficient of the nonrigid
dumbbell is one of the important result of this section. As
seen from the Eq.~63!, the rotational coefficient contains—
via the self-diffusion coefficientD of each bead and the
bead-bead potentialUB—all the information about the influ-
ence of the solvent as well as influence of the bead-bead
interaction on the rotational motion of the macromolecule.
Therefore, a detailed knowledge about the rotational coeffi-
cient and the radial distribution functionCl

n
m ,n

n
m(Q) are the

keysfor studying the configurational and relaxation proper-
ties of the rotational motion of macromolecules in solution.
In the following section, therefore, we will consider a few of
these properties of the rotational diffusion coefficient and the
radial distribution function in detail.

B. Bead-bead interaction potentials

Having derived the internal diffusion equation~35! for a
dumbbell molecule, we see that the dynamics of such mol-
ecules is determined entirely by the interaction potential
UB(Q) among the beads. To obtain further insight into the
behavior of the molecules, let us now consider three particu-
lar cases for the bead-bead interaction. In all the following,
however, we will restrict our considerations to a~two-bead!
dumbbell molecule. A generalization of these results to more
complex macromolecules (N.2) and other chain structure
is presently under work and will be presented elsewhere.

As mentioned before, most of the commonly applied
bead-bead potentials have their origin in the field of physical
chemistry where they were constructed in order to simulate
the chemical bonds in different~chemical! environments.
In the following, we will consider ~i! a HOOKEAN
potential19,20

UB
H~Q!5 1

2kHQ2, ~64!

~ii ! a finitely extensible nonlinear elastic~FENE!
potential17,18,21

UB
FENE~Q!52

1

2
kFENEQ0

2 lnS 12
Q2

Q0
2D , ~65!

as well as~iii ! a DNA-type bead-bead potential37–39

UB
DNA~Q!5kDNAS 1

4S 12
Q

Q0
D2

1

4
Q1

Q2

2Q0
2

1

4D . ~66!

In all these potentials, the constantk..., which is known also
as the ‘‘spring’’ constant, determines the strength of the in-
teraction. In the FENE and DNA potentials, moreover, we
useQ0 as the maximal lengths beyond which the beads of
the dumbbell cannot be stretched out. Figure 4 displays
these given choices of the bead-bead interaction potential as
functions of distanceQ. While the HOOKEAN~H! potential
has been found useful for treating small perturbations in the
internal dynamics of the macromolecules from the equilib-
rium, the more realistic FENE and DNA potentials have been
frequently applied in molecular dynamic~MD! simula-
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tions12–18,60,61in order to calculate the dynamical properties
of nonrigid macromolecules in a solvent. Let us note that the
DNA bead-bead interaction potential~66! was first applied in
Ref. 60 in the analysis of the measurements61 which presents
the ‘‘extension’’ of individual DNA molecules when some
force is applied to the free end of the DNA.

Using the expression~63!, we may compute the rota-
tional diffusion coefficientDR of the macromolecule for any
of the bead-bead interaction potentials~64!–~66!. This has
been carried out in Fig. 5, for instance, where the~relative!
rotational diffusion coefficient is shown as function of the
bead-bead distance, given in terms of the dimensionless
lengthQ0 /s. As seen from this figure, a quite different be-
havior of the rotational diffusion coefficient arises for the
different interaction potentials and, in particular, if the maxi-
mal distance of the beads is, say,Q0<6s. For a large maxi-
mal separationQ0 , in contrast, the diffusion coefficient ap-
proaches either toDR'2D for the HOOKEAN and FENE
potential, while it goes smoothly to zero for the DNA poten-
tial similarly as for a rigid-rod model of the macromolecule.4

Apart from the rotational diffusion coefficientDR of the
dumbbell, we may also evaluate and compare the radial dis-
tribution functionCn

n
m(Q). To this end, we have to solve Eq.

~42! for the different choices of the bead-bead interaction
potential. As seen from Eqs.~37! and ~42!, the radial distri-
bution functions does not only depend on the distance of the

beads but, of course, parametrically also on the bead-bead
potentialUB as well as the~maximal! polar angleu0 of the
cone. For the HOOKEAN potential~64!, the configuration-
space distribution function can still be obtained in analytical
form,

Cn
n
m~Q!5Zn

m e2~1/2!~kH /kBT!Q2

Q3/2
M ~gn;1

m ,gn;2
m ,gn;3

m !, ~67!

whereZn
m5* dQQ2Cn

n
m(Q) denotes the proper normaliza-

tion integral due to normalization condition~10! and
M (m,n,z) denotes the Whittaker function in the variablez
and where the three arguments of this function are given by

gn;1
m 5S 3

4kBT
1

1

2
~nn

m!21
1

2
nn

mD kBT, ~68!

gn;2
m 5 1

2nn
m1 1

2, ~69!

and

gn;3
m 5

kH

kBT
Q2. ~70!

The Whittaker functionM (¯) can be expressed also in
terms of the hypergeometric functionF(x1 ,x2 ,z) Ref. 56 by

M ~m,n,z!5e2z/2z1/21nFS F1

2
1n2mG ,F11

2

nG ,zD , ~71!

which has been used in the computations below. For the
HOOKEAN bead-bead potential, Figs. 6–8 show the behav-
ior of the radial distribution function~67! for a few values of
the separation constantnn

m . From these three figures, we

FIG. 4. Three choice of the bead-bead potentialUB as function of the
bead-bead distanceQ.

FIG. 5. Rotational diffusion coefficientDR /D as a function of the maximal
separation of the dumbbell moleculeQ0 for the HOOKEANQ05`, FENE,
and DNA bead-bead potentialUB , respectively.

FIG. 6. Normolized radial distribution functionQ2Cn
n
m of the macromol-

ecule with HOOKEAN bead-bead potential~64! for then1
0 as function of the

bead-bead distanceQ and restricted angleu0 .

FIG. 7. The same as in Fig. 6 but only forn1
1.
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may observe that—apart from the distribution functionCn
1
0

in Fig. 6, which is just the equilibrium distribution function
and, hence, is independent of theu0—the radial distribution
functionsCn

n
mÞ0 are very sensitive to the value of theu0 ,

i.e., to the angle of the cone. As seen from Figs. 7 and 8,
moreover, the structure of the distribution functions becomes
less for, say, 70°,u0<90°, where these functions smoothly
approaches the radial distribution of aunrestricted ~or
‘‘free’’ ! rotational motion. In contrast to the HOOKEAN po-
tential, however, no analytical solution for the radial diffu-
sion equation~42! could be obtained for neither the FENE-
type nor the DNA-type bead-bead interaction potential. For
these potentials, Eq.~42! has to be solved numerically. Al-
though we have carried out these computations, we will de-
lay their further discussion to some later time and only men-
tion for the moment, that the radial distribution function
appears very sensitive to the angleu0 also for these two
choices of the interaction. In contrast to the HOOKEAN po-
tential, however, the radial functions approaches much faster
to the corresponding distribution for an unrestricted rota-
tional motion which is obtained at'50° for the FENE and
already at'35° for a DNA bead-bead potential.

IV. CONCLUSION

The influence of the bead-bead interaction on the dy-
namics of macromolecules, which are immersed into a solu-
tion, has been investigated by starting from a Fokker-Planck
equation for the phase-space distribution function. Within
such a model, the macromolecules is taken as achain of
beadswhich are coupled to each other by some pairwise
potential and surrounded by~a large number of! solvent par-
ticles. From the Fokker-Planck equation of the overall sys-
tem ‘‘macromolecule1solvent,’’ we then derived an internal
diffusion equation for the time evolution of the
configuration-space distribution function of the~two-beads!
dumbbell macromolecule. There are three realistic assump-
tions which have been made in our derivation: Since~i! the
mass of the each bead of the macromolecule is considered to
be larger when compared to the mass of the solvent particles,
we may assume~ii ! that the momenta of the beads relax
much faster to their equilibrium values than the coordinates.
For this reason,~iii ! the dynamics of the solvent can be well
described in terms of a diffusion equation or, equivalently, in

terms of the ‘‘diffusion tensors’’ which occur on the r.h.s. of
the diffusion equation for the internal coordinates. These
three assumptions are made very frequently in studying the
behavior of macromolecules in solutions.19–23

For the three basic assumptions from above, the diffu-
sion tensor contains all the information about the internal
motion of the molecules. Apart from the diffusion tensors of
the individual beads, of course, this tensor also contains the
hydrodynamic interaction among the various beads of the
macromolecule. To explore the effects of this hydrodynamic
interaction, we derived and analyzed an expression for the
anisotropy parameter for the Oseen and Rotne-Prager hydro-
dynamic diffusion tensors. The results of our computations
clearly show the anisotropic nature of the diffusion tensor
and, in particular, at small distances of the molecular beads.
To further analyze the behavior of macromolecules in solu-
tion, this behavior of the diffusion tensor has to be compared
nonhydrodynamical limit of diffusion theory in which the
hydrodynamical tensor is set to zero.

To further understand the effects of the bead-bead inter-
action on the rotational motion of macromolecules, which
are sticked to some surface, we have studied a few realistic
bead-bead interaction potentials for a dumbbell molecule in-
cluding a HOOKEAN, FENE, and DNA type potential; the
generalization of this work to larger macromolecules will be
considered in the future. For the given three interaction po-
tentials, the behavior of the rotational diffusion coefficient
has been calculated in detail; these computations reveal that
the rotational diffusion coefficient depend on the maximal
separation of the beads as possible for a given potential. For
the HOOKEAN potential, moreover, an analytic expression
was derived for the radial distribution function.

From our analysis of the rotational diffusion coefficient
and the radial distribution functions of the macromolecule, a
clear dependence of the rotational motion is found also for
the bead-bead interaction potential and for the maximal
value of the polar angleu0 , i.e., for the case of a rotational
diffusion in a cone. Of course, this dependence has to be
compared with that from the rigid-rod macromolecular
theory. The use of diffusion~type! equations in the descrip-
tion of the rotational dynamics may therefore help combine
different physical models concerning the behavior of the
macromolecules in the solution.

The results from this work might useful also to interprets
dielectric relaxation, the correlation spectroscopy and NMR
relaxation experiments which are carried out on the diffusion
coefficients and the cone restricted angles for biological mol-
ecules~such as DNA!.4–11 Moreover, the theory is appli-
cable, at least in principle, for analyzing the role of the bead-
surface interaction for the rotational behavior of immobilized
macromolecules.

In addition, we are presently also continue this work to
better understand the rotational dynamics ofN-bead chains
or other macromolecular structures.
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Abstract

A recently derived expression [A. Uvarov, S. Fritzsche, Macromol. Theor. Simul. 13 (2004) 241] for the friction coefficient of

macromolecules, which are immersed into a solution, is utilized in order to calculate their diffusion and boundary condition coef-

ficients as function of the mass ratio of the molecules, relative to the mass of the solvent particles. The results from this semi-

phenomenological theory are found to compare very well with molecular-dynamical simulations over a wide range of mass ratios

and at quite different temperatures and viscosities of the solvent. Therefore, the use of this novel approach may help reduce con-

siderably the costs in studying the dynamical behaviour and the transport properties of macromolecules in solution.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

Accurate dynamical studies on macromolecules in

solution are still a challenge for modern DNA and pro-

tein research. During the past decade, therefore, a large

number of experiments have been carried out in order to
understand the translational and rotational motion of

macromolecules as well as their (de-) formation pro-

cesses, if immersed into a solution [1–5]. Theoretically,

these investigations have been supplemented by (often

large) molecular-dynamical simulations (MDS) [6–14]

as well as a few analytical case studies [15–20]. In all

these investigations, the dynamical behaviour of the

macromolecules is usually characterized by means of
the friction n or diffusion coefficients D which, in the

phenomenological Stokes–Einstein (SE) theory [15,16]

D ¼ kBT
n

ð1Þ

are simply related to each other via the temperature T

and the Boltzmann constant kB. This relation, in fact,
0009-2614/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.cplett.2004.11.062
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is a very general result and independent of the micro-

scopic friction mechanism. For a massive spherical mac-

romolecule, in addition, we have Stokes law [15,16]

n ¼ cpgRhydr; ð2Þ

which shows the friction coefficient to be proportional to

the viscosity g of the solvent and the effective hydrody-

namic radius Rhydr of the macromolecule. In this macro-

scopic relation (2), the numerical constant c is used to

specify the boundary conditions (BC) for the velocity

of the solvent particles at the surface of the macromole-

cule with a numerical value within the limits of the (so-

called) stick and slip BC. While, for the stick BC, the

first layer of solvent particles is assumed to stick firmly

to the surface of the macromolecule, these solvent parti-
cles are considered to be free on the surface for the slip

BC. In the phenomenological theory, therefore, the BC

coefficients is always constant with values ranging from

c = 4 (slip BC) to c = 6 (stick BC), respectively.

Obviously, however, Stokes law (2) only applies for

such massive macromolecules for which the discrete nat-

ure of the solvent is negligible. As known from a series

of MDS, this is fulfilled widely if the mass of the macro-
molecule is J100 times larger than the mass of the

mailto:uvarov@physik.uni-kassel.de 
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solvent particles [6,7,14]. For some smaller mass ratio

between the macromolecules and the solvent particles,

in contrast, the discrete character of the solution and

its interaction with the molecules should be taken into

account [12,13].

In the present Letter, emphasis is placed on the dif-
fusional motion of macromolecules in solution. Mak-

ing use of a semi-phenomenological expression for the

friction coefficient, which has been derived recently

by us for a N-bead macromolecule [18,19], detailed

computations have been carried out for the diffusion

and BC coefficients of a single (spherical) macromole-

cule in dependence of its mass (ratio), when taken rel-

ative to the mass of the solvent particles. For these
coefficients, a good agreement with MDS is found

over a wide range of the mass ratios and for quite dif-

ferent temperatures and viscosities of the solvent.

Apart from new insights into the diffusional motion

of macromolecules, therefore, our semi-phenomenolog-

ical approach allows first of all a very remarkable

reduction of the computational costs in studying the

transport and diffusion properties of large molecules.
It can be used also in the future to explore, for

instance, the stick–slip motion of the macromolecules

in the solution [12,21–23].

The Letter, is organized as follows. In the following

section, we start with a brief recall of the theory and

the basic assumptions on the system �macromole-

cule + solvent�, which were made previously in order

to derive a semi-phenomenological expression for the
friction coefficient of a general (N-bead) macromolecule

in solutions. Beside of the (dynamical) structure factor

of the solvent, here we need to specify the interaction

between the solvent particles and the macromolecules,

assuming an equal mass density in this Letter. The

expressions from this section are later applied in Section

3 in order to calculate the diffusion and the BC coeffi-

cients of the macromolecule. Comparison of our results
is made with other phenomenological theories and with

MDS data as available from the literature. In Section 4,

finally, a few remarks on the use and further improve-

ment of such a semi-phenomenological treatment is

given.
2. Diffusion model and computations

Friction (or diffusion) coefficients provide perhaps

the most general form for describing the dynamical

behaviour of large molecules in solution. Therefore, in

order to analyze the diffusion of macromolecules and

how it is influenced by the given BC, let us take a micro-

scopic viewpoint and begin from the expression

n ¼ 2n0
3ð2pÞ2

Z 1

0

dk k4W ðkÞ2
Z 1

0

dsgðk; sÞ
� �

ð3Þ
as recently derived for the friction coefficient of a spher-

ical macromolecule which is immersed into a solvent of

n particle. In [18,19], this expression was obtained from

first principles, i.e. by starting from the Hamiltonian of

the overall system �macromolecule + solvent�. To re-

move the explicit treatment of the solvent (particles),
however, a few realistic assumptions need to be made

about its dynamical behaviour, including (i) a much fas-

ter relaxation of the solvent, when compared to the

relaxation time of the macromolecules, and (ii)

the assumption that all effects of the solvent onto the

dynamics of the macromolecule can be well described

by means of a diffusion equation. For the sake of

simplicitly, moreover, we also assumed a (pairwise)
spherical–symmetric potential W(r) between the macro-

molecules and the solvent particles which only depends

on their relative distance r from each other. In expres-

sion (3), n0 refers to the number density (or concentra-

tion) of the solvent, while W(k) = �dre�krW(r) denotes

the Fourier transform of the molecule–solvent potential

with k = jkj being the modulus of the wave vector. In

addition to the interaction between the molecules and
the solvent particles, of course, the friction coefficient

n in Eq. (3) also depends on the dynamical structure fac-

tor (or scattering function) of the solvent, g(k, s) which,
in fact, contains all the information about the solvent

including, for example, its relaxation time back into

the equilibrium, temperature, viscosity, and many fur-

ther properties. Studies on the dynamical structure fac-

tor have therefore attracted a lot of interest over then
years [24–32]. Using assumption (ii), in particular, it

was found that the time dependence of the dynamical

structure factor can be approximated by a simple analyt-

ical expression [24–27]

gðk; sÞ ¼ n0gðkÞ exp½�k2D0s�; ð4Þ
which – via the static structure factor g(k) and the self-

diffusion coefficient D0 – still contains the knowledge

about at-least the time-independent properties of the

solvent (i.e. density fluctuations, correlation length, tem-

perature, viscosity, etc.). In line with approximation (4),

moreover, an explicit expression can be obtained also
for the (equilibrium) static structure factor by using

the Percus–Yevick theory [26–29]

gðkÞ ¼ 1� 18pn0
j1ðkrÞ
ðkrÞ ; ð5Þ

where r refers to the diameter of the solvent particles

and j1ðxÞ ¼ ðsin x� x cos xÞ=x2 is the spherical Bessel

function of rank 1.

Let us now return to the friction coefficient n from Eq.

(3). Indeed, the knowledge about this coefficient plays a

key role in studying the properties of macromolecules in

solution. Having the approximations (4) and (5), for in-
stance, Eq. (3) for the friction coefficient can be used in

order to analyze how a particular molecule–solvent
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potential influences the dynamics of a (N-bead) macro-

molecules if immersed into a solution [18,19]. In the

present Letter, we just consider a molecule consisting

out of a single bead (N ” 1), but now ask for the behav-

iour of the friction coefficient if the mass of the macro-

molecule M is varied with respect to the mass m of the
solvent particles. For this, of course, we need a relation

between the mass and the size of the particles. To allow

for a later comparison with the MDS by Schmidt and

Skinner [6,7], here, we suppose an equal (and constant)

mass density of the macromolecule and the solvent

particles

M

R3
¼ m

ðr=2Þ3
ð6Þ

independent of the radius R of the macromolecule. Sim-

ilarly, of course, we shall apply the same interaction

between the macromolecule and the solvent particles.

In [6,7], a so-called Lennard–Jones (LJ) solvent is used

for which the interaction among the solvent particles is

modeled by a �truncated� LJ potential

V ðrÞ ¼ 4�S
r
r

� �12 � r
r

� �6h i
if r � rS;

0 otherwise;

(
ð7Þ

where �S is the interaction strength and rS the cut-off ra-

dius beyond which the potential becomes zero. More-

over, the same shape of the interaction has been

assumed also for the macromolecule–solvent potential

W ðrÞ ¼ 4�M
r

r�lM

� �12

� r
r�lM

� �6
� �

if lM � r � rM;

0 otherwise;

8<
:

ð8Þ
but with independent parameters �M, rM for the strength

and the cut-off, and where the (additional) length lM de-

fines a �hard-sphere like� BC for the macromolecule at

small distances: W(r ! lM) ! 1. To specify this length

lM in terms of the radii of the macromolecule and the

solvent particles, we suppose that the zero of the poten-

tial, W(r0) = 0 at r0 = lM + r, occurs if the solvent parti-
cles just �touch� the molecule, i.e. for r0 = R + r/2. This
gives rise to lM = R � r/2, and together with the con-

stant mass density (6) of the molecule and the solvent

particles, to the �hard-sphere� length [6,7]

lM ¼ r
2

ffiffiffiffiffi
M
m

3

r
� 1

" #
ð9Þ

if expressed in terms of themass ratioM/mof the particles.

Note that expression (9) enables one to vary the radius R

of the macromolecule in a physically meaningful way,

from a tagged solvent particle (for M/m = 1 and R =

r/2) up to the phenomenological (Brownian) limit where
M/m ! 1and R!1. Below, we make use of relation

(9) in order to calculate the friction coefficient of the mac-
romolecule as function of the mass ratio, M/m, and to

compare its behaviour with results from the phenomeno-

logical theory [15,16] and from MDS [6,7,14].
3. Results and discussion

Various (large-scale) molecular-dynamic computa-

tions have been carried out during the last decade in

order to understand the dynamical properties of macro-

molecules in solution including case studies on the

dynamical and statical structure factors [10,11,24,25],

the velocity and force autocorrelation functions [8,9],

the diffusion coefficients [6,7,12–14], and various other
properties. Apart from the interaction parameters, these

investigations differ by the size and mass of the macro-

molecules, as well as by the internal structure of the

macromolecule. To facilitate the comparison of the var-

ious computations, however, a common �unit system� is
typically applied which is based on the parameters of the

LJ potential (7) among the solvent particles. In these

(LJ) units (m = r = �S = 1), all lengths are measured in
r and energies in units of �S. For the other quantities,

this leads to the derived units: sLJ = (mr2/�S)
1/2 (time);

nLJ = (�Sm/r2) (friction); DLJ = (m/(�Sr
2))�1/2 (diffusion

coefficients); gLJ = (m�S)
1/2/r2 (viscosity), etc. For the

sake of convenience, we will use the same unit system

in order to allow for the direct comparison with MDS

data.

In this Letter, we focus on the behaviour of the diffu-
sion and the BC coefficients in dependence of the mass

ratio, M/m, of the macromolecule and the solvent parti-

cles, for which two recent MDS studies are known from

the literature [6,11]. Below, we will refer to these compu-

tations by Schmidt and Skinner [6] as case A and those

by Brey and Ordóñez [11] as case B. In both simulations,

a spherical–symmetric macromolecule was assumed

which interacts with the solvent particles due to the LJ
potential (8) with the interaction strength �M = �S and

with the cut-off parameters rS = 2.5r for the solvent–

solvent potential (7) and rM = 2.5 r + lM for the macro-

molecule–solvent interaction (8), respectively. These

computations differed, however, with respect to their

temperatures T, viscosities g, and the number densities

n0 of the solvents, with values kBT � �S, g � 2.83gLJ,
n0 � 0.85 in case A [6], and kBT �2.95�S, g � 7.7gLJ,
n0 � 0.6 in case B [11], respectively. For all further

details in the initial set-up of the MDS, we refer the

reader to the literature.

In our semi-phenomenological approach, the interac-

tion among the solvent particles (cf. Eq. (7)) is described

approximately by the statical structure factor g(k) in Eq.

(5). For a quick reference on the quality of this approx-

imation, Fig. 1 displays the statical structure factor g(k)
in dependence of the modulus of the wave vector k and

compares it with those from MDS [6,11]. In both cases



Fig. 1. Wave-vector dependence of the statical (equilibrium) structure factor g(k) of the solvent. The results from the expression (5) are compared

with MDS data from [24] for two temperatures T and number densities n0: (a) case A with T = 1, n0 = 0.85; (b) case B with T = 2.95, n0 = 0.6. See text

for further discussions.
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A and B, a good agreement is found for the statical

structure factor, supporting the approximation (5). To

evaluate the friction (or diffusion) coefficient, however,

we also need to perform the Fourier transform W(k)
of the macromolecule–solvent potential (8) in order that

Eq. (3) can be used. Although, this Fourier transform

has (usually) to be calculated numerically, it only has

to be determined once for each particular choice of the

potential and, hence, makes this approach particularly

suitable for studying different molecule–solvent

interactions.

Having the Fourier transform W(k) of (8) and the
statical structure factor g(k) of the solvent, we can –

by inserting these functions into Eq. (3) and by using

the SE relation (1) – calculate immediately the diffusion

coefficient D of the macromolecule for different values

M/m of the macromolecule-to-solvent mass ratio, cf.

Eq. (9). Fig. 2 displays this mass-ratio dependency
Fig. 2. Diffusion coefficient D of macromolecules in solution as function of th

phenomenological theory, calculated for a �truncated� LJ potential (8) betwee
MDS data from [6] for the case A (a) and with those from [11] for the case
from the semi-phenomenological theory and compares

it with the purely phenomenological behaviour (for

two different choices of the BC, see below) and the

MDS data by Schmidt and Skinner [6] and Brey and
Ordóñez [11], respectively. As seen from this figure,

good agreement with the MDS is obtained for all med-

ium and large mass ratios M/m, and with some devia-

tions only at small mass ratios, independent of the

particular choice of the temperatures and viscosities

of the solvent (cases A and B). Good agreement is

found, in particular, over to a mass ratio M/m �45

for which the (asymptotically correct) slip-boundary
phenomenological theory already shows a sizeable

deviation. The phenomenological theory, in fact,

approaches the MDS only for slip-boundary condi-

tions, where the macromolecule–solvent potential W

has to be relative weak when compared with the

solvent–solvent interaction potential V (i.e. when the
e macromolecule-to-solvent mass ratioM/m. The results from our semi-

n the macromolecule and the solvent particles, are compared with the

B (b), respectively. See Fig. 1 and the text for further discussion.
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macromolecule carries none of the surrounding solvent

particles with it and the friction is due to only the sol-

vent which must be displaced to allow macromolecule

motion), and for mass ratios M/m ’ 90. From the

agreement of the semi-phenomenological data with

MDS, we can therefore, conclude that the same ap-
proach can be used also to compute further statical

and dynamical properties of macromolecules as long

as their mass does not become too small when com-

pared to the mass of the solvent particles. Let us note,

moreover, that when the mass and size of the tagged

particle is comparable with the mass and size of the

solvent particle, the phenomenological approach can

not be used because of that the general postulate of
the phenomenological theory about uncorrelated mo-

tion of the tagged particle on the larger time interval

is not valid in principle [15,16].

Of course, the diffusion coefficient of the macromole-

cule depends not only on the relative mass M/m of the

macromolecule but also on the thermodynamical prop-

erties of the solvent. In Table 1, therefore, we list the dif-
Fig. 3. BC coefficient c of macromolecules in solution as function of the m

calculated for the bare and a hydrodynamical radius of the macromolecule,

those from [11] for the case B (b), respectively. See Fig. 1 and the text for fu

Table 1

Diffusion coefficients D and BC coefficients c for a fixed macromol-

ecule-to-solvent mass ratio M/m = 100

n0 T g D c

This work MDS [6] This work MDS [6]

0.50 1.41 0.571 0.08704 0.0831 3.20130 3.35

0.71 1.41 1.28 0.03232 0.0354 3.84578 3.50

0.85 1.41 2.53 0.01657 0.0162 3.87061 3.89

0.85 1.20 2.67 0.01364 0.0134 3.74208 3.79

0.85 1.00 2.83 0.01009 0.0102 3.89964 3.91

0.85 0.80 3.25 0.00724 0.0072 3.83414 3.81

Coefficients from our semi-phenomenological theory are displayed for

different number densities n0, temperatures T, and viscosities g of the

solvent, and are compared with MDS data from [6].
fusion coefficient for a fixed mass ratioM/m = 100 but at

different temperatures and viscosities (or, number densi-

ties n0, respectively) of the solvent. The particular value

of the mass ratio M/m = 100 has been taken to allow for

the comparison with the MDS by Schmidt and Skinner

[6] in this table. For all available MDS data, good agree-
ment is found for the diffusion and the BC coefficient

(see below).

Instead of the diffusion coefficient of the macromole-

cule, the BC coefficient c is sometimes used in order to

describe the properties of macromolecules in solution.

Combining the phenomenological expressions for the

diffusion (1) and friction coefficients (3) of the macro-

molecule, this coefficient is given by

c ¼ kBT
DpgRhydr

ð10Þ

and, unlike the diffusion coefficient D, now also depends

on the hydrodynamical radius Rhydr of the macromole-

cule. From the literature, several approximations are

known to estimate the radius Rhydr for a macromolecule.

While, for example, the (so-called) bare-hydrodynamic

radius Rhydr = lM + r/2 is simply taken equal to the ra-

dius of the macromolecule, an additional �layer of sol-
vent particles� is assumed for the hydrodynamic radius,

Rhydr = lM + r. Following [6,11], both approximations

are applied in Fig. 3 to display the BC coefficient c as

function of the mass ratio M/m. Again, a good agree-

ment is found for all mass ratios M/m ’ 60 when com-

pared with the MDS. For a rather weak interaction

between the macromolecule and the solvent particles

(the left part of Fig. 3 with the interaction strength
�M � �S), moreover, the BC coefficient approaches the

value of 4, if the hydrodynamic radius Rhydr = lM + r
is taken into account for the macromolecules, and a
acromolecule-to-solvent mass ratio M/m. The results from this Letter,

are compared with the MDS data from [6] for the case A (a) and with

rther discussion.
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value of 4.6 for the case of the bare-hydrodynamic ra-

dius from above.
4. Conclusions

The behaviour of the diffusion and BC coefficients

of a macromolecule has been studied as function of

the mass ratio between the molecule and the solvent

particles. Starting from a semi-phenomenological

expression for the friction coefficient, which war de-

rived earlier from first principles for a (N-bead) macro-

molecule, good agreement with available MDS has

been found all medium and large macromolecule-
to-solvent mass ratios. These computations clearly

show, that our semi-phenomenological approach

[18,19] can be used for studying the dynamical proper-

ties of macromolecules in solution and may save (or at

least reduce) the need for carrying out expansive MDS.

Unlike to the phenomenological theory, in which for

instance the diffusion coefficient of macromolecules is

properly described only for mass ratios M/m � 100,
the semi-phenomenological allows the correct treat-

ment down to a macromolecule-to-solvent mass ratios

of about M/m � 45.

Based on the Hamiltonian of the overall system

�macromolecule + solvent�, a semi-phenomenological

approach provides insight into the motion and

dynamical properties of macromolecules which can

hardly be obtained by the straightforward integration
of Newton�s law. Apart from a few basic assumptions,

namely, concerning (i) the relaxation times of the mac-

romolecules and solvent particles and (ii) a description

in terms of a diffusion equation, such insight arises

from the approximations which are made in the deri-

vation. In the present theory (cf. Eq. (3)), a minimal

coupling (cf. Eqs. (9) and (10) and discussion of its

in [18]) between the macromolecule and the solvent
was assumed which appears sufficient especially for

large macromolecule-to-solvent mass ratios. An exten-

sion of our semi-phenomenological approach, includ-

ing also higher terms in the expansion of the term

which describes the coupling between macromole-

cule and solvent particles [18,19], is currently under

work.
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The role of the bead-solvent interaction has been studied for its influence on the dynamics of an N-bead
macromolecule which is immersed into a solution. Using a Fokker-Planck equation for the phase-space distri-
bution function of the macromolecule, we show that all the effects of the solution can be treated entirely in
terms of the friction tensors which are assigned to each pair of interacting beads in the chain. For the
high-density as well as for the critical solvent, the properties of these tensors are discussed in detail and are
calculated by using several �realistic� choices of the bead-solvent potential. From the friction tensors, more-
over, an expression for the center-of-mass friction coefficient of a �N-bead� chain macromolecule is derived.
Numerical data for this coefficient for “truncated” Lennard-Jones bead-solvent potential are compared with
results from molecular dynamic simulations and from the phenomenological theoretical data as found in the
literature.
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I. INTRODUCTION

A better understanding of the dynamical behavior of mac-
romolecules in solutions, i.e., of their translational and rota-
tional motion, or of their �de–� formation in the shape, is still
one of the central problems in studying proteins and DNA
material. During the past few years, therefore, a large num-
ber of experiments �1–3� and molecular as well as Brownian
dynamics simulations �4–8� have been carried out in order to
describe the statical and the dynamical properties of macro-
molecules. In a first theoretical approach to this problem, the
nonrigid macromolecules are often treated in terms of—a
number of—molecular subsystems which are briefly referred
to as the beads of the macromolecule. When immersed into a
solvent, of course, the shape and the dynamical behavior of
such macromolecules will not only depend on the interaction
among the beads but will be affected also by the surrounding
particles from the solvent. In fact, the solvent can change
both the �conformational� static as well as the dynamical
properties of the macromolecules dramatically �9�. There-
fore, various models have been developed in the past for
studying the effects of the solvent on the macromolecular
properties. For instance, the most common and simple way
to take into account the solvent effects is to replace the bead-
solvent interaction by the Brownian (stochastic) forces
�10,11�. According to this approach, Rouse �12� as well as
Kirkwood and Riseman �13� developed the model of the
macromolecular behavior which has been widely used for
analyzing transport properties of the macromolecule. In the
original version of this �Rouse� model, the hydrodynamic
interaction is disregarded and the time evolution of the posi-
tion of the beads obeys the linearized Langevin equation.
The Rouse model was later extended by Zimm �14�, who
explored the various properties of the macromolecular solu-
tion in the presence of hydrodynamic interactions �Zimm
model�. The mathematical foundations of the Rouse as well

as Zimm models and their generalizations may be found in
the works of Bixon �15�, Zwanzig �16�, as well as Doi and
Edwards �10�. Unfortunately, both Rouse as well as Zimm
�phenomenological� methods are based on the assumption
that the solvent is a nondiscrete and an incompressible me-
dium �10,11,17,18�. However, the need for taking the dis-
crete �atomistic� structure of the solvent into account has
been recognized mainly due to molecular dynamic simula-
tions �MDS� �4–6,19�. Often, the discrete nature of the sol-
vent leads moreover to rather remarkable deviations from a
pure Brownian behavior of the macromolecular beads and
hence, may play an important role also in studying the dy-
namics of macromolecules.

To investigate, therefore, the question of how the solvent
particles affect the dynamics of the macromolecules in solu-
tions, Hamiltonian mechanics and master equations for the
phase-space distribution functions are commonly used,
which totally describe the dynamical behavior of macromol-
ecules �20–22�. Starting from the Hamiltonian of the overall
system “macromolecule plus solvent”, it is possible to derive
a Fokker-Planck equation �FPE� for the time evolution of the
phase-space distribution function of the molecule which con-
sists of N pairwise interacting beads. In this equation, the
dynamics of the macromolecules purely depend on the fric-
tion tensors �i.e., the right-hand sides of the FPE� which then
incorporate all the information about the interaction of the
beads with the particles of the solvent. Under the assump-
tions of a much slower relaxation of the macromolecule to
the equilibrium state �when compared to the relaxation time
of the solvent�, explicit expressions for the �“instantaneous”�
friction tensors were derived in terms of the bead-solvent
potential as well as the dynamic structure factor of the sol-
vent and were discussed, in particular, for the single bead as
well as for the �2 bead� dumbbell molecule �22,23�. Let us
note that the assumption of slow relaxation introduces a
physical framework from the beginning of the investigations.
So, these approximations generally mean, of course, that we
are interested only in the long-time �asymptotic� behavior of
the macromolecule.*Electronic address: uvarov@physik.uni-kassel.de
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In the present contribution, we now explore the effects of
the bead-solvent interaction on the dynamics of N-bead mac-
romolecules which immersed in the high-density as well as
in the critical solvent. Making use of the FPE with semiphe-
nomenological friction tensors �20–22�, detailed computa-
tions are carried out for various bead-solvent potentials in-
cluding the Yukawa, Born-Mayer, and Lennard-Jones
potential. These potentials are all well known from physical
chemistry and were used before in molecular dynamic simu-
lations in order to model the behavior of molecules and clus-
ters in different �chemical� environments �24�. In addition to
the effects of the bead-solvent interaction potentials, we in-
vestigate the contribution of the long-wave as well as the
short-wave parts of the static structure factor of the solvent
on the dynamical behavior of the macromolecule. Moreover,
by using the Einstein relation �10� in order to connect the
diffusion and friction of the macromolecule, an expression
for the center-of-mass friction coefficient is calculated and
compared with �purely numerical� results from molecular dy-
namic simulations �4,5� as well as with results, which come
from the Rouse and Zimm phenomenological theories
�7,10,11�.

The paper is organized as follows. In the next section, we
will start from the Fokker-Planck equation for the time evo-
lution of the phase-space distribution as derived previously
�22�. A particular feature of this equation is that the general-
ized friction tensor is expressed in terms of the bead-solvent
interaction as well as the dynamic structure factor of the
solvent and, hence, can be analyzed for each choice of bead-
solvent interaction independently. Various interaction poten-
tials are considered here including the Yukawa �screened
Coulomb�, Born-Mayer, and three commonly applied long-
ranging �Van der Waals-type� interactions. In addition, we
analyze the influence of various thermodynamical regimes of
the solvent on the friction of the macromolecule. Later, we
also investigate the motion of a N-bead macromolecule as
whole. A general expression for the center-of-mass friction
coefficient of the N-bead macromolecule is evaluated and
discussed. In a further section, the results from this work are
compared with available data from molecular dynamic simu-
lation and, finally, a few conclusions about our semiphenom-
enological approach are given.

II. THEORY

A. Basic equations

To analyze the dynamical properties of macromolecules in
solutions, let us suppose a microscopic view point and start
from a FPE

��N��;t�
�t

+ �
a=1

N
Pa

M

��N��;t�
�Ra

− �
a,b=1

N
�Uab

�Ra

��N��;t�
�Pa

= �
a,b=1

N
�

�Pa
��ab�� �

�Pb
+

1

kBTM
Pb��N��;t� �1�

as recently derived for the time evolution of the phase-space

distribution function �N�� ; t� for the N-bead macromolecule.
In Refs. �20,22�, Eq. �1� was obtained by starting from the
Hamiltonian of the overall system macromolecule plus sol-
vent where, for the sake of simplicity, an equal mass M and
pairwise interaction Uab=U��Ra−Rb � � were assumed for all
the beads of a macromolecule. In addition, it was supposed
the relaxation from a nonequilibrium into the equilibrium
state of the macromolecule to be a slow process when com-
pared to the relaxation of the solvent particles.

Let us note that an alternative way to study the behavior
of the macromolecule in solutions is to use the �so-called�
generalized Langevin equation �GLE� with time-dependent
�dissipative� friction memory kernel and random fluctuating
force �17�. Mathematically, both the FPE and GLE methods
are equivalent if we take into account the assumption about
slow relaxation of the macromolecule. In the frame of this
assumption the friction memory kernel reduces to the friction
tensors and a � function in time �10,11,17�.

In Equation �1�, Ra and Pa, a=1, . . . ,N denote the posi-
tions or, respectively, the momenta of the individual beads,
while we will use �	
R1 , . . . ,RN ;P1 , . . . ,PN� below in or-
der to abbreviate the phase-space coordinates alltogether. For
each pair �a ,b� of beads, a friction tensor ��ab� is associated
also which characterizes the �thermodynamically averaged�
interaction of these two beads with the surrounding particles
from the solvent. Finally, kB denotes the Boltzmann constant
and T the temperature of the overall system macromolecule
plus solvent.

As said before, the FPE �1� describes the time evolution
of the phase-space distribution �N�� ; t� and, hence, includes
all the information about the dynamics of the N-bead mac-
romolecule in solution. From this �probability density� func-
tion, in fact, the probability to find the macromolecule at
time t within a small volume d� around the point � in phase
space is simply given by �N�� ; t�d�. For this to be right, of
course, the distribution function should be normalized,

� d� �N��;t� = 1, �2�

by taking the integral over the complete phase-space of the
macromolecule. In practice, the knowledge of the phase-
space distribution �or, at least, of some of its properties�
plays a key role in studying the dynamical behavior of mol-
ecules in solution. As discussed previously in the literature
�10,11,17,25�, this distribution function helps calculate, for
instance, the translational as well as rotational properties of
macromolecules. Moreover, knowing once the phase-space
distribution �N�� ; t� of a macromolecule, the time average 
 �
of any function A	A�
��� can be easily derived from the
integral


A� =� d� A����N��;t� . �3�

Equation �1� however merely defines the framework for
studying the dynamics of large and slow molecules in solu-
tion; in order to make use of this frame, we first need to
analyze the friction tensors ��ab� for the various—neighbored
pairs of—beads which incorporate all of the information of
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how the solvent particles affect their motion. The knowledge
of �the properties of� these tensors may then help to under-
stand the dynamical properties of the macromolecules such
as the relaxation time from a nonequilibrium into the equi-
librium state of the macromolecule or the velocity autocor-
relation function �22�. Additionally, the friction tensors ��ab�

can be used also to calculate the hydrodynamic force Fhydr,a

on some given bead a owing to the summation over all the
beads

Fhydr,a = − �
b=1

N

��ab�Pb/M , �4�

where Pb /M is the velocity of the bead b. In the following,
we will therefore discuss the friction tensors of the N-bead
macromolecule in more detail.

Together with Eq. �1�, an explicit expression for the “in-
stantaneous” friction tensor, whose off-diagonal elements de-
scribe the hydrodynamic interaction between beads a and b,
is also known and can be written in terms of “measurable”
parameters of the solvent as Ref. �22,26�

��ab� = n0��
0

�

d�� dk

�2��3k � kW�k�2eik·Rae−ik·Rbg�k,���
�5�

if we assume a spherical-symmetric bead-solvent potential
W��Ra−rs � �, i.e., an interaction term in the Hamiltonian for
each pair of bead a and solvent particle s. In this expression,
n0 refers to the number density �or concentration� of the sol-
vent particles, while W�k�=�dr e−k·rW�r� denotes the Fou-
rier transform of the bead-solvent potential in which k being
the wave vector with the modulus k= �k� and with the carte-
sian components k� ��=1,2 ,3�. In addition, here we use the
operation � to denote a tensor �dyadic� product which turns
two vectors into a second-rank tensor. Moreover, g�k ,�� is
often better known as the dynamic structure factor �scattering
function� of the solvent �10,11�. We shall return later to this
factor and discuss its properties in detail. For the moment,
we just mention that this dynamic structure factor contains,
in fact, all the information about the properties of the solvent
including, for example, its relaxation time back into the equi-
librium, temperature, viscosity, and many further properties
�27–29�.

As said above, the generalized friction tensor ��ab� con-
tains, in fact, all information about influence of the solvent
on the macromolecular behavior. In practice, however, it ap-
pears rather infeasible to deal with the coupling between
phase-space coordinates of the beads �position and momenta�
and dynamic structure factor of the solvent �cf. Eq. �5� and
note that eikRa�0�e−ikRb���=eikRa�0�e−ikRb�0�e−ikPb�0��/M�. Since
the macromolecules as a whole usually have a much larger
mass and size than the particles of the solvent, we may use
instead a very good approximation for the momentum distri-
bution in order to simplify the generalized friction tensors �5�
to the reduced �momenta everaged� friction tensor �̂�ab�

which is averaged over the local momenta and just depends
on the coordinates of the beads. For most solutions, namely,
we may assume that the relaxation to the equilibrium �val-

ues� happens much faster for the momenta of the molecular
beads rather than for their positions and, hence, that the
phase-space distribution function �N�� ; t� can be factorized

�N��;t� = �N�
Ra�;t� · pN�
Pa�;t� �6�

into a coordinate-space distribution �N�
Ra� ; t� and the
momentum-space distribution function pN�
Pa� ; t�. By mak-
ing use this factorization �6� we now may obtain the reduced

friction tensors �̂�ab� by taking the average


¯�P 	
� d
Pb� . . . pN�
Pb�;t�

�� d
Pb�pN�
Pb�;t�� �7�

over the momenta with respect to the momentum-space dis-
tribution function pN�
Pa� ; t�. Let us note that the
momentum-space distribution function may be assumed both
equilibrium as well as not equilibrium. In fact, in order to the
include all nonequilibrium effects, we need to use the non-
equilibrium momentum-space distribution function. How-
ever, as a first approximation, we restrict ourselves to the
Maxwellian equilibrium momentum-space distribution func-
tion �10,11� in order to derive the momentum averaged fric-
tion tensor of the macromolecule immersed in the solvent.
Let us note only, that in order to further understand the be-
havior of the macromolecule and quantitavely obtain the
contribution of the deviation of the momentum-space distri-
bution of the macromolecular beads from the Maxwellian
distribution, we can use the nonequilibrium momentum-
space distribution function which was derived, for instance,
in Ref. �20�. In the late case the calculated friction tensors
will describe the behavior of the macromolecule on the
short-time or even ballistic time scales �7,10,11� when a
macromolecule is far from the equilibrium. Actually, we will
perform this work in the next few monthes.

By taking the average �7� to the general friction tensor
�5�, we derive the reduced �momenta averaged� friction ten-
sors

�̂�ab� 	 
��ab��P = n0��
0

�

d�� dk

�2��3k

� kW�k�2eik·Rae−ik·RbC�k,��g�k,��� �8�

in which the function C�k ,��= 
e−ik·Pb�/M�P is nothing else
but the inertial part of the self-structure factor of the bead.
Moreover, in view of the assumption that the momentum-
space distribution function is equilibrium one, the self-
structure factor C�k ,�� of the bead can be evaluated analyti-
cally: �10,11�

C�k,�� = exp�−
kBT

2M
k2�2� . �9�

As seen from expression �8�, the friction tensors �̂��
�ab� are

symmetric in the cartesian indices � and � and of rank 2 in
the wave vector and, thus, may have just six independent
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components. Furthermore, since these components only now
depend on the positions of the two beads, these tensors can
always be parametrized in terms of two parameters
�10,11,22�

�̂�ab� = A�	ab�I + B�	ab�q�ab�
� q�ab� �10�

with I being the 3
3 unit tensor. In the expression �10�,
	ab= �Ra−Rb� is the distance between the beads a and b and
q�ab�=Ra−Rb /	ab denotes a unit vector which points from
bead b to bead a. From a physical view point, of course, this
means that the reduced friction tensors merely depend on the
relative orientation but not on the relative motion of the
beads. As shown in the Appendix, the friction parameters can
always be recast into the form

A�	ab�

=
2n0

�2��2��
0

�

d��
0

�

dk k4W�k�2C�k,��g�k,��
j1�k	ab�

k	ab
�

B�	ab� =
2n0

�2��2��
0

�

d��
0

�

dk k4W�k�2C�k,��g�k,��


�� j0�k	ab� −
3

k	ab
j1�k	ab���� , �11�

where j0�x�=sin x /x and j1�x�= �sin x−x cos x� /x2 denote the
spherical Bessel functions of zero and first rank �30�, respec-
tively. In order to understand that these parameters still con-
tain the information about the solvent, we may consider, for
example, the case of a spherical single-bead molecule
�N=1�, for which the influence of the isotropic solvent
should not depend on the direction of the motion and, hence,
the friction tensor

�̂��
aa = �0I , �12�

is expected to be a function of just a single parameter, called
the self-friction coefficient of the molecule. Using the ex-
pressions �11� and �12� for the case a=b, we than find that
the contribution of the second term of the friction tensor �5�
with B�	aa=0� is always zero. In contrast, the first contribu-
tion with A�	aa=0� simply becomes a constant

�0 =
2n0

3�2��2�
0

�

dk k4W�k�2��
0

�

d� C�k,��g�k,��� ,

�13�

and was exploited recently in order to calculate the diffusion
and boundary condition coefficients of the single-bead
spherical heavy molecule immersed in a solvent �23�.

Having the expressions �11� and �12� for the friction pa-
rameters of the N-bead macromolecule, we see that the in-
fluence of the solvent is entirely determined by the bead-
solvent interaction potential W as well as by the dynamic
structure factor of the solvent g�k ,��, which contains all the
information about the properties of the solvent �such as tem-
perature, viscosity, etc.�. In the past years, therefore, studies
of the dynamic structure factor attracted a lot of interest

�27–29�. If, in addition, we assume the dynamical behaviour
of the solvent to be determined by a diffusion equation, vari-
ous expressions have been derived for the time-dependence
of the dynamic structure factor of the solvent. For example,
if we neglect the correlation between the solvent particles
�i.e., for a noncorrelated solvent�, the dynamic structure fac-
tor can be approximated by the simple analytical expression

g�k,�� = g�k� exp�− k2DB�� . �14�

which—via the static structure factor g�k� and the self-
diffusion coefficient of the solvent particle DB—still contains
the knowledge about the time-independent properties of the
solvent �i.e., density fluctuations, correlation length, tem-
perature, viscosity, etc.�. Let us note here that, from a physi-
cal viewpoint, the omission of the correlation between the
solvent particles is justified only for a low-density solvent.
Apart from expression �14�, another form of the dynamic
structure factor for medium- and high-density solvents

g�k,�� = g�k� exp�− k2DB�/g�k�� . �15�

was derived from Smoluchowski-Vlasov equation �28� with-
out that the correlation between the solvent particles was
neglected. Instead, this Smoluchowski-Vlasov expression
�15� was derived from a �so-called� modified version of the
diffusion equation, in which the static correlation between
the solvent particles is incorporated by means of a mean-
force potential. As confirmed in molecular dynamics simula-
tions �27,28�, the Smoluchowski-Vlasov expression �15� de-
scribes the dynamic structure factor g�k ,�� well as all
medium densities while it sometimes fails for high densities.
In the latter case, the dynamic structure factor is better de-
scribed by the Rayleigh-Brillouin expression �26,28,29�

g�k,�� = g�k���1 −
1

�
�e−k2DT� +

1

�
cos�csk��e−k2��� ,

�16�

where the solvent is treated as a viscoelastic continuum with
the shear viscosity 
 and where, in contrast to the expres-
sions �14� and �15�, the �time-independent� properties of the
solvent are characterized by the thermal diffusivity DT, the
ratio � for the specific heat of the solvent, adiabatic sound
velocity cs=��kBT /mg�0� as well as by means of the con-
stant � for attenuation of sound which in turn is given by
�= 1

2 �DT��−1�+2
 /n0m� �26�. Together, the three expres-
sions �14�–�16� for the dynamic structure factor g�k ,�� de-
scribe the properties of the solvent at all density regimes,
and, therefore, can be used to analyze the dynamical proper-
ties of the macromolecules immersed in the solvent. In our
discussion below, however, we restrict ourselves to the
Rayleigh–Brillouin expression �16� which, in addition to the
high-density solvent, is also often used to describe the sol-
vent properties near the �so-called� critical point �CP� of the
solvent �26,29�, i.e., when the temperature T and number
density n0 are around the critical values Tcp and n0cp

, respec-
tively. For this critical region, moreover, the time integral
over the dynamic structure factor of the solvent and self-
structure factor of the bead can be evaluate analytically
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��k� = �
0

�

d� g�k,��C�k,��

=
g�k�

k
� �M

2kBT
ek2DT

2 M/2kBT�1 − erf�� M

2kBT
kDT��

�17�

by using the fact that the specific heat ratio 1 /� becomes
negligible near the critical point. In this expression �17�, erf
denotes the error function which, for the variable x, is de-
fined by

erf�x� =
2

��
�

0

x

dy e−y2
. �18�

By using the expression �17� for the time integral, we are
able now to bring the two friction tensor parameters A�	ab�
and B�	ab� as well as single-bead friction coefficients into
the form �cf. Appendix for details�

A�	ab� =
2n0

�2��2�
0

�

dk k2W�k�2��k�
j1�k	ab�
�k	ab�

, �19�

B�	ab� =
2n0

�2��2�
0

�

dk k2W�k�2��k�


� j0�k	ab� −
3

�k	ab�
j1�k	ab�� , �20�

�0 =
2n0

3�2��2

1

DT
�

0

�

dk k2W�k�2��k� . �21�

For sufficiently slow relaxation of the beads (when com-
pared to the relaxation of the solvent particles�, the tensor
parameters �11� and �12� �for critical points �19�–�21�, re-
spectively�) still describe all the effects on the dynamics of
the macromolecules which are caused by the solvent. In the
following subsection, therefore, we make use of this form
and of expression �16� in order to analyze the friction tensor
parameters of the N-bead macromolecules for various com-
mon choices of the bead-solvent potential as well as for vari-
ous choices of the solvent properties.

B. Behavior of the friction tensor parameters of the N-bead
macromolecule

As seen from the explicit expressions �11� and �12�, the
friction parameters A�	ab� and B�	ab� of the macromolecule
immersed into a solvent also depend on the static structure
factor g�k�, in addition to the bead-solvent potentials W. In-
stead of this static structure factor, that contains the informa-
tion about the time-independent properties of the solvent,
however, one often uses the pair correlation function �PCF�

g�r� =

��r���0��


��2 , �22�

to describe the properties of a solvent with the local density
��r�=�s=1

n ��rs−r�. In practice, of course, either the PCF or

the statical structure factor can be used alternatively due to
the well-known relation �11�

g�k� = 1 + 4�n0�
0

�

dr�g�r� − 1�j0�kr� . �23�

To obtain further insight into the behavior of macromol-
ecules in solutions, a Lennard-Jones solvent is often used for
which the interaction among the solvent particles is modeled
by a truncated Lennard-Jones �LJ� potential

V�r� = �4�B���

r
�12

− ��

r
�6

+ v0�, if r � rB

0, otherwise

. �24�

In this potential, � is the diameter of the solvent particles,
v0 is a constant, �B is the interaction strength, and rB denotes
the cut-off radius beyond of which the potential becomes
zero. In order to illuminate the role of the various thermody-
namical regimes of the solvent on the behavior of the mac-
romolecule we will consider the solvent at the critical point
as well as the high-density solvent which is far from critical-
ity. For the critical LJ solvent we will take the constant
v0=0 and the cut-off radius rB=3.5. Moreover, we will use
the temperature kBTcp�1.2�B, the number density
n0cp

�0.30/�3 �28,36�, as well as the static structure factor
which was taken from MDS �27�. For the high-density sol-
vent which is far from criticality, in contrast, we will use the
same thermodynamic properties as applied recently in the
MD simulation by Dünweg and Kremer in Ref. �4� where the
number density n0�3�0.86, the temperature kBT�1.2�B,
and the constant v0=0.25 as well as the cut-off radius
rB=�62�.

These authors also displayed the PCF g�r� of the high-
density solvent, which was utilized in order to calculate the
statical structure factor g�k� by means of Eq. �23�. Both func-
tions are displayed in Fig. 1 and show that the structure
factor can be divided into two parts. While for large values
of modulus of the wave vector k�20� �so-called short-wave
part�, the static structure factor is almost constant, g�k��1, it
has large oscillations for the smaller values of k �long-wave
part� due to the fact that dense solvent is a highly correlated
system.

Let us now return to the friction parameters A�	ab� and
B�	ab� which, apart from the static structure factor, depend,
of course, on the interaction potential W between the solvent
particles and the beads of the macromolecule. To understand
their influence onto the internal dynamics of the macromol-
ecule, a number of bead-solvent interaction potentials have
been selected and utilized below in simulations. In the fol-
lowing, therefore, to model the influence of the solvent on
the internal dynamics of macromolecules, a number of bead-
solvent interaction potentials W have been suggested and uti-
lized in simulations.

Most of these potentials were applied before in physical
chemistry to simulate the various �chemical� environments
�24�. For further analysis of how these environments may
affect the dynamics of a N-bead macromolecule, we consider
below the friction tensor parameters �19� and �20� for the
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following bead-solvent potentials: �i� Yukawa �screened
Coulomb� potential �31�, �ii� Born-Mayer potential �32� as
well as for the three Van der Waals–type interactions as given
by �iii� the Lennard-Jones potential �10,11�, �iv� a short-
range attractive approach to the Van der Waals interaction,
�33� and �v� its Gaussian decomposition �34,35�. For these
particular choices of the bead-solvent interaction �sf. Fig. 2�,
we will discuss the corresponding friction tensor parameters
and the maximal “effective” distance between the beads up
to which the hydrodynamic interaction cannot be neglected.
A Yukawa �Y� potential is supposed to be appropriate in
order to describe the repulsive interaction between charged
particles, i.e., if—owing to the presence of the macromol-
ecule in the solvent. This potential is given by

WY�r� = �
e−r/�

r/�
, �25�

where � is called the interaction strength and � the decay �or
Debye� length which characterizes these screening of the
Coulomb repulsion. For dilute solutions, in contrast, the
Born-Mayer �BM� potential

WBM�r� = �e−r/� �26�

is often taken to be more suitable, which is still repulsive but
at a lower rate for r→0 �cf. Fig. 2�a��. Making the Fourier
transform of the bead-solvent potentials, we are now able to
calculate immediately the friction tensor parameters A�	ab�
and B�	ab� of the macromolecule by using the expressions
�11� and �12� as well as the static structure factor g�k� of the
high-density solvent as obtained in Fig. 1. Lets us note that,
in our calculations, we consider the case when the bead mass
is only twice more than the mass of solvent particle, i.e.,
M =2m.

Figure 3 displays the dependence of the �normalized� pa-
rameters of the friction tensor A�	ab� /�0 and B�	ab� /�0 as a
function of �dimensionless� variable 	ab /�, measuring the
distance between the beads in terms of the characteristic de-
cay length of the potential. A rather different behavior of the
friction tensor parameters occurs for the two interaction po-
tentials. While, for a Yukawa potential, the beads do not
affect each other anymore for a distance of, say 6�, they will
interact at this or even larger distances in the case of a Born-
Mayer potential.

Apart from the dependence on the bead-solvent potential,
Fig. 3 also demonstrates that the friction parameters depend
rather strongly on the oscillating nature of the static structure
for the k�20� of the solvent. As seen from Fig. 3, the os-
cillating of g�k� for small values of k leads to the qualitative
different behavior �sf. Fig. 3�a�� than obtained in the CP
region of the solvent where oscillating of g�k� is not so large
�sf. Fig. 3�b�� as well as the high-frequency approximations
of the static structure factor where g�k�=1 is assumed con-
stant ��Fig. 3�c���.

FIG. 1. Wave-vector dependence of the static �equilibrium�
structure factor g�k� of the solvent. The static �equilibrium� struc-
ture factor was obtained from expression �23� by using the MDS
data from Ref. �4� for the pair correlation function. See text for
further discussion.

FIG. 2. �Color online� Different bead-solvent potentials to describe the influence of the solvent particles on the dynamics of the
macromolecules. �a� Yukawa �25� and Born-Mayer potential �26� and �b� three commonly applied bead-solvent potentials �27�–�29� to model
the long-range Van der Waals interaction; see text for further discussion.
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Apart from a purely repulsive interaction �as discussed
above�, the interaction between the molecular beads and the
particles from the solvent is often modeled also by some
long-ranging Van der Waals interaction. This interaction usu-
ally combines a strong repulsive part of the potential at small
distances with a �weak� attractive part for a large separation
of the solvent particles from the beads. Owing in particular
to their frequent use in MDS, below we distinguish three
cases of such Van der Waals-type interactions including the
Lennard-Jones �LJ� potential �10,11�

WLJ�r� = 4����

r
�12

− ��

r
�6� , �27�

the short-range attractive �SR� or so-called SHRAT potential
�33�

WSR�r� = �
512

27
��1 −

�

r
��3 − 2

�

r
�3

, if r �
3

2
�

0, if r �
3

2
� .

�28�

as well as a Gaussian decomposition �GD� of the Van der
Waals interaction �34,35� �see Fig. 1�b��:

WGD�r� = ��
i=1

4

aie
−bi/2�r/��2

. �29�

In all these potentials, the constants � and � determine
again the characteristic strength and decay length of the po-
tential. For the Gaussian decomposition of the Lennard-
Jones potential, the parameters ai and bi are listed in Table I.

Besides the commonly applied Lennard-Jones potential,
the short-range approximation and Gaussian decomposition
of the Van der Waals interaction were mainly introduced with
the aim to facilitate the numerical computations in the MDS
simulations. Figure 4 displays the �normalized� friction ten-
sor parameters A�	ab� /�0 and B�	ab� /�0 for the Lennard-
Jones, the short-range, and the Gaussian decomposition
�bead-solvent� potentials as a function of the separation 	ab
between the beads a and b. They have been determined nu-
merically along a one-dimensional grid for the bead-solvent
potentials �27� and �29�.

From Fig. 4, we again see that the tensor parameters
A�	ab� /�0 and B�	ab� /�0 appear very sensitive to the explicit
form of the bead-solvent potential as well as to the long-
wave part of the static structure factor g�k� of the solvent.
When compared with the parameters from the Yukawa and
Born-Mayer potentials �cf. Fig. 2�, moreover, A�	ab� decays
rapidly to zero within about 1.5� for any of the three Van der
Waals–type interactions while, for the Yukawa and Born-
Mayer potentials, a nonvanishing friction force occurs up to
about 5� or even 10�. Let us note, moreover, that when we
assumed the short-wave approximation for the statical struc-
ture factor �g�k�=1� only, we can evaluate the expressions
�19� and �20� for the friction tensors analytically for the most
part of the bead-solvent potential. For the sake of brevity,
however, here we omit all the details of this computation.
Finally, by comparing Figs. 1�b� and 3, we see that only the
repulsive part of the interaction is generally responsible for
the behavior of the friction tensor parameters.

The friction tensor is one of the key ingredients for study-
ing the dynamical properties of macromolecules in solutions.
It affects not only the relaxation time �in order to return back
from a nonequilibrium into the equilibrium state� or the ve-
locity autocorrelation function of the macromolecule but also
its end-to-end vector and radius of gyration.�18,22� In addi-
tion to the internal properties of the macromolecular behav-
ior the friction tensors also effects on the dynamical behavior
of the macromolecule as a whole are discussed. In the next
section, therefore, we make use of the friction tensor in Eq.
�5� in order to derive the center-of-mass �cm� friction coef-
ficient of a N-bead macromolecule. Information about this
coefficient will later help us understand the motion of the

TABLE I. Parameters for the Gaussian decomposition �GD� of
the Van der Waals interaction owing to Eq. �29�.

a1=846706.7 b1=30.92881

a2=2713.651 b2=14.96375

a3=−0.7154420 b3=1.279242

a4=−9.699172 b4=3.700745

FIG. 3. �Color online� Normalized friction tensor parameters A /�0 and B /�0 as function of the bead-bead distance 	ab; �cf. Eqs. �11� and
�12��. They are shown for a Y and BM bead-solvent potential. These friction parameters are shown for three cases: �a� the long-wave part
�k→0� of the statical structure factor of the high-density solvent g�k� was taken into account �see Fig. 1�; �b� the same as �a� but for the
solvent at the critical point; �c� only short-wave parts �k�0� of the statical structure factor of the high-density solvent ��g�k�=1�� was taken
into account. See text for further discussion.
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macromolecule as a whole within the solvent.

III. CENTER-OF-MASS FRICTION COEFFICIENT OF
THE N-BEAD MACROMOLECULE

Since, in the following, we are only interested in the dy-
namics of the macromolecule as a whole, let us return to the
Fokker-Planck equation �1� for the phase-space distribution
function for the macromolecule and start with separating the
cm and the internal �Q� motion of the macromolecule from
each other. Instead of the cartesian coordinates Ra, Pa,
a=1, . . . ,N of the individual beads, or course, we then make
better use of the center-of-mass and the relative coordinates.
For N beads of equal mass, the center-of-mass coordinates
are given by

Rcm =
1

N
�
a=1

N

Ra, Pcm =
1

N
�
a=1

N

Pa �30�

while we will use

Qa = Ra − Ra+1, PQa
= Pa − Pa+1, �31�

for the remaining 2�N−1� relative coordinates, assuming the
N beads form a chain. In addition, if the internal dynamics of
the macromolecule does not depend on its particular position
within the solution, we may suppose that the phase-space
distribution function �N�� ; t� of the N-bead macromolecule
factorizes �once more� into

�N��;t� = ��Rcm,Pcm;t���
Qa,PQa
�;t� , �32�

where ��Rcm,Pcm; t� is the distribution function of the
center-of-mass coordinate and ��
Qa ,PQa

� ; t� the phase-
space distribution of the internal motion, sometimes briefly
refereed to as the configuration-space distribution function
�again� of the macromolecule. In line with Eq. �2�, both of
these distribution functions are taken to be normalized

� dRcmdPcm��Rcm,Pcm;t� = 1 �33�

and

� d
Qa,PQa
���
Qa,PQa

�;t� = 1, �34�

respectively.

With the separation �32� for �N�� ; t� at hand, it can be
shown that the center-of-mass distribution function
��Rcm,Pcm ; t� obeys a Fokker-Planck Equation similar to
Eq. �1� above. Inserting �32� into �1� and by making use of
the chain rule for a few times, we then find that the cm
distribution function �	��Rcm,Pcm; t� fulfills the equation

��

�t
+

Pcm

M

��

�Rcm
=

1

N

�

�P�cm�
�N

cm� 1

N

�

�Pcm
+

1

kBTM
Pcm��

�35�

which we call the Fokker-Planck equation for the center-of-
mass motion of the macromolecule below. On the right-hand
side of this equation,

�N
�cm� = � �

a,b=1

N
1

3
Tr�
��ab���� �36�

denotes the center-of-mass friction coefficient for the corre-
sponding �cm� motion of the molecule, including the trace

over the friction tensor �5�, Tr��̂�ab��, and by taking the aver-
age


. . .� 	
� d
PQa

,Qa� . . . ��
PQa
,Qa�;t�

�� d
PQa
,Qa���
PQa

,Qa�;t�� �37�

over all the internal coordinates. Of course, we may now
combine the general form �36� with the previously derived
expressions �5� for the instantaneous friction tensor in order
to obtain an expression for the cm friction coefficient of the
N-bead macromolecule

�N
�cm� =

n0

3 ��0

�

d�� dk

�2��3k2W�k�2


� �
a,b=1

N

eik·Rae−ik·Rb�g�k,��� . �38�

As seen from expression �38�, the cm friction coefficient
fully describes—via the dynamic structure factor g�k ,�� and
the bead-solvent potential W—the influence of the solvent on
the center-of-mass motion of the macromolecule. Moreover,
the cm friction coefficient implicitly also depends—owing to

FIG. 4. �Color online� The same as in Fig. 2 but here displayed for the Lennard-Jones �LJ�, the short-range approach �SR�, and for a
Gaussian decomposition �GD� of the bead-solvent potential. See text for further discussion.
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the average �37� over the internal coordinates of the
macromolecule—on the bead-bead potential U and can be
used in order to further study the macromolecular properties
as a whole.

A further simplification of the cm friction coefficient �N
�cm�

in expression �38� is obtained, moreover, from the observa-
tion that the expression 
�a,b=1

N eik·Rae−ik·Rb� is nothing else
but the (dynamic) structure factor of the N-bead macromol-
ecule �4,10,11�

SN�k,�� =
1

N� �
a,b=1

N

eik·Rae−ik·Rb���� . �39�

Therefore, by combining the expressions �38� and �39�, we
finally obtain the center-of-mass friction coefficient of the
larger N-bead macromolecule

�N
�cm� =

n0

3
N�

0

� dk

�2��3��
0

�

d� k2W�k�2SN�k,��g�k,���
�40�

in terms of the measurable parameters of the system “mac-
romolecule plus solvent.” As seen from the expression �40�,
the center-of-mass friction coefficient depends on both, the
structure factor describing both the geometrical configuration
as well as dynamical properties of the macromolecule and
the dynamic structure factor which contain all the informa-
tion about the solvent. This is the key result of the present
section since the knowledge of the center-of-mass friction
coefficient therefore plays quite a central role for understand-
ing the motion of macromolecules in solution. Instead of the
cm friction coefficient, however, it is often more convenient
to use the center-of-mass diffusion coefficient of the macro-
molecule which are related to each other by

DN
�cm� = kBT/�N

�cm�. �41�

In the next section, we will use this relation �41� for calcu-
lating the center-of-mass diffusion coefficient of the macro-
molecule as a function of the number of beads, N, and for
comparing its behavior with results as obtained from
molecular-dynamics simulations.�4,5�

IV. COMPARISON WITH RESULTS FROM MDS

Recently, a number of dynamic simulations �DS�, such as
Brownian DS, molecular DS, etc. have been carried out for
studying the dynamical properties of macromolecules in
solution.�4–8,24� In these case studies, the main emphasis
was placed on the translational center-of-mass diffusion co-
efficient, dynamic and statical structure factors as well as the
velocity autocorrelation function of the macromolecule in the
solvent. These numerical investigations are, however, useful
for comparison as shown in Fig. 4 for the center-of-mass
diffusion coefficient of the macromolecule. Results from our
semiphenomenological computations are compared with
MDS data by Dünweg and Kremer �4� and Ahrichs and Dün-
weg �5� as well as with calculations from the Rouse phenom-
enological theory �10,11�, respectively. In addition, we also
compared our computations with two calculations from the

Zimm phenomenological theory as found in the literature.
These calculations differed, however, with respect to their
description of the hydrodynamic interaction, with “preaver-
aging” �10,11� and “fluctuating” �nonpre-averaging� �7� hy-
drodynamic interactions, respectively. In these computations,
the molecules were modeled by a N-bead polymer spring
with a finitely expandable nonlinear elastic �FENE� potential
�18� among the neighboring beads, while a “truncated”
Lennard-Jones potential

WLJ�r� = �4����

r
�12

− ��

r
�6

+
1

4
�, if r � 2

1
6�

0 otherwise,

�42�

was taken for their interaction with the solvent particles �sol-
vent plus macromolecule�.

In the MD simulations of Refs. �4,5� the solvent was mod-
eled by hard-sphere particles with a number density
n0�3=0.86 and taken from a temperature kBT=1.2�S. This
refers to the rather high density and, hence, the �so-called�
exclude volume interaction is considered to be
screened.�4,5,37� For the same reason, we can assume that
the time-independent �static� properties of the macromolecu-
lar chain can be described—at least as the first step—by the
Gaussian form of the internal phase-space distribution func-
tion ��
PQa

,Qa� ; t� �so-called Gaussian approximation�.�38�
Of course, in such a Gaussian chain the bead-bead potential
is simply given by �10,11�

U =
3kBT

2b2 �
a=1

N−1

Qa
2, �43�

where b2= 
Qa
2� denotes the mean square bond length. As

expected from previous experience �25,37�, moreover, only
small differences appear for the properties of the macromol-
ecule if modeled in terms of a FENE or HOOKEAN �43� bead-
bead potential. From a physical view point, of course, the
Gaussian approximation is of particular interest for the mac-
romolecules behavior near the �-point,�11� where the ex-
cluded volume interaction is totally screened. The same
method for calculating the friction tensor, however, can be
used to describe macromolecules in those solutions which
are fairly away from the �-point and for which the macro-
molecule is either in a collapsed state �bad solvent� or given
a dilute chain �good solvent�.

The center-of-mass friction coefficient �̂N
�cm� from expres-

sion �40� still depends on the dynamic structure factor of the
macromolecule. For its further simplification, we may there-
fore use the approximate form of the dynamic structure fac-
tor for a macromolecular chain

SN�k,�� = SN�k�e−k2�/�0N �44�

which is expected to provide a fairly sensible description of
the dynamic structure factor �10,11�. In this expression �44�,
SN�k� is used to denote the static structure factor of the
N-bead macromolecule. Following �10�, we use use the De-
bye’s form of the statical structure factor
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SN�k� =
N

1 + 1
2k2RN

G �45�

which characterizes the quantity of the scattering intensity of
the N-bead macromolecules in the regime k� l−1 �l being a
microscopic length of the order of a bondlength�. In expres-
sion �45�, moreover, we use RN

G in order to denote the radius
of gyration on the N-bead macromolecule, i.e.,
RN

G=�a,b=1
N 
�Ra−Rb�2� / �2N2�. From previous numerical

MDS investigations,�4� a fit formula for the radius of the
gyration of the N-bead macromolecule immersed in the sol-
vent

RN
G = 0.54�N − 1�0.53 �46�

were determined rather accurately. Inserting the expressions
�9� and �16� as well as �40� and �46� into �41� and using the
data �cf. Fig. 1� for the static structure factor g�k� of the
solvent, we may calculate directly the self-diffusion coeffi-
cient D0 of the bead of macromolecule as well as the center-
of-mass diffusion coefficients for a given number N=30, 40,
or 60 beads. Figure 5 shows the normalized cm diffusion
coefficient DN

�cm� /D0 as function of N and in comparison with
the available MDS data �4,5� as well as with the phenomeno-
logical theory data.�10,11� Good agreement is found, in par-
ticular, with the simulations by Dünweg and Kremer �4� for
N=40 as well as N=60 and with some deviation only at
N=30. In addition, as seen from the Fig. 5, the data, which
was calculated from the Rouse phenomenological theory, are
always smaller and can give only the qualitative information
about the behavior of the cm diffusion coefficient for the
N-bead macromolecule. While, moreover, the Zimm model
with “preaveraging” hydrodynamic interactions predicts the
result which is also far from the MDS data, the Zimm model

with “fluctuating” hydrodynamic interactions �Brownian DS
data� can give the quantitative information about the behav-
ior of the cm diffusion coefficient for the N-bead macromol-
ecule but only if the number of the beads �110. It demon-
strates that the semiphenomenological methods help
understand and calculate the friction and further properties
sometimes without that extensive molecular DS studies be-
come necessary.

V. CONCLUSIONS

The influence of the bead-solvent interaction on the dy-
namics of macromolecules, that are immersed into a solu-
tion, has been investigated in detail by starting from a
Fokker-Planck equation for their phase-space distribution
function. In this picture, the macromolecules is taken as a set
of beads which are coupled to each other by some pairwise
potential and surrounded by—a large number of—solvent
particles. There are two realistic assumptions which were
made in our investigations: Since �i� the mass of the mol-
ecule as a whole is considered to be much larger than the
mass of the solvent particles, we may assume �ii� that the
relaxation of the solvent also proceeds much faster in time
than when compared to the macromolecules. These two as-
sumptions are made very frequently in studying the behavior
of macromolecules in solutions.�10,11,18,22,25�

For the two basic assumptions from above, the dynamics
of the macromolecule is determined purely by the “friction
tensors” that appear on the right-hand side of the FPE and
which can be expressed in terms of the bead-solvent interac-
tion potential as well as the dynamic structure factor of the
solvent. Using the explicit expression, as obtained earlier for
the friction tensors of the molecule in solution, we then show
that the behavior of the friction tensor parameters depend on
the distance between the beads as well as on the thermody-
namic regime of the solvent. Computation has been carried
out for the five cases of �i� a Yukawa, �ii� the Born-Mayer,
and �iii�-�v� various types of Van der Waals interaction be-
tween the molecular beads and the solvent particles. For each
of these interaction potentials, the behavior of the friction
tensor parameters has been calculated and discussed in detail
for high-density as well as for critical solvent.

To further understand the effect of the bead-solvent po-
tential on the center of mass of macromolecules, we have
derived the general expression for the center-of-mass friction
coefficient of the larger N-bead macromolecule. This expres-
sion is given in terms of the dynamic structure factor of the
macromolecule and of the dynamic structure factor of the
solvent.

Finally, by using the Einstein relation, we are able to cal-
culate and compare our results for the center-of-mass diffu-
sion coefficient with molecular dynamic simulation works
�4,5� as well as with the phenomenological data. Good agree-
ment with MDS data is found for all N and, in particular, for
large chains. We therefore believe that this method can be
used also to compute other statical and dynamical properties
of the macromolecules and the solvents with different prop-
erties: neutral chain, charge chain, etc.

FIG. 5. �Color online� Center-of-mass diffusion coefficient DN
�cm�

as function of N, the number of beads in the macromolecule. The
results from this work for “truncated” Lennard-Jones potential �42�
�triangles� are compared with the MDS data from Ref. �4� �squares�
and Ref. �5� �circles� as well as with the theoretical data from the
Rouse model �solid line� and from the Zimm model with “preaver-
aging” �dots line� and “fluctuating” hydrodynamic interactions
�BDS data� from Ref. �7� �triangles + dots line�. See text for further
discussion.
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APPENDIX: FRICTION TENSOR
IN POLAR COORDINATES.

To find a simple parametrization for the friction tensors of
the N-bead �chain� macromolecule, which is immersed into a
solution, let us start from the expression �8� for the momenta
averaged friction tensor.

For a spherical-symmetric �bead-solvent� interaction, it
was shown that the momenta averaged tensor components of
the macromolecule can be expressed in terms of the Fourier
transform of the bead-solvent potential W�k�, the �so-called�
dynamic structure factor g�k ,�� of the solvent and the corre-
lation function of the momenta of the beads C�k ,�� as

�̂�ab� = n0� dk

�2��3��
0

�

d� k � kW�k�2eik·Rae−ik·Rbr�k,��� ,

�A1�

for a ,b=1, . . . ,N. Here we introduce the function r�k ,��
=C�k ,��g�k ,��. Apparently, the tensor �A1� is symmetric
and of rank 2 and, thus, may have six independent compo-
nents. Since, in addition, these components only depend on
the position of the two beads, they can always be param-
etrized in terms of just two parameters �10,11,22� and written
in the form

�̂�ab� = A�	ab�I + B�	ab�q�ab�
� q�ab� �A2�

where 	ab= �Ra−Rb� denotes the distance of the two beads
and q�ab� the unit vector which points from bead b to bead a.
We can evaluate the functions A�	ab� and B�	ab� by taking

�i� the trace of the tensor �̂��
�ab� from Eq. �A1�

Tr��̂�ab�� 	 3A�	ab� + B�	ab�

= n0� dk

�2��3��
0

�

d� k2W�k�2eik·Rae−ik·Rbr�k,��� ,

�A3�

and �ii� by multiplying both sides of Eqs. �A1� and �A2� with
q�

�ab�q�
�ab�, along with a summation over � and �,

�
�,�=1

3

��̂��
�ab��q�

�ab�q�
�ab�

	 A�	ab� + B�	ab�

= n0� dk

�2��3��
0

�

d��kq�2W�k�2eik·Rae−ik·Rbr�k,��� .

�A4�

Using polar coordinates for the representation of the wave
vector k= �k ,�k ,�k� and by carrying out the integration over
the angles �k and �k explicitly, the two Eqs. �A3� and �A4�
then become

3A�	ab� + B�	ab� =
2n0

�2��2�
0

�

dk k4W�k�2


��
0

�

d� r�k,��j0�k	ab�� �A5�

and

A�	ab� + B�	ab� =
2n0

�2��2�
0

�

dk k4W�k�2��
0

�

d� r�k,��


 � j0�k	ab� −
2

�k	ab�
j1�k	ab��� ,

�A6�

where

j0�x� =
sin x

x
, j1�x� =

sin x

x
− cos x

are the two lowest spherical Bessel functions.
We can solve the system of two equations �A5� and �A6�

and finally obtain an explicit expression for the friction ten-
sor components A�	ab� and B�	ab� as function of the dis-
tance between the two beads

A�	ab� =
2n0

�2��2�
0

�

dk k4W�k�2��
0

�

d� r�k,��
j1�k	ab�
�k	ab� �

�A7�

B�	ab� =
2n0

�2��2�
0

�

dk k4W�k�2��
0

�

d� r�k,��� j0�k	ab�

−
3

�k	ab�
j1�k	ab��� �A8�

given as integrals over the modulus k of the wave vector. By
using now the explicit for the function r�k ,��, we can obtain
the expressions �11� and �12� for the friction parameters. As
mentioned before, it is this representation of the friction ten-
sor which has been used above in Sec. II to analyze the
effects of the bead-solvent potential on the internal properties
of the macromolecule and to find further insight into the
dynamics of macromolecules.
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Abstract A recently derived Diffusion equation [Uvarov A, Fritzsche S, (2004) J. Chem. Phys. 

121(13):6561] is utilized to analyze the restricted rotational motion of macromolcules in solution if 

they are immobilized on a surface. Both, the bead-bead and bead-surface interactions are taken 

into account in order to describe the orientational dynamics of non-rigid macromolecules and its 

relaxation in time after a perturbation has occured. Using several realistic bead – bead and bead – 

surface potentials, detailed numerical investigations have been carried out for the rotational 

diffusion coefficient as well as for the conformational phase - space distribution function of the 

macromolecules. From this phase-space distribution, the orientational correlation function are 

derived and compared with phenomenological computations from the literature. Such correlation 

function can be observed in dielectric relaxation and fluorescence depolarization experiments. 

Key words correlation functions, diffusion equation, immobilized molecule, 

rotational diffusion, orientational relaxation 

I. Introduction 

Accurate dynamical studies on macromolecules in solution are still a challenge for 

modern DNA and protein research. During the past decade, therefore, a large 

number of experiments have been carried out in order to understand the 

translational and rotational motion as well as the shape formation and deformation 

processes of such molecules. Apart from free macromolecules in solution [1,2], 

these experiments concerned in particular the restricted mobility of 

macromolecules which are immobilized on a surface [3-6]. On the theoretical 

side, moreover, several (often quite large) Molecular and Brownian dynamical 

simulations [7-11] as well as analytical case studies have been performed [12-15]. 
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In all these investigations, the macromolecules are usually described by means of 

their molecular subsystems to which we refer below as the beads of the 

macromolecule. When immersed into a solvent and immobilized onto a surface, 

of course, the shape and the orientation relaxation dynamics of the 

macromolecules will be determined not only by the interaction of the beads with 

the surrounding solvent but also by the interaction among their (neighboring) 

beads as well as with the surface. 

In the present contribution, emphasis is placed on the internal rotational dynamics 

of macromolecules which are immersed into a solution. In contrast to most 

previous investigations, in which more often than not a rigid molecule was 

assumed [16-20], here we consider the rotational dynamics of a non – rigid 

macromolecule as described recently by us in Ref. [21]. In particular, we explore 

the question of how the bead – bead as well as bead – surface interactions affect 

the (restricted) rotational diffusion of such molecules at a surface. In the next 

section, we start with a brief outline and the basic assumptions which are made for 

the “non-rigid macromolecule on a surface” in order to derive the diffusion 

equation for the time evolution of its configuration-space distribution function. 

These expressions are later utilized in section III to obtain the rotational diffusion 

coefficient as well as the orientation correlation function for an “extended” 

dumbbell molecule. Here, the results from our ‘semi-phenomenological’ theory 

are compared with computations from Doi and Edwards [12,13] which are based 

on a rigid-rod model of the macromolecule; finally, a few conclusion are given in 

section IV. 

II Basic Model Equations and Computations 

Since we are interested mainly on the internal rotational dynamics of 

macromolecules and on how the bead-bead and bead-solvent interactions affects 

their dynamics, let us start from the Diffusion equation (DE) 
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as derived recently for the time evolution of the configuration – space distribution 

function ( )tQ;
r

ψψ =  of a dumbbell molecule. In this equation, Q  denotes the 
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length of the end-to-end vector Q
r

 of the two beads (with radius σ ) of a dumbbell 

molecule while ∆  is the Laplacian in a coordinate-free notation and TkB1=β  

the (inverse) temperature of the overall system. In Ref. [21], this diffusion 

equation was obtained by starting from a Fokker-Planck equation for the phase – 

space distribution function of the N - bead macromolecule. However, to remove 

the explicit dependence of this equation from the momenta of the molecular 

beads, a number of assumptions had to be made about the dynamical behaviour of 

macromolecules on a surface. Apart from (i) a fast relaxation of the velocities of 

the molecular beads (when taken relative to the relaxation of their position), here 

we assumed (ii) that all the effects of the solvent onto the dynamics of the 

macromolecule can be well described by means of the parallel )(
||

QD  and 

perpendicular )(QD⊥  components of the ‘diffusion tensor’ of the internal motion of 

the macromolecule. As seen from Eq. (1), these two components describe the 

mobility of the dumbbell along and perpendicular to the direction of the end-to-

end vector Q
r

. 

A further assumption concerned (iii) the interaction potential BSBB UQUU += )(  

including the bead-bead and bead-solvent interaction of the macromolecule 

immobilized on a surface [cf. Figure 1].  

 

 
Figure 1. Two models of the dumbbell macromolecule immobilized on a surface: (left) the non – 

rigid dumbbell and (right) the rigid – rod model. 

 

Here, BSU  refers to the interaction of the “upper bead” of the dumbbell molecule 

with the surface while the bead - bead potential BBU  only depends on the distance 
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of the beads. In the following, moreover, we shall restrict ourselves to an 

`extended' dumbbell molecule with two spherical beads, for which the bead-bead 

separation is much larger than the radii of the beads. With the assumption (i-iii) in 

mind, of course, we can use the configuration-space distribution function from Eq. 

(1) in order to investigate various dynamical properties )(QAA
r

=  of 

macromolecules in solution by taking the time average  

( )∫= tQQAQdA ;)(
rrr

ψ .                                           (2) 

Taking the time average over the configuration-space distribution function ( )tQ;
r

ψ  

may in general result in quite lengthy computations as the – parallel and 

perpendicular – components of the diffusion tensor depend not only on the shape 

of the beads but also on hydrodynamic interactions [12,13,15,23]. For the case of 

an extended dumbbell molecule, we may neglect the hydrodynamic interactions 

and assume an ‘isotropic’ diffusion tensor DDD QQ == ⊥
)()(

||  with the parameter 

D   being as the self-diffusion constant coefficient of the bead if macromolecule is 

immersed in the unbounded solvent [21]. However, for the beads in the present of 

the surface, the parallel )(
||

QD  and perpendicular )(QD⊥  components of the diffusion 

tensor are no longer of constant values but – due to the bead – surface 

hydrodynamic interaction – have to be described via the scalar mobility functions 

)(|| hλ   and )(h⊥λ  which depend on the bead—surface distance θcosQh =  and 

described [24, 25] the mobility of the beads along and perpendicular to the bead—

surface direction, respectively, i.e. )(||,
)(

||, hDD Q
⊥⊥ = λ . While, moreover, the bead - 

surface hydrodynamic interaction is really inhibit the diffusion of the beads near 

the surface (especially when the bead - surface distance σ2≤h ) [24, 25], in this 

work we will not take into account the bead - surface hydrodynamic effects by 

assuming that 1)(||, =⊥ hλ . Since, we consider only restricted rotational motion of 

the dumbbell, the simplification about behaviour of the mobility functions 

)(||, h⊥λ , of course, can critically distort our results only when the maximal value 

of  polar angle 0θ  is more than 070 . This can be seen, for instance, from the fact 

that averaged bead - bead distance Q  of the extended dumbbell is always 

approximately assumed [21] to be more than σ7 . Therefore, the minimal bead – 

surface distance is σθ 1.2cos 0min ≥= Qh  and therefore the mobility functions 
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)(||, h⊥λ  always close to 1. Nevertheless, an extension of this approach in order to 

fully include the effects of the bead – surface interaction on the configuration-

space distribution function is currently under work and will be published 

elsewhere.  

In the following, we shall not go into the details for deriving the configuration-

space distribution function ( )tQQ );,,( ϕθψ ≡
r

 of a non-rigid dumbbell; using the 

ansatz ( ) )()()()(;,, ϕθϕθψ ΦΘ= QRtTtQ , Eq. (1) can be separated into four 

ordinary differential equations for the variables Q , θ , ϕ  and the time t  which 

fully describe the dynamical behaviour of the molecule. In order to use these 

equations, however, we need to specify the proper boundary conditions for 

( )tQ;
r

ψ , since the  configuration-space distribution function is supposed to be 

continuous, it must satisfy the reflection (von Neumann) condition for the polar 

angle and the bead-bead distance as well as the periodic boundary condition for 

the azimuthal angle: 

( ) 0;,,

0

=
∂

∂

=θθθ
ϕθψ tQ , ( ) 0;,,

0

=
∂

∂

′=QQQ
tQ ϕθψ ,                   (3) 

 ( ) ( )tQtQ ;2,,;0,, πϕθψϕθψ === .                                 (4) 

Making use these boundary conditions, the configuration - space distribution 

function ( )tQ ;,, ϕθψ  can be written in the form [21]  

( ) ( ) ( ) )()(cossincos;,,
1

1 QPmBmAetQ m
n

m
n

R
m
n

m
n

n

mm
n

m
n

m

tD
νν

νν θϕϕϕθψ Ψ+= ∑ ∑
∞

=

∞

−∞=

+−    (5) 

where  

2

1
Q

DDR =                                                  (6) 

is the diffusion coefficient for the rotational motion or, shortly, the rotational 

diffusion coefficient of the dumbbell at the surface. This coefficient still contains 

all the information about the influence of the solvent as well as the bead-bead and 

bead-surface interactions owing to the self diffusion coefficient D and the time 

average of the end-to-end distance [cf. Eq. (2)]. In expression (11), )(Qm
nν

Ψ  is 

called the radial distribution function of the end-to-end distance, while )(cosθ
ν

m
m
n

P  
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denotes an associated Legendre function of degree m
nν  and order m . For both 

indices, m
nν  and m , the allowed values are obtained from the boundary conditions 

(3, 4). Since the azimuth ϕ  is not restricted and, hence, the configuration-space 

distribution should have a period π2 , m  must be an integer. For the degree m
nν  

(of the Legendre polynomial and radial distribution function), in contrast, the 

restriction in the polar angle 2/0 πθθ ≤≤  leads to non - integer values in general 

which, for fixed values of m  and n , have to be calculated numerically from the 

boundary conditions (3). A more detailed discussion about these computations 

and the properties of the associated Legendre function with a non - integer degree 

can be found in Refs. [16, 21]. To calculate and understand the behaviour of the 

configuration space distribution function (5), it is essential to use properties the 

associated Legendre functions. As known from the literature, the associated 

Legendre functions obey the symmetry )(cos)(cos
1

θθ
νν
mm

m
n

m
n

PP
−−

=  even in the case 

if m
nν  has a non-integer value. In addition, the associated Legendre functions have 

the well – known orthogonality properties 

211

0

21
0

)(cos)(cossin nn
m
n

mm HPPd m
n

m
n

δθθθθ
θ

νν
=∫  with 





≠
=

=
21

21

0
1

21 nnfif
nnif

nnδ  being the 

usual Kronecker symbol. In the general form (5) of the configuration – space 

distribution ( )tQ ;,, ϕθψ , therefore, the coefficients m
nA  and m

nB  are given by [21] 

( )( )
)1(

))0(()0(0cos)0(cos

0m
m
n

m
m
n H

QQP
A

n
n

m
n

δπ

θϕ
νν

+

Ψ
= ,  

( )( )
m
n

m
m
n H

QQP
B

n
n

m
n

π

θϕ
νν

))0(()0(0cos)0(sin Ψ
=  (7) 

where ( )0Q  denote the initial values of the bead – bead distance as well as )0(ϕ  

and ( )0θ  are the initial values of the azimuthal and polar angles, respectively.  

As seen from expressions (7), the coefficients m
nA  and m

nB  now depend – via the 

non-integer degree m
nν  – on the (maximal allowed) polar angle 0θ  in the restricted 

motion of the dumbbell molecule. Below, we make use of these coefficients and 

the orthogonally property of the associated Legendre functions from above in 

order to calculate the radial distribution function as well as rotational diffusion 

coefficient of the dumbbell macromolecule. 
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III. Results and Discussions 

From the Diffusion equation (1), we see that the dynamics of the macromolecule 

depend on the overall potential U , i.e. the interaction )(QU BB  between the beads 

as well as the interaction BSU  of the (upper) bead with the surface. To obtain 

further insight into the rotational behaviour of a dumbbell molecule at a surface, 

therefore, let us consider four particular combinations of the bead-bead and bead-

surface interactions. Most of these potential have their origin in the field of 

physical chemistry where they were constructed in order to simulate the chemical 

bonds in different (chemical) environments. In the following, we will consider (i) 

a Frenkel potential [22]  

( ) ( )2
0QQkQU Fr

Fr
BB −=                                      (8) 

or (ii) a DNA – type bead – bead potential [23] 

( )





















−+−









−

=
4
1

24
1

14

1

0

2

0

Q
QQ

Q
Q

kQU DNA
DNA
BB                        (9) 

while, for the bead-surface interaction, we take (iii) the Cone potential [21] 





>∞
≤

=
0

00
)(

θθ
θθ

θ
if
if

U Cone
BS                                   (10) 

and (iv) the effective double well (Sin) potential 

θ2
sin sinkU Sin

BB = .                                          (11) 

In these potentials (8, 9) and (11), the corresponding (interaction) constant ...k  

determines the strength of the interaction. Note, moreover, the different meaning 

of 0Q  in the bead-bead potentials (8) and (9); while 0Q  is the equilibrium 

distance in the case of the Frenkel potential, this quantity denotes the maximal 

length beyond which the beads of the dumbbell cannot be stretched further in the 

case DNA – type potential. 
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Figure 2. Behaviour of the first three radial distribution functions )(2 QQ m
nν

Ψ  of the 

macromolecule with (left) DNA-type (8) and (right) Fraenkel (9) bead – bead potential as function 

of the bead – bead distance Q  and restricted angle 0θ . 
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Having selected a bead-bead and bead-surface potential, we can calculate the (set 

of) radial distribution functions )(Qm
nν

Ψ . Figure 2 displays the behaviour of the 

first several normalized functions )(Qm
nν

Ψ  for a Cone bead – surface potential 

(10) and by comparing a DNA – type and Frenkel bead-bead potential. Since 

)(0
1

Q
ν

Ψ  is just the equilibrium distribution function, it is independent of the 

maximum polar angle 0θ  in the restricted motion of the dumbbell molecule. As 

seen from figure 2, however, all other distribution functions with order 0≠m  are 

rather sensitive to the opening angle of the cone. Moreover, the structure of the 

radial distribution functions becomes less pronounced for, say, 0
0

0 9040 ≤≤ θ .  

Nevertheless, Figure 2 clearly demonstrates that maximal value of the radial 

distribution functions decreases with increasing of the n  and m  quite quickly. It 

was found, in particular, that in order to calculate the time behaviour of the end--

to--end correlation function )()0( tQQ  it is enough to use first 12 radial 

distribution functions )(Qm
nν

Ψ  for 3≤n  and 3≤m .  

Figure 3 shows the rotational diffusion coefficient RD  and the orientational 

correlation function θcos1 =P  for the different bead-bead and bead-surface 

potentials (14-17).  Apparently, the rotational diffusion coefficient behaves quite 

different for different combinations to the two potentials.  

 

 
Figure 3. Left: Rotational diffusion coefficient RD  as function of the distance bead – bead 

separation  parameter 0Q  of the dumbbell molecule for the Fraenkel, DNA – type bead – bead 

potential BBU  respectively. Right: Orientational correlation function θcos1 =P  as function of 

the maximal restricted angle 0θ  for different bead – surface potentials when the bead – bead 

potential is assumed as DNA – type (9). 
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While, for example, the rotational diffusion coefficient RD  goes smoothly to zero 

at a maximal bead – bead separation of 30 ≈Q  in the case of a Frenkel potential, 

we find 5.0≥RD  at this and even of larger values of 0Q  for a DNA – type 

potential. For a large maximal separation 0Q , moreover, the diffusion coefficient  

of the dumbbell with the (strong) DNA – type of the bead – bead potential is 

approximately the same like for the rigid – rod macromolecule, while it always 

stays large if compared with the rotational  diffusion coefficient of the dumbbell 

with the (soft) Frenkel potential. In addition to the rotational diffusion coefficient, 

the Figure 3 also demonstrates the behaviour of the orientational correlation 

function θcos1 =P  as function of the (maximal) restricted polar angle 0θ  which 

is very sensitive to the particular choice of the bead – surface interaction potential. 

Since the rotational diffusion coefficient as well as the orientational correlation 

function can be observed directly by means of dielectric relaxation and scattering 

as well as fluorescence experiments [1-6], the Figure 3 can be – at least in 

principle – used in order to find the value of the restricted angle 0θ  as well as in 

order to analyze the properties of both the bead – bead and bead – surface 

interaction potential. 

IV. Conclusion 

In this work we have analyzed the influence of the bead – bead and bead – surface 

interactions on the restricted rotational dynamics of nonrigid macromolecules in 

solution if they immobilized with one end at a surface. For such (N-bead) 

macromolecules, we derived earlier a Diffusion equation from first principles 

[21]. Here, this equation is applied to investigate numerically the behaviour of the 

conformational phase space distribution function as well as of the rotational 

diffusion coefficient and the orientational correlation functions. This correlation 

functions, in particular, can be observed directly by means of dielectric relaxation 

and fluorescence experiments and can be used to analyze and better understand 

the internal structure of the macromolecule. As seen from our analysis, both the 

rotational diffusion coefficient and the radial distribution function clearly depend 

not only on the bead-bead but also the bead-surface interaction as well as on the 

maximum polar angle 0θ  for the case of a rotational diffusion in a cone. In the 

future, we hope that the radial distribution functions from above will help 
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interpret (NMR) experiments from dielectric relaxation and correlation 

spectroscopy as carried out, for instance, for biological molecules. 
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Restricted rotational diffusion of nonrigid dumbbell macromolecules on a
surface: Interplay of the bead–bead and bead–surface interactions.
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Institut für Physik, Universität Kassel, Heinrich–Plett–Str. 40, D–34132 Kassel, Germany.

A recently derived Diffusion equation [A. Uvarov and S. Fritzsche, J. Chem. Phys. 121 (2004) 6561] is applied
for analyzing the restricted rotational motion of dumbbell macromolcules in solution, if immobilized on a surface.
Both, the bead–bead and bead–surface interactions are taken into account in order to describe the relaxation
(times), following an external perturbation, as well as the orientational dynamics of such dumbbells. Detailed
computations have been performed in particular for the rotational diffusion coefficient DR and the orientational
correlation function P2 of nonrigid dumbbells, including several realistic bead–bead and bead–surface potentials.
The results from our (semi–phenomenological) theory are found to agree very well with expensive Brownian
dynamic simulations from the literature over a wide range of parameters. This novel approach may therefore
reduce the costs considerably in studying the dynamical behaviour and the transport properties of macromolecules
in solution.

1. Introduction

Accurate studies on the dynamical behaviour of
macromolecules in solution are still a challenge for
modern DNA and protein research. During the
past decade, therefore, a large number of experi-
ments [1–5] have been carried out in order to un-
derstand the translational and rotational motion
of such molecules, together with the (de–) forma-
tion of their shapes. Apart from free macromole-
cules in solutions [1–3], attention has been paid by
these experiments especially upon the restricted
mobility of such macromolecules, if immobilized
on a surface [4–6]. On the theoretical side, in ad-
dition, several — often quite large — Molecular
and Brownian dynamical simulations have been
carried out [7–13] together with a number of ana-
lytical case studies [14–20]. In all these investiga-
tions, the macromolecules are usually described
by means of their molecular subsystems to which
we shall refer below as the beads of the macro-
molecule. When immersed into a solvent and
immobilized onto a surface, of course, both the
shape and the orientational relaxation dynamics
of the macromolecules are affected not only by
the surrounding solvent but also by the interac-

∗Corresponding author. Fax: +49561 804 4006.
E–mail address: uvarov@physik.uni-kassel.de (A. Uvarov).

tion among the (neighboured) beads as well as
their interaction with the attached surface.

In the present contribution, we focus on the
internal rotational dynamics of macromolecules
which are immersed into a solution. In contrast to
most previous investigations, however, in which
more often than not a rigid molecule was sup-
posed [21–24], here we consider the rotational dy-
namics of non–rigid macromolecules as described
recently by us in Refs. [19,20]. In particular, we
shall explore the question of how the interplay
between the bead–bead and bead–surface inter-
actions affect the (restricted) rotational diffusion
of such molecules, if they are immobilized on a
surface.

The paper is organized as follows. In section 2,
our model for (the overall system of) a ’dumbbell
on some surface’ is presented and discussed briefly
in terms of a diffusion equations (DE) for the
time evolution of its configuration phase–space
distribution function as derived recently by us
in Refs. [19,20]. Apart from the basic assump-
tions, which are made in the present approach,
this section shows how this DE can be simplified
for the extended dumbbell molecule if described
in polar coordinates. In section 3, later, the de-
rived expressions are applied in order to calculate
the rotational diffusion coefficient DR as well as

1
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the orientational correlation function P2 of the
non–rigid dumbbell if immobilized on a surface.
The results from our theory are compared with
Brownian dynamic simulations available from the
literature. Finally, a few conclusion about our
semi–phenomenological approach are given in sec-
tion 4.

2. Model and basic equations

In the kinetic theory, the dynamical behav-
iour of macromolecules in solution is often de-
scribed by means of a Diffusion equation (DE)
for the time evolution of its configuration–space
distribution function ψ(t), sometimes known also
as the Smolukowski equation [14,15]. For any
dumbbell–like molecule, such a DE was derived
recently by us [19]

∂ψ

∂t
= D

(Q)
⊥

(
∆ ψ +

1

kBT
ψ ∆ U +

1

kBT
∇ψ · ∇U

)

+

(
D

(Q)

‖ −D
(Q)
⊥

) [
∂2 ψ

∂ Q2
+

1

kBT

∂2 U

∂ Q2
ψ +

1

kBT

∂ U

∂ Q

∂ ψ

∂ Q

]

+

(
∂ D

(Q)

‖
∂ Q

+
2(D

(Q)

‖ −D
(Q)
⊥ )

Q

) (
∂ ψ

∂ Q
+

1

kBT

∂ U

∂ Q
ψ

)
, (1)

starting from a general Fokker–Planck–type equa-
tion (FPE) of the overall system ‘N -bead macro-
molecule + solvent’ and by assuming, for the sake
of simplicity, an equal mass M and radius σ for all
beads of the macromolecule [19,25]. In order to
remove the explicit dependence on the momenta
of the beads in the FPE (1) of Ref. [19], however,
a number of assumptions had to be made about
the dynamical behaviour of the macromolecules.
Apart from (i) a rather fast relaxation of the ve-
locities of the beads (when compared to the relax-
ation times of their positions), here we assumed
(ii) that all the effects of the solvent onto the in-
ternal dynamics of the macromolecule can be well
described in terms of the parallel (longitudinal)
D

(Q)
‖ and perpendicular (transversal) diffusion

parameters D
(Q)
⊥ , instead of he six parameters of

a most general second–rank diffusion tensor [14].
These two parameters, which describe the mobil-
ity of the dumbbell along and perpendicular to

Figure 1. Two models for a dumbbell macromole-
cule immobilized on a surface: (left) the non–rigid
dumbbell and (right) the rigid–rod model. Apart
from a (spring–type) interaction UBB(Q) between
the two beads, the ’upper’ bead of the dumbbell
also interacts with the surface via the potential
UBS(θ).

the direction of the end–to–end vector Q, then
contain all information about the hydrodynami-
cal bead–bead and bead–surface interactions. In
addition, we assumed (iii) the existence of a total
interaction potential U for the dumbbell, which
includes both, a (pairwise) spherical–symmetric
potential UBB(Q) between the two beads as well
as the (bead–surface) potential UBS between the
‘upper’ bead and the surface [cf. Fig. 1].

Equation (1) describes the time development
of the configuration–space distribution function
ψ(t) of a non–rigid dumbbell, immobilized on a
surface, where Q denotes (as usual) the length
of the end–to–endvector Q and ∆ the Laplacian
in a coordinate–free notation. Moreover, kB is
the Boltzmann constant and T the temperature
of the overall system ‘macromolecule + solvent’
in this equation. Since the configuration–space
distribution function is known to represent the
(normalized) probability density, it enables one
to describe all the dynamical properties of the
dumbbell molecule immersed into a solvent. Once
we know this function ψ(t), we could evaluate in
particular the time average

〈A〉 =
∫

dQA({Q})ψ(Q; t) (2)

of any given function A ≡ A(Q(t)) by taking the
integral over the allowed values of the end–to–end
vector.
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Of course, this is a very general equation which
is independent of both, the Nature of the macro-
molecule and its interaction with the surrounding
solvent and the surface, respectively. Therefore,
the solutions of the DE (1) can be applied to an-
alyze the translational and rotational dynamics
of macromolecules. In practise, however, the ex-
plicit solution of this equation may become rather
tedious owing to the non–linearity of the diffu-
sion tensor parameters (i.e. of the hydrodynamic
interaction) as function of the end–to–end vec-
tor Q [15]. In our further considerations below,
therefore, we shall restrict ourselves to the case of
an ’extended’ dumbbell in which the bead–bead
is much larger than the radii of the beads and,
therefore, we may neglect the hydrodynamic in-
teraction among the beads [19]. In fact, the ’ex-
tended’ dumbbell is probably the simplest model
of a non–rigid macromolecule and, hence, has
attracted a great deal of interest over the past
decades [7,19,20]. For this model, in particular,
it was found [19] that the bead–bead hydrody-
namic interaction can be neglected if the bead–
bead distance becomes Q ≥ 8σ. In addition to
the properties of the bead–bead hydrodynamic
interaction, moreover, the bead–surface hydrody-
namic interaction have been also investigated by
using both, computer simulations as well as the
experiments [26,27]. For the bead near the sur-
face, in particular, it was show [27] that the hy-
drodynamic bead–surface interaction inhibit the
diffusion of the beads near to the surface, i.e. for
distances h = Qcosθ ≤ 3σ. At large distances,
in contrast, the effects of the bead–surface inter-
action were almost negligible. Therefore, taking
this prior results from [26,27] into account, we
assume below an ’isotropic’ diffusion tensor

D
(Q)
‖ = D

(Q)
⊥ = D, (3)

for the macromolecule, where D is called the self–
diffusion coefficient of the beads [14,19,20]. Al-
though the all hydrodynamic interactions is ne-
glected here, this coefficient contains at least the
information about the time–independent proper-
ties of the solvent, such as the density fluctua-
tions, correlation length, temperature, viscosity,
and several others. Let us note, moreover, that
an extension of this approach in order to fully

include the effects of the bead - surface hydro-
dynamic interaction on the rotational diffusion of
the immobilized macromolecule is currently un-
der work and will be published elsewhere.

Let us now return to the DE (1) for the time
evolution of the configuration–space distribution
function ψ(Q; t) of the dumbbell–type molecule.
Substituting expression (3) for the parallel and
transversal diffusion parameters, this DE can be
brought into the operator form

1
D

∂ψ

∂t
=

{
R̂ (Q) +

Ô (θ)
Q2

+
Π̂ (ϕ)

Q2 sin2 θ

}
ψ (4)

if we use polar coordinates Q = (Q, θ, φ) for
the end–to–end vector of the dumbbell and if the
Laplacian is taken as

∆ =
1

Q2

∂

∂ Q
{Q2 ∂

∂ Q
} +

1

Q2 sin θ

∂

∂ θ
{sin θ

∂

∂ θ
}

+
1

Q2 sin2 θ

∂2

∂ ϕ2
. (5)

The use of polar coordinates, in fact, enables us to
separate the (reduced) DE (4) into four ordinary
differential equations as the polar and azimuthal
diffusion operators take the form

Ô (θ) =
1

sin θ

[
sin θ

∂

∂ θ

]
+

1
kB T

∂ U

∂ θ

∂

∂ θ

+
1

kB T

1
sin θ

[
sin θ

∂ U

∂ θ

]
(6)

and

Π̂(ϕ) =
∂2

∂ϕ2
+

1

kB T

∂U

∂ϕ

∂

∂ϕ
+

1

kBT

∂2U

∂ϕ2
, (7)

while, respectively, the radial diffusion operator
is given by

R̂(Q) =
1

Q2

∂

∂ Q

(
Q2 ∂

∂ Q

)
+

1
kBT

∂ UB

∂ Q

∂

∂ Q

+
1

kBT

1
Q2

∂

∂ Q

(
Q2 ∂ UB

∂ Q

)
. (8)

If, for example, we try the separation ansatz

ψ(Q, θ, ϕ; t) = Ψ(Q) Θ(θ) Φ(ϕ) T (t) , (9)
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for the phase–space distribution function, the so-
lution of the reduced equation (4) is ‘divided’ into
(the solution of) the four equations

d T (t)
d t

= −λD T (t) (10)

Π̂(ϕ) Φ(ϕ) = −m2 Φ(ϕ) (11)

Ô (θ) Θ(θ) = −
[
ν (ν + 1)− m2

sin2 θ

]
Θ(θ) (12)

and

R̂ (Q) Ψ(Q) = −
[
λ − ν (ν + 1)

Q2

]
Ψ(Q), (13)

that is one for each of the four (independent) vari-
ables, and where m, ν, and λ are separation con-
stants. We shall return later to these constants in
order to discuss their properties in more detail for
the rotational motion of a non–rigid macromole-
cule immobilized at a surface. For the moment,
let us mention just that these constants are re-
lated closely to the boundary conditions which
are associated with the internal motion of the
dumbbell–type macromolecule.

In the present work, our main concern is the
rotational motion of a non–rigid dumbbell mole-
cule, immobilzed at a surface. For such a mole-
cule, we shall apply Eqs. (10–13) to explore the
phase–space distribution as function of the solid
angle Ω = (θ, ϕ) if the range of polar angles is
restricted by some upper bound, θ ≤ θ0 ≤ π

2 .
In the literature, such a restricted rotational mo-
tion is sometimes known also as diffusion–in–a–
cone. To model this restricted rotation, we as-
sume one bead of the dumbbell to be sticked to
the surface as displayed in Figure 1. Owing to
the symmetry of the system ‘dumbbell + surface’,
moreover, we may suppose that the bead–surface
interaction then only depends on the polar angle
θ, i.e. UBS = UBS(θ). With these assumptions
in mind, we are able to write the boundary con-
ditions for the angles θ and ϕ of the molecular
motions as

0 ≤ θ ≤ θ0 and 0 ≤ ϕ ≤ 2π . (14)

In addition, a similar (boundary) condition is as-
sumed also for the separation of the two beads

0 ≤ Q ≤ Q0 , (15)

where Q0 denotes the maximum distance be-
yond which the beads of the dumbbell cannot be
stretched. In practise, of course, this maximum is
finally determined by the bead–bead interaction
potential UB . Since the configuration–space dis-
tribution function ψ(Q, θ, ϕ; t) is taken as a con-
tinuous functions, especially for coordinate values
close to the boundaries (14) and (15), this func-
tion must satisfy the reflection (or von Neumann)
condition

∂ ψ(Q, θ, ϕ; t)
∂ θ

|θ=θ0 = 0 (16)

for the polar angle θ and the periodicity

ψ(Q, θ, ϕ = 0; t) = ψ(Q, θ, ϕ = 2π; t) . (17)

for the azimuthal angle ϕ, respectively. For the
separation Q of the two beads, moreover, the dis-
tribution function ψ(Q, θ, ϕ; t) has to satisfy the
boundary condition

∂ ψ(Q, θ, ϕ; t)
∂ Q

|Q = Q0 = 0 , (18)

in that not only the distribution itself but also
its first derivative becomes zero at the boundary
Q = Q0.

The four Eqs. (10–13) from above fully describe
the behaviour of the configuration–space distribu-
tion function ψ(Q, θ, ϕ; t) of an ‘extended’ dumb-
bell molecule if immobilized at one side to the sur-
face. They enable us therefore to determine (and
to analyze) the distribution ψ(Q, θ, ϕ; t) in the
presence of both, the bead–bead interaction UBB

and bead–solvent interaction UBS . While the first
Eq. (10) refers to the (trivial) time evolution of
the distribution function ψ(Q, θ, ϕ; t), the second
and third one (11–12) are the two ‘angular equa-
tions’ which only depend on the orientation of
the molecule, i.e. the direction of the end–to–end
vector Q. In addition to these angular equations,
we have to consider also the radial Eq. (13) which
describe the behaviour of the configuration–space
distribution function ψ(Q, θ, ϕ; t) as function of
the distance of the two beads. Here, we shall not
discuss the techniques for solving the Eqs. (10–
13) with the boundary conditions from above but
simply note that, in general, the configuration–
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space distribution

ψ(Q, θ, ϕ; t) =

∞∑
n=1

∞∑
m=−∞

e−νm
n (νm

n +1)DR t

× (Am
n cos mϕ +Bm

n sin mϕ)

×P m
νm

n
(cos θ)Ψνm

n
(Q), (19)

can be written in terms of the rotational diffusion
coefficient of the dumbbell

DR = D

〈
1

Q2

〉
, (20)

as well as the radial distribution functions
Ψνm

n
(Q). Of course, these distribution functions

must obey Eq. (13) for any given set of the sep-
aration constants λ and ν. In expression (19),
moreover, Am

n , Bm
n are expansion coefficients and

P m
νm

n
(cos θ) denote the associated Legendre func-

tion of degree νm
n and order m and are well known

as solutions of the angular equation (12).
As mentioned before, the possible values of

the separation constants λ, ν, and νm
n must be

derived from the boundary conditions (16–18).
Since the azimuth ϕ is not restricted in the rota-
tional motion of the dumbbell, the configuration–
space distribution should have a period of 2π and,
hence, the constant m must be integer. Then, for
determining the values of νm

1 < νm
2 < νm

3 . . .
(i.e. the sequence of ν’s which satisfy the bound-
ary conditions for a given m) we may utilize a
condition on the polar angle,

∂ Pm
νm

n
(cos θ)

∂ cos θ
|cos θ=cos θ0 = 0 (21)

similar to Eq. (16).
The condition (21) on the derivative of the as-

sociated Legendre functions determines the num-
ber and the values of the separation constants ν
completely for any given order m. In contrast
to a free (that is non–restricted) diffusion of the
dumbbell, however, these ‘constants’ are no inte-
gers in general but, for given m and n, functions
of the angle θ0 [cf. Eq. (16)]. Unfortunately, these
values cannot be obtained analytically but have
to be calculated numerically. A more detailed dis-
cussion about the properties of these separation

constants as well as of the associated Legendre
functions with non–integer degree can be found in
Refs. [19,21]. For the sake of brevity, here we shall
summarize only those properties as needed in the
following discussions. For example, the associ-
ated Legendre functions are known to obey the
symmetry Pm

νm
n

(cos θ) = Pm
−νm

n −1(cos θ) even for
non-integer values of the degree νm

n . In addition,
these functions fulfill the orthogonality properties
[21,22]

∫ 1

cos θ0

d cos θ P m
νm

n1
(cos θ) P m

νm
n2

(cos θ) = H m
n1 δn1n2 (22)

where H m
n1

denotes coefficients of the orthogonal-
ity and δn1n2 the Kronecker symbol [19].

In the expansion (19) of the configuration–
space distribution ψ(Q, θ, ϕ; t), the coefficients
Am

n and Bm
n have to be determined from the ini-

tial condition ψ(Q, θ, ϕ; 0) = δ(Q−Q(0)) δ(φ−
φ(0)) δ(cos θ − cos θ(0)) as well as from the or-
thogonality of the associated Legendre functions
(22). Leaving apart the details of their derivation,
these coefficients are given by [21]

Am
n =

P m
νm

n
(cos θ(0)) cos mϕ(0)
π Hm

n (1− δm 0)
, (23)

and

Bm
n =

P m
νm

n
(cos θ(0)) sin mϕ(0)

π Hm
n

(24)

where θ(0) and ϕ(0) refer to the polar and az-
imuthal angle at the initial time tin = 0 , re-
spectively. Below, we make use of these coeffi-
cients and the orthogonality (22) of the associ-
ated Legendre functions from above in order to
calculate the radial distribution function Ψνm

n
(Q).

Having these functions, they can be utilized then
to evaluate the rotational diffusion coefficient of
the dumbbell macromolecule as well as the orien-
tational correlation function (OCF) for different
choices of the bead–bead and bead–surface inter-
action potentials.

3. Result and discussion

During the last two decades, a number of
(large-scale) Brownian and molecular dynamical
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simulations have been carried out in order to un-
derstand the dynamical properties of macromole-
cules in solution, including case studies on the
translational as well as rotational diffusion co-
efficients [7,13], the velocity and force autocor-
relation functions [9,10], the time behaviour of
the orientational correlation functions [7,8,12,13],
and for various others. Apart from different
choices of interactions (between the macromole-
cule and its environment), these investigations
mainly differ by the size and mass as well as
the internal structure of the macromolecules un-
der consideration. However, in order to allow
for a comparison of the various computations,
a common ‘(macromolecular) unit system’ has
been applied in most investigations, based on
the mass and size of the macromolecule: M =
Q0 = kBT ≡ 1. In this unit system, all
lengthes are measured in Q0, energies in units
of kBT while derived units are used for all other
quantities: τMacr = (Q2

0/D) (time); DMacr =
D/Q0 (rotational diffusion coefficient); FMacr =
kBT/Q0 (force), etc. For the sake of conve-
nience, here we shall use the same unit system
in order to facilitate the comparison of our semi–
phenomenological (rotational) computations with
Brownian dynamical simulations from Ref. [7].

From the DE (4) in polar coordinates and the
corresponding operators (6–8), we see how the
dynamics of the macromolecule depend on the
potential U = UBB + UBS, i.e. on the inter-
action UBB(Q) among the beads as well as the
interaction UBS of the (free) bead with the sur-
face. To obtain further insight into the rota-
tional behaviour of a dumbbell molecule, immo-
bilized with one bead at a surface, let us con-
sider below four particular combinations of the
bead–bead and bead–surface interactions. Most
of these potentials are known from the field of
physical chemistry where they were constructed
originally to simulate the chemical bonds in dif-
ferent (chemical) environments. In the following,
we shall consider for the bead–bead interaction
(i) a Frenkel potential [14,15]

U Fr
BB(Q) =

1
2

kFr (Q−Q0)2, (25)

and (ii) a dna–type potential [28,29]

U DNA
BB (Q) = kDNA

(
1

4(1− Q
Q0

)
− 1

4
Q

+
Q2

2Q0
− 1

4

)
, (26)

while, for the bead–surface interaction, we take
(iii) the Cone potential [7,19,20]

U Cone
BS =





0 if θ ≤ θ0

∞ if θ > θ0

, (27)

and (iv) the effective double well (Sin) potential
[7]

U Sin
BS = k Sin sin2 θ , (28)

and where the (interaction) constants kFr, . . . de-
termines the strength of the corresponding inter-
action. Note the different meaning of the distance
Q0 the the beads in the two potentials (25) and
(26); while this ‘length’ refers to the equilibrium
distance in the case of the Frenkel potential, it
denotes the maximum length for the dna–type
interaction beyond which the beads of the dumb-
bell cannot be stretched.

In the following, our emphasis will be placed
onto the rotational diffusion of a dumbbell mole-
cule, immobilized on a surface, for which sev-
eral dynamic simulations are known from the
literature [7,13] In particular, we shall refer to
the BDS by de la Torre and coworkers [7] in
which a Frenkel–type potential (25) was as-
sumed among the two beads of a dumbbell mole-
cule. In line with Ref. [7], moreover, we make
use of the same bead–bead interaction strength
kFr = 0.4508 in order to ensure that the equi-
librium bead–bead distance is < Q2 >≈ Q2

0 .
In contrast to these earlier BDS [7], however, a
different bead–surface interaction UBS has been
applied in our computations below. For all fur-
ther details about the initial set–up of the BDS,
we refer the reader to the literature.

In our semi–phenomenological approach from
above, all information about the rotational prop-
erties of the macromolecule is finally contained in
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Figure 2. Rotational diffusion coefficient DR as function of time for different restricted angles θ0 and for
two choices of the bead–bead interaction potential: a) Fraenkel potential 25 and b) dna–type potential
26. The bead–surface interaction is described by the Cone potential (27).

the (infinite) set {Ψm
νm

n
(Q)} of the radial distrib-

ution functions. In order to evaluate this func-
tions, of course, we first have to calculate the
non–integer degree; however, since these numbers
need to be determined only once for each (choice
of the) restricted angle θ0, our approach appears
very suitable for studying different combinations
of bead–bead and bead–surface interactions. For
a number of angles θ0, the possible degrees νm

n

were calculated in our previous work [cf. Table 1
of the Ref. [19]] and have been utilized below to
solve Eq. (13) for the radial functions Ψνm

n
(Q).

Having available the radial distribution func-
tions Ψνm

n
(Q) and the statical structure factor

g(k) of the surrounding solvent, we can evalu-
ate the time behaviour of the rotational diffusion
coefficient DR of the macromolecule for different
values of the restricted angle θ0. This is achieved
simply by inserting these distribution functions
into Eq. (20) and by making use of the average
(2). Let us now note that in order to calculate the
rotational diffusion coefficient or any other mea-
surable function for the macromolecule we — at
least in principle — need to calculate the infinite
set of the radial distribution functions Ψνm

n
(Q).

Fortunately, a rather small number of such ra-
dial functions is sufficient for the convergence of

Ψ(Q) as their contribution decreases rapidly with
n and m and because Ψνm

n
(Q) is almost zero for

all values θ0 and Q if n ≤ 3 and m ≤ 3 [20].
Figure 2 displays the time dependence of the

rotational diffusion coefficient DR for different
restricted angles θ0 and for the two bead–bead
interaction potentials (25) and (26) from above.
The bead–surface interaction is described by the
Cone potential (27). Obviously, a rather different
behaviour is found for different angles θ0 which
restrict the polar motion of the molecules. While
for small angles θ0 the diffusion coefficient ap-
proaches very rapidly to its equilibrium value, a
much longer period is required if the molecule dif-
fuse in big cone. As seen from this figure, more-
over, the equilibrium coefficients differ quite size-
able for the two choices of the bead–bead inter-
actions above, i.e in the limit limt→∞ DR.

Apart from studying the time dependence of
the rotational diffusion coefficient, we can utilize
our semi–phenomenological approach to explore
the behaviour of DR at equilibrium as functions
of the allowed bead–bead separation Q0 [cf. Fig-
ure 4]. Owing to the different meaning of this
parameter, of course, a qualitative different be-
haviour is obtained for the Frenkel and dna–type
potential. Even for the (strong) dna–type inter-
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Figure 3. Rotational diffusion coefficient DR as
function of the separation parameter Q0 for two
different choices of the bead–bead interaction po-
tential: a) Fraenkel potential (25) and b) dna–
type potential (26). The bead–surface interaction
is described by the Cone potential (27).

action, however, the equilibrium coefficient of a
dumbbell molecule becomes similar to those of
the rigid–rod model for a rather large separations
Q0 ≥ 5, while it remains smaller always by a fac-
tor of at least 3 for the (soft) Frenkel potential.

Having obtained the dependence of DR on the
restriction angle θ0 and the separation parameter
Q0 (in the definition of the bead–bead interac-
tion UBB), we shall further investigate also the
influence of the bead–surface interaction UBS(θ)
upon the rotational diffusion coefficient. For a
Frenkel–type dumbbell which, in addition, in-
teracts with the surface via the double well (Sin)
potential (28), Table 1 lists the diffusion coeffi-
cients DR for different interaction constants k Sin.
As seen from this table, excellent agreement is
found with the BDS data by de la Torre[7] if
the separation parameter is set to Q0 = 7.99σ,
i.e when the hydrodynamic interaction may be
neglected. Apart from the diffusion coefficient,
moreover, the time–dependent orientational cor-
relation function (OCF)

P2(t) =
1
2

(3 〈cos θ(t)〉 − 1) (29)

is often used in order to characterize the rota-
tional motion of macromolecules in solution, if
immobilized on a surface. Studies on the time
behaviour of this OCF (29) have attracted in-
deed a lot of recent interest because it can be
observed directly by means of fluorescence depo-
larization experiments. Again, by making use of
the possible non–integer degrees from our recent
work [cf. Table 1 in Ref. [19]], Eq. (19) for the
radial distribution functions Ψνm

n
(Q) as well as

expression (2) for the average, we can compute
the orientational CF (29) for any restricted an-
gles. For two of such angles, θ0 = 30o and 66.4o,
Figure 4 shows the normalized orientational CF
< P2(t)/P2(0) > as function of time t and com-
pares them with those from the Brownian dynam-
ical simulations by Tirado et al. [7]. Again, a
very good agreement with the BDS data is found
in for θ0 = 30o and with some minor devia-
tions also for θ0 = 66.4o. As seen from Fig-
ure 4, moreover, the OCF from the triexponen-
tial approximation of Ref. [7] are always larger
than our computations, especially for rather large
values of θ0. This demonstrates that our semi–
phenomenological approach enables one to under-
stand and calculate the rotational (and further)
properties of macromolecules without that exten-
sive dynamical simulations are always necessary.

Table 1
Rotational diffusion coefficients DR for a ‘Fren-
kel–type’ dumbbell which interacts with the sur-
face via the double well (Sin) potential (28).
Comparison of our semi–phenomenological the-
ory with data from the BDS [7] for different
strength constants k Sin of the bead–bead inter-
action. See text for further details.

k Sin D

This work BDS [7]

17.50 0.03191 0.029
8.54 0.06882 0.064
4.49 0.01398 0.013
1.89 0.01816 0.017
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Figure 4. Time behaviour of the orientational
CF P2 of a dumbbell macromolecule which in-
teracts with the surface via the effective double
well (Sin) potential (28). OCF from our semi–
phenomenological theory are compared with the
BDS from Ref. [7].

4. Conclusion

For a non–rigid dumbbell (molecule) immobi-
lized on a surface, the effects of the bead–bead
and bead–surface interaction on the rotational
motion has been investigated as function of the
restricted polar angle θ0. For this, we started
from a diffusion equation for the configuration–
space distribution function which was derived re-
cently by us [19] from the Fokker–Planck–type
equation for the phase–space distribution func-
tion of N–bead macromolecule [19,25]. In this
derivation, the (three) assumptions were made
that (i) the momenta of the beads relax much
faster to their equilibrium values than their spa-
tial coordinates and, hence, that (ii) all the ef-
fects of the surrounding solvent onto the in-
ternal dynamics of the macromolecule can be
well described by two parameters, the parallel
and perpendicular diffusion functions. Moreover,
(iii) a total interaction potential U has been as-
sumed for the dumbbell, including the spherical–
symmetric potential UBB(Q) between the beads

of the macromolecule as well as (bead–surface)
potential UBS for the interaction between ’upper’
bead and the surface. All of these assumptions (i–
iii) have been made before frequently in studying
the behaviour of macromolecules in solutions [14–
18,20]. Using the derived equation (4), then, de-
tailed computations have been carried out for the
rotational diffusion coefficient as well as for the
orientational correlation function of a non–rigid
(2–bead ’extended’) dumbbell macromolecule.

To elucidate the influence of the various inter-
actions on the rotational motion of such dumb-
bell molecules, several potentials have been con-
sidered for the bead–bead (Frenkel, dna) and
bead–surface interaction (Cone, Sin). For these
choices of the interaction, our computations
clearly reveal that the rotational properties of the
macromolecule strongly depend not only on the
interaction potentials but also on the maximum
value of the polar angle θ0. The results from this
work might useful to interprets dielectric relax-
ation, the correlation spectroscopy and NMR re-
laxation experiments which are carried out on the
diffusion coefficients and the orrientational cor-
relation functions for biological molecules (such
as DNA) [1–6]. Moreover, we are presently also
continue this work to better understand the ro-
tational dynamics of N–bead chains or other im-
mobilized macromolecular structures.

Acknowledgment: This work has been sup-
ported by the Deutsche Forschungsgemeinschaft
(DFG).
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A novel, semi–phenomenological expression is derived for the friction tensor of macromolecules
immersed into solution. By making a few realistic assumptions about the interaction of the molecu-
lar beads with the particles of the solvent, the friction tensor is expanded into a series of terms which
purely depend on the (j + 2)−point correlation functions of the solvent as defined in the kinetic
theory of the liquids. In a first application of this series expansion, the boundary condition coeffi-
cient is investigated for a single bead in dependence on the strength of the interaction among the
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properties towards complex macromolecules in solution and will reduce the computational costs for
that by several order of magnitude.
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The idea of friction is perhaps the most general con-
cept in order to explore the dynamics of macromole-
cules in solution. Apart from describing the rotational
and translational motion, this concept helps understand
the (de–) formation processes of macromolecules which
are known to be affected both, by the internal struc-
ture of the molecules as well as their interaction with
the surrounding solvent. During the past decade, there-
fore, a number of experiments and molecular dynamic
(MD) simulations [1–4] have been carried out in order
to investigate the rotational and translational friction of
macromolecules. In addition, several ab–initio and semi–
empirical models were developed during that time to an-
alyze the static and dynamical properties of macromole-
cules in solution [6–10].

From the empirically established Stokes relation

c = ξ/π η R hydr , (1)

it is known for instance, that the boundary condition
(BC) coefficient c of a mesoscopic particle is proportional
to the friction coefficient ξ but inverse proportional to
the viscosity η of the solvent as well as its effective hy-
drodynamic radius R hydr [6]. In the literature, therefore,
this coefficients is often applied to characterize the veloc-
ity of the solvent at the surface of the particle. In the
phenomenological theory, this coefficient takes a constant
value between c = 4 (slip BC) and c = 6 (stick BC) by
assuming a non–discrete and incompressible medium for
the solvent. However, although this Stokes relation is well
fulfilled for (heavy) particles with a mass & 100 times the
mass of the solvent particles [2, 3], the discrete charac-
ter of the solvent and its interaction with the molecular
subsystems should be taken into account to understand
the dynamical behaviour of most macromolecules [2].

To explore the effects of the solvent onto the dynam-
ics of macromolecules, a Fokker–Planck type equation

(FPE) has been derived recently by us for the time evo-
lution of the phase–space distribution function of an (N–
bead) macromolecule [9, 11]. In this FPE, all information
about the interaction among the beads of the macromole-
cule as well as the effects from the surrounding solvent
is described by means of semi–phenomenological friction
tensors which are expressed in terms of the bead–solvent
interaction and the dynamical structure factor of the sol-
vent [9]. Several typical bead–solvent interaction poten-
tials were explored to analyze the dynamical behaviour
in different environments [11]. For a single–bead macro-
molecule, moreover, we showed that the Stokes relation
(1) holds down to a macromolecule–to–solvent mass ra-
tios of M/m ≈ 45 if slip BC were applied [12].

In all of these previous case studies, a weak cou-
pling of the macromolecule with the solvent was assumed
throughout. In general, however, the bead–solvent inter-
action is often not so weak and may become comparable
with the interaction among the beads. To improve the
treatment of the macromolecular dynamics, therefore,
here we generalize the semi–phenomenological expression
for the friction tensors of a N−bead macromolecule to
allow for a realistic coupling of the molecular beads to
the solvent. Based on the assumption, that the relax-
ation time of the macromolecule towards its equilibrium
is typically (much) longer than those of the solvent, a
semi–phenomenological expression is derived for the fric-
tion tensors of macromolecules which can be written in
terms of the bead–solvent potential as well as the (k+2)−
point correlation functions of the solvent. In this work,
emphasize is placed on the derivation of the friction ten-
sors rather than detailed numerical computations.

Following a brief account on the microscopic theory
of friction, we shall start below from the FPE for the
phase–space distribution function of a macromolecule in
solution to derived a semi–phenomenological expression
for its friction tensors. As a first application, this expres-
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sion is then utilized to calculate the BC coefficient c
for a single–bead macromolecule in a solvent in depend-
ence on the interaction strength between the bead and
the solvent particles. When compared to previous MD
simulations, an excellent agreement is found for the BC
coefficient over a wide range of the macromolecule–to–
solvent strength of the interaction, in contrast to the
phenomenological theory. Apart from new insights into
the origin of the macromolecular friction, therefore, our
semi–phenomenological approach below allows first of all
a very remarkable reduction of the computational costs
(by several order of magnitudes at least) in studying the
transport properties of large molecules.

In the classical (microscopic) theory, macromolecules
in solution are usually described in terms of their (N)
molecular subsystems, the so–called beads of the macro-
molecule, surrounded by n solvent particles of equal mass
m and by assuming n À N . Then, the dynamical prop-
erties of the macromolecule can be determined from its
phase–space distribution ρN = ρN (Γ, t) with Γ = {R1,
P1, . . . , RN ,PN} if the integration (averaging) has been
carried out over all the position and momenta of the
solvent particles, {r1,p1, . . . , rn,pn}. If, in addition,
we suppose equal mass M for all beads and a pairwise

interaction Uab = U (|Ra −Rb|) along a given chain, the
time evolution of the distribution function ρN (Γ; t) of the
molecule follows the Fokker–Planck type equation (FPE)

∂ρN

∂t
+

NX
a=1

Pa

M

∂ρN

∂Ra
−

NX
a,b=1

∂U(|Ra −Rb|
∂Ra

∂ρN

∂Pa

=

NX
a,b=1

∂

∂Pa

bξ (ab)

�
∂

∂Pb
+

β

M
Pb

�
ρN (t) , (2)

where ξ̂ (ab) ≡ ξ̂ (ab)(Ra,Rb) denotes the friction tensor
and β = 1/kBT the (inverse) temperature of the sys-
tem. This FPE can be derived from the (exact) Liouville
equation for the phase–space distribution of the overall
system ‘macromolecule+solvent’ by using the techniques
of projection operators as well as the two assumptions,
that (i) the macromolecule and the solvent particles did
not interact before some initial time, t < tin ≡ 0, and
that (ii) the solvent starts at t = 0 from an Boltzmann
equilibrium state with the distribution function Φeq [9].

In Eq. (2), the friction tensors ξ̂ (ab) appear in order to
‘characterize’ the (thermodynamically averaged) interac-
tion of the beads with the surrounding particles from
the solvent and, hences, contain also the hydrodynamic
interaction between any pair (a, b) of beads. As shown
recently [9], these friction tensors are given by

bξ (ab) = −n0

Z ∞

0

dτ

Z
dk1dk2

(2π)6
W (k1)W (k2)k1 eik1Rae

bLBτeik2Rb
1

n

XZ
s,t

d{rs,ps}e−ik1rs e
bLS τ e−ik2rte

bY bLBS τ Φeq, (3)

where n0 is the number density of the solvent, W (k) =∫
dr e−i kr W (r) the Fourier transform of the bead–sol-

vent interaction, and Ŷ = 1−Φeq ({rs,ps})
∫

d{rs,ps} a
linear projection operator satisfying Ŷ 2 = Ŷ . Of course,
the friction tensors (3) also contains the Liouville oper-
ators L̂B and L̂S for the ‘free macromolecule’ and the
solvent, respectively, as well as the Liouville operator

bLBS =

NX
a=1

nX
s=1

∂W (|Ra − rs|)
∂Ra

�
∂

∂Pa
− ∂

∂ps

�
(4)

which is associated to the interaction W (r) of the sol-
vent particles with the beads. With the two assumptions
(i–ii) in mind, these friction tensors are exact and de-

scribe all the effects of the solvent onto the long–term
dynamical behaviour of the macromolecules. Hence, the
expression (3) enables us to describe all dynamical prop-
erties of a N–bead macromolecule in solution. In prac-
tise, however, it appears rather unfeasible to deal with all
the (time–dependent) evolution operators of the macro-
molecule and solvent as well as with the interaction op-
erator exp[τ Ŷ L̂BS ] simultaneously. Since, owing to the
mass and size of the macromolecule, the relaxation of
the solvent particles into their equilibrium state occur
much faster for most solutions than those of the mole-
cular beads, the interaction operator in Eq. (3) can be
replaced by its Taylor expansion

e
bY bLBS τ =

∞X
j=0

τ j

j!

�bY bLBS

�j

. (5)

Using the operator identity Ŷ L̂BS = L̂BS , then the fric-
tion tensor of a N−bead macromoleculebξ (ab)(Ra,Rb) =

∞X
j=0

Z ∞

0

dτ
τ j

j!
n0

Z
dk1dk2

(2π)6
k1 W (k1)W (k2)e

ik1Rae
bLBτeik2Rb k2

× 1

n

XZ
s,t

d{rs,ps}e−ik1rse
bLSτe−ik2rt

0@X
a′,s′

∂ W

∂ Ra′

�
− ∂

∂ps′

�1Aj

Φeq (6)

can be written as an (infinite) series of terms and — at least in principle — be evaluated for any strength of the
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bead–solvent interaction.
Expression (6) for the friction tensor of a macromole-

cule is still rather general and gives rise to a series of
approximations owing to the powers in the Fourier trans-
form of the bead–solvent interaction. If we consider only
the first term of this series (j ≡ 0), the zero–order ap-
proximation, we obtain again the friction tensor as de-
rived and discussed previously [cf. Eq. (46) in Ref. [9]].

This zero–order approach is appropriate for a weak in-
teraction of the macromolecule with the solvent parti-
cles. Beside of such a simplified scenario, however, ex-
pression (6) enables one also to analyze the first– and
higher–order correlation contributions to the friction ten-
sors. For instance, by utilizing the well–known property
− ∂

∂pt
Φeq = β

mptΦeq of the equilibrium distribution of
the solvent [9, 13] and by restricting the summation to
j ≤ 1, the friction tensor (6) of a N−bead macromole-
cule read as

bξ (ab) = n0

Z ∞

0

dτ

�Z
dk1

(2π)3
(k1k1)W (k1)

2 eik1Ra e−ik1Rbg(0)(k1; τ)

�
−βn0

Z ∞

0

dτ

"
τ

Z
dk1dk2

(2π)6
(k1k2)W (k1) W (k2) eik1Ra eik2Rb

NX
c=1

e−i(k1+k2)Rc W (k1 + k2) g(1)(k1,k2; τ)

#
(7)

where

g (0)(k1; τ) =
1

n

X
s,t

Z
d{r,p}e−ik1rs e

bLS τ eik1rt Φeq (8)

is the two–point correlation function (CF) of the solvent,
known also as the the dynamic structure factor [6], and

g(1)(k1,k2; τ) =
1

n

X
s,t,u

Z
d{r,p}e−ik1rs eτ bLS

×bLS e−ik2rtei(k1+k2)ru Φeq (9)

the three–point correlation function. Both of these cor-
relation functions, Eqs. (8) and (9), are well–known from
the theory of liquids [13, 14, 16] and contain all informa-
tion about the solvent as, for example, its relaxation time
back into the equilibrium, the temperature, viscosity, and
many further properties which they could be determined
experimentally.

As discussed above, the zero–order term in expression
(7) describes the friction properties of the macromolecule
for a weak bead–solvent coupling and if the solvent par-
ticles return much faster into their equilibrium than the
beads of the macromolecule. Apart from calculating the
diffusion and boundary condition coefficients for a single–
bead spherical macromolecule [12], this zero–order ap-
proximation has been applied recently for evaluating the
friction tensor components of a N–bead macromolecule
for different choices of the bead–bead as well as bead–
solvent interaction (Yukawa, Born–Mayer, and Lennard–
Jones potential). Including, in addition, at least the first–
order term in Eq. (7), we may consider also more realis-
tic bead–solvent interactions as well as the interplay be-
tween different measurable correlations functions of the
solvent, (eik1Raeik2Rb) and (eik1Raeik2Rbe−i(k1+k2)Rc),
which are nothing else than the two– and three–point
CF of the macromolecule. Although the incorporation
of such higher–order terms will become quite tedious in
many cases, especially for a large number of interacting
beads, it may provide estimates on the size of these cor-
relations and will be by far more efficient than any MD
simulation. In a first application of this series expansion

for the friction tensors, however, here we shall restrict
ourselves to a single–bead molecule (N = 1). A more
detailed case study for N > 1, including macromolecules
of different internal shape (chains, stars, ...), is presently
under work and will be presented elsewhere.

For the sake of simplicity, let us consider a single bead
which interacts isotropically with the surrounding solvent
particles. For such a bead, the friction tensor ξ̂ (aa) = ξI
just depends on a single (friction) coefficient ξ as obtained
from expression (7) by setting a = b,

ξ =
1

3
n0

Z ∞

0

dτ

�Z
dk1

(2π)3
k2

1W (k1)
2 g (0)(k1; τ)

�
−
Z ∞

0

dτ

�
τ

1

3
βn0

Z
dk1dk2

(2π)6
(k1k2)W (k1) W (k2)

× W (k1 + k2) g (1)(k1,k2; τ)
i

. (10)

Similar to the N−bead macromolecule, this friction co-
efficient now depends on the two– and three–point CF of
the solvent, g (0) and g (1), which can be calculated — at
least in the limit of τ → ∞ — by using the (so–called)
Mode Coupling Theory (MCT) of liquids [14–17]. In this
theory, a ‘truncated’ Lennard–Jones (LJ) potential

V (r) =

8<: 4 εS

h�
σ
r

�12 − �
σ
r

�6i
if r ≤ rS

0 otherwise

(11)

is usually applied where εS denotes the interaction
strength, σ the diameter of the solvent particles and rS

is taken as a cut–off radius beyond which the potential is
set to zero. Here, we shall not discuss how one can calcu-
late these CF but simply note that they can be evaluated
numerically by using the MCT formalism as described,
for instance, in Ref. [17].

Having access to the two– and three–point CF of the
solvent, we can apply expression (10) in order to calculate
the friction coefficient for a single–bead macromolecule
with mass ratio M/m = 100, immersed into a LJ solvent.
However, for simplifying the comparison with MD sim-
ulations from the literature, below we shall not consider
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FIG. 1: Boundary condition coefficient c of a single–bead
macromolecule in solution with mass M = 100 m as function
of the bead–to–solvent interaction strength ratio εBS/εS . See
text for discussion.

the friction but rather the closely related BC coefficient
c of the macromolecule [cf. Eq. (1)]. For similar reasons,
moreover, we make use of the same set of parameters for
the potential between the bead and solvent particles as
Schmidt and Skinner [2, 3] who applied a Lennard–Jones
solvent (11) with the cut–off radius rS = 2.5 σ at the tem-
perature kB T ≈ εS , the number density n0 ≈ 0.85σ3 as
well as the bead–solvent interaction

W (r) = 4 εBS

"�
σ

r − lM

�12

−
�

σ

r − lM

�6
#

S(r − lM )(12)

with two independent parameters εBS and rM , respec-
tively. Moreover, the (additional) length lM was in-
troduced by these authors to simulate a ‘hard–sphere’
boundary condition for the macromolecule at the dis-
tance r → lM between the bead and the solvent par-
ticles. For a constant mass density of the macromole-
cule and the solvent, namely, this length lM can be writ-
ten in terms of the bead–to–solvent mass ratio M/m as
well as the diameter of the solvent particle σ [2, 3, 12]:
lM = σ

2

[
3
√

M/m− 1
]
. For all further details on the set–

up of the MD simulations, we shall refer the reader to
the literature [2, 3].

Figure 1 displays the BC coefficient for a single–bead
macromolecule with mass M = 100 m as function of the
relative interaction strength εBS/εS of the underlying LJ
potentials. These computations are based on expression

(10) for the friction coefficient and the two– and three-
point CF as evaluated numerically. The hydrodynamical
radius R hydr = lM + (1 + 6

√
2) has been used for the

macromolecule [3, 12] by applying the criterion that the
‘first shell’ of solvent particles sits directly at the mini-
mum of the bead–solvent potential (12). Apart from our
(semi–empirical) zero– and first–order computations of
the BC coefficient, Figure 1 displays also the results of
the MD simulations by Schmidt and Skinner [3] as well as
the constant coefficients for the stick and slip BC, i.e. for
a purely phenomenological treatment of the properties of
the solvent. Excellent agreement with the MD data [3]
are found for all small and medium ratios of the LJ inter-
action strengthes in Eqs. (12) and (11). However, while
the zero–order approach starts to depart from the numer-
ical values already for ratios εBS/εS & 2, the first–order
approximation (10) remains accurate up to εBS/εS ≈ 6
and is larger by only 25 % for a ratio of about 8.7 of
the bead–solvent to the solvent–solvent interaction. As
seens from this figure, the purely phenomenological the-
ory behaves very different and is suitable only for large
ratios and if, for the present choice of interactions, stick
boundary conditions are applied.

In conclusion, a novel (semi–phenomenological) ex-
pression is presented for the friction tensor of macro-
molecules in solution that can be improved systemtically.
Starting from a FPE–type equation for the phase–space
distribution of the macromolecule [9], we derived a series
expansion of the friction tensor which facilitates not only
studies on the transport coefficients of macromolecules
but also the inclusion of realistic bead–solvent potentials.

In a first application, these expressions for the friction
tensor have been utilized to investigate the influence of
high–order CF of the solvent upon the friction and BC
coefficients of macromolecules. For a moderate bead–sol-
vent interaction, these coefficients agree excellent with
MD simulations carried out previously. — We therefore
conclude that this semi–phenomenological approach can
be applied also for studying other dynamical properties
of macromolecules. Compared with often highly expen-
sive MD simulations, a remarkable gain by several orders
of magnitude is obtained in the efficiency and may thus
allow investigations also on complex systems for which
other numerical techniques will remain unfeasible.
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