Quark-Gluon Plasma Physics

5. Statistical Hadronization and Strangeness

Prof. Dr. Peter Braun-Munzinger Prof. Dr. Klaus Reygers Prof. Dr. Johanna Stachel Heidelberg University SS 2023

Hadronization of the nuclear fireball

the fireball properties can be determined by measurement of the emitted particles in this chapter: hadrons with up,down,strange constituent quarks

5.1 Strangeness production in hadronic interactions

particles with strange quarks: $K^+ = (u\bar{s}), \ K^- = (\bar{u}s), \ K^0 = (d\bar{s}), \ \bar{K}^0 = (\bar{d}s), \ \phi = (s\bar{s}),$ $\Lambda = (uds), \ \Sigma = (qqs), \ \Xi = (qss), \ \Omega^- = (sss)$

creation in collisions of hadrons:

example 1: $p + p \rightarrow p + K^+ + \Lambda$, $Q = m_\Lambda + m_{K+} - m_p \approx 670 \text{ MeV}$

example 2: $p + p \rightarrow p + p + \Lambda + \overline{\Lambda}$, $Q = 2m_{\Lambda} \approx 2230 \text{ MeV}$

Strangeness production in the QGP

 $Q_{
m QGP}pprox 2m_spprox 200\,
m MeV$

Q value in the QGP significantly lower than in hadronic interactions

this reflects the difference between the current quarks mass (QGP) and the constituent quark mass (chiral symmetry breaking)

Strangeness production in QGP

Expectation for strangeness production in heavy ion collisions where QGP is produced:

in QGP strangeness gets into equilibrium on a fast time scale

J. Rafelski, B. Müller, Phys. Rev. Lett. 48 (1982) 1066

there should be more strangeness in heavy ion collisions than in elementary collisions if a QGP is formed

enhanced production of strange hadrons one of the earliest predicted signature of QGP

ratio of strange quark to baryon number abundance in a QGP for various temperatures

Quark composition of the ideal QGP

P. Braun-Munzinger, J. Stachel. K. Reygers | QGP physics SS2023 | 5. Statistical Hadronization and Strangeness

The concept of hadro-chemical freeze-out

nuclear fireball evolves (as sketched in lecture 1)

- it cools and expands,
- when it hits Tc, it hadronizes,
- maybe cools and expands further
- and finally falls apart when mean free path large as compared to interparticle distance

"kinetic freeze-out": momentum distributions are frozen in
no more elastic scattering: Tkin

"chemical" or "hadro-chemical freeze-out": abundancies of hadrons are frozen in

- no more inelastic scattering: Tch

natural ordering: $T_c \ge T_{ch} \ge T_{kin}$

Thermal energy leads to population of hadronic states

assume phase space is filled thermally (Boltzmann) at hadronization:

abundance of hadron species $\,\propto m^{3/2} exp(-m/T)$

determined by temperature (and density) at time of production of hadrons i.e. hadronization

P. Braun-Munzinger, J. Stachel. K. Reygers | QGP physics SS2023 | 5. Statistical Hadronization and Strangeness

Fraction of valence strange quarks: A+A vs. e+e-, πp, pp

$$\lambda_s = rac{2\langle sar s
angle}{\langle uar u
angle + \langle dar d
angle}$$

ratio of newly created valence quark pairs before strong decays $(\rho, \Delta, ...)$

observation in elementary collisons: in addition to the exponentially falling trend with mass, hadrons with strange quarks show extra suppression quantified by "Wroblewski factor" λ_s (Acta Phys. Pol. B16 (1985) 379

in nucleus-nucleus collisions this suppression is reduced relative to e+e-, πp , and pp collisions

Strangeness enhancement in Pb-Pb relative to p-Pb coll.

Strangeness enhancement increases with valence s quark content (up to factor 17 for the Ω baryon)

Strangeness enhancement in Pb-Pb relative to pp and p-Pb at the LHC

note: enhancement reduced compared to SPS e.g. for Ω factor 4.5 vs 17

will see below: to coin what is happening in terms of 'enhancement' is misleading

identification via time-of-flight plus momentum measurement:

P. Braun-Munzinger, J. Stachel. K. Reygers | QGP physics SS2023 | 5. Statistical Hadronization and Strangeness

identification via specific energy loss:

example: ALICE TPC - 150 space points per track

P. Braun-Munzinger, J. Stachel. K. Reygers | QGP physics SS2023 | 5. Statistical Hadronization and Strangeness

Identification via invariant mass of decay products

$$M^{2} = \left[\begin{pmatrix} E_{1} \\ \vec{p}_{1} \end{pmatrix} + \begin{pmatrix} E_{2} \\ \vec{p}_{2} \end{pmatrix} \right]^{2} = (E_{1} + E_{2})^{2} - (\vec{p}_{1} + \vec{p}_{2})^{2}$$
$$= m_{1}^{2} + m_{2}^{2} + 2E_{1}E_{2} - 2\vec{p}_{1} \cdot \vec{p}_{2}$$
$$= m_{1}^{1} + m_{2}^{2} + 2E_{1}E_{2} - 2p_{1}p_{2}\cos\vartheta$$

electromagnetic decays:

 $\begin{array}{ll} \pi^0 \rightarrow \gamma \gamma & \mbox{m}_{\pi^0} = 0.135 \mbox{GeV}, \ \mbox{BR} = 0.988, \ \mbox{c}\tau = 25.1 \ \mbox{nm} \\ \eta \rightarrow \gamma \gamma & \mbox{m}_{\eta} = 0.548 \mbox{GeV}, \ \mbox{BR} = 0.393, \ \mbox{c}\tau = 0.2 \ \mbox{nm} \\ \end{array}$

happen practically in the interaction point/target

detect photons in calorimeter or via e⁺e⁻ from conversion in detector material

P. Braun-Munzinger, J. Stachel. K. Reygers | QGP physics SS2023 | 5. Statistical Hadronization and Strangeness

Identification via invariant mass of weak decay products

 $K_s^0 \to \pi^+ + \pi^-$ (B.R.68%) $c\tau = 2.68 \text{ cm}$ $\Lambda \to p + \pi^-$ (B.R.64%) $c\tau = 7.89 \text{ cm}$

works up to very high momentum!

look for secondary decay vertex of a neutral object a few 10 cm away from interaction point

Hadron production in central PbPb collisions at the CERN SPS

measure pt spectra and integrate/extrapolate over all values of pt from 0 to ∞ in order to obtain particle yield

between 5 different experiments a comprehensive data set for 158 A GeV PbPb collisions

Particle production in central AA collisions

P. Braun-Munzinger, J. Stachel. K. Reygers | QGP physics SS2023 | 5. Statistical Hadronization and Strangeness

5.2 Statistical model description of hadron yields

idea: freeze-out of the QGP creates an equilibrated hadron resonance gas (HRG)

the HRG then freezes out at a characteristic temperature T_{ch} which determines the yields of different particle species

what is the appropriate statistical ensemble for the theoretical treatment?

canonical ensemble:

N and *V* fixed, energy *E* of the system fluctuates

 $(E_s + E_b = E, T \text{ is given})$

when multiplicity is low, conservation laws must be implemented locally event-by-event (Hagedorn 1971)

Braun-Munzinger, Redlich, Stachel, nucl-th/030401

grand-canonical ensemble:

V fixed, energy E and particle number N fluctuate $(T, \mu \text{ given})$

when number of produced particles large, conservation of additive quantum numbers can be implemented on average (use of chemical potential)

Grand canonical ensemble: large volume limit of the canonical treatment

Canonical suppression factor *F*_s:

$$n_{K}^{C} = n_{K}^{GC} \cdot F_{S}$$
$$F_{S} = \frac{I_{K}(2n_{K}^{GC}V)}{I_{0}(2n_{K}^{GC}V)}$$

- *n_K*: density of particles with strangeness K = |S|, S =-1, -2, -3ddd
 - *I_n* : modified Bessel function of the first kind

already at moderately central PbPb collisions at SPS energy the grand canonical ansatz is justified

Grand canonical ensemble and application to data from high energy heavy ion collisions

partition function: $\ln Z_i = \frac{Vg_i}{2\pi^2} \int_0^\infty \pm p^2 dp \ln(1 \pm \exp(-(E_i - \mu_i)/T))$

particle densities: $n_i = N/V = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 dp}{\exp((E_i - \mu_i)/T) \pm 1}$

for every conserved quantum number there is a chemical potential:

 $\mu_i = \mu_B B_i + \mu_S S_i + \mu_{I_3} I_i^3$

but can use conservation laws to constrain V, μ_S, μ_{I_3}

baryon number:
$$V \sum_{i} n_i B_i = Z + N \longrightarrow V$$

strangeness: $V \sum_{i} n_i S_i = 0 \qquad \rightarrow \mu_S$

charge: $V \sum_{i} n_i I_i^3 = \frac{Z - N}{2} \longrightarrow \mu_{I_3}$

fit at each energy provides values for T and μ_b

only 2 free parameters left -

Comparison to experimental data

compute primary thermal occupation probability for each particle species

spectrum of hadrons involves all confirmed hadronic states as of PDG compilation

implement all strong decays according to PDG (example: for T=160 MeV, 80% of all pions come from strong decays)

compute for a grid of (T,µb) χ^2 between statistical ensemble calculation and data

minimize χ^2 to obtain for each beam energy and collision system best set (T,µ_b)

Hadron yields at the LHC compared to statistical model

data very well reproduced except 2.7 sigma deviation for protons - understood in the mean time S-matrix correction to take into account π -n interaction via

measured phase shifts \rightarrow perfect fit of protons

Andronic, Braun-Munzinger, Friman, Lo, Redlich, Stachel, arXiv:1808.03102

Hadron yields at the LHC – PbPb at 2.76 TeV/nucleon pair

P. Braun-Munzinger, J. Stachel. K. Reygers | QGP physics SS2023 | 5. Statistical Hadronization and Strangeness

Production of hadrons and (anti-)nuclei at LHC

1 free parameter: temperature T T = 156.5 \pm 1.5 MeV χ^2 = 16.9 for 19 dof

agreement over 9 orders of magnitude with QCD statistical operator prediction (- strong decays need to be added)

 even large very fragile hypernuclei follow the same systematics

Beam energy dependence of hadron yields from AGS to LHC

fits work equally well at lower beam energies following the obtained T and mb evolution, features of proton/pion, kaon/pion, deuteron/proton and Lambda/pion ratios reproduced in detail

P. Braun-Munzinger, J. Stachel. K. Reygers | QGP physics SS2023 | 5. Statistical Hadronization and Strangeness

Freeze-out points and the QCD phase diagram

- T_{ch} at LHC in exact agreement with the pseudo-critical temperature T_{pc} from IQCD

A. Bazavov et al. PLB 795 (2019) 15

S. Borsanyi et al. PRL 125 (2020) 052001

- why chemical freeze-out very close to T_{pc}?

close to T_{pc} rate for multi-particle reactions explodes

P. Braun-Munzinger, J. Stachel, C. Wetterich (2004)

P. Braun-Munzinger, A. Rustamov, J. Stachel arXiv:2211.08819

From pp to PbPb collisions: smooth evolution

universal hadronization can be described with few parameters in addition to T, $\mu B \rightarrow$ transition from canonical to grand-canonical thermodynamics J. Cleymans, P.M. Lo, K. Redlich, N. Sharma, PRC 103 (2021) 014904

Hadronization of jets in e⁺e⁻ collisions also shows statistical features

fit much worse than for heavy ion collision data strangeness not equilibrated but suppressed significantly

5.3. How is chemical equilibration achieved?

2-particle collisions not enough – takes about one order of magnitude too long

even when system is initialized in equilibrium at T = 170 MeV, it falls out of equilibrium quickly

simple example:

use a data driven estimate of rate of cooling near chemical freeze-out (can be explained later) $|\dot{T}/T| = \tau_T^{-1} = (13 \pm 1)\%/\text{fm}$ typical densities at $T_{ch} : \rho_{\pi} = 0.174/\text{fm}^3(\text{incl.res.}), \rho_K = 0.030/\text{fm}^3\rho_{\Omega} = 0.0003/\text{fm}^3$ to maintain equilibrium during 5 MeV temperature drop need a relative rate of change of densities of $|\frac{\bar{r}_{\Omega}}{n_{\Omega}} - \frac{\bar{r}_{K}}{n_{K}}| = \tau_{\Omega}^{-1} - \tau_{K}^{-1} = 1.10 - 0.55/\text{fm} = 0.55/\text{fm}$

so W density needs to change by 100 % in 1 fm/c typical reactions with large cross section (10 mb) and rel. velocities of 0.6 give

 $\begin{array}{ll} \Omega + \bar{K} \to \Xi + \pi & \to & \bar{r}_{\Omega}/n_{\Omega} = n_{\bar{K}} \langle v\sigma \rangle = 0.018/\mathrm{fm} \\ \pi + \pi \to K + \bar{K} & (\sigma = 3\mathrm{mb}) & \bar{r}_{K}/n_{K} = 0.18/\mathrm{fm} \end{array}$

much too slow to maintain equilibrium even over drop of T of 5 MeV! much harder to get into equilibrium!

A possible scenario for rapid equilibration

P. Braun-Munzinger, J. Stachel, C. Wetterich, Phys. Lett. B596 (2004) 61

near phase boundary multiparticle reactions become important dynamics associated with collective excitations (key word: critical opalescence at phase transition) propagation and scattering of these collective excitations expressed in form of multihadron scattering

will see: this drives the system into equilibrium very rapidly

Evaluation of multi-strange baryon yield as most challenging test case

consider situation at $T_{ch} = 176$ MeV first rate of change of density for nin ingoing and nout outgoing particles

 $r(n_{in}, n_{out}) = \bar{n}(\mathbf{T})^{n_{in}} |\mathcal{M}|^2 \phi$

with

 $\phi = \prod_{k=1}^{n_{out}} \left(\int \frac{d^3 p_k}{(2\pi)^3 (2E_k)} \right) (2\pi)^4 \delta^4 \left(\sum_i p_k^{\mu} \right)$ the phase space factor \Box depends on \sqrt{s} needs to be weighted by the probability f(s) that multi-particle scattering occurs at a given value of \sqrt{s} evaluate numerically in Monte-Carlo using thermal momentum distribution

typical reaction $\Omega + \bar{N} \rightarrow 2\pi + 3K$ assume cross section equal to the measured one for at proper energy above threshold, i.e. $\sqrt{s} = 3.25 \text{ GeV} \square 6.4 \text{ mb}$

compute matrix element and use for rate of $2\pi + 3K \rightarrow \bar{N} + \Omega$

 $r_{\Omega} = n_{\pi}^5 (n_K/n_{\pi})^3 |\mathcal{M}|^2 \phi$

Evaluation of multi-strange baryon yield

reaction $2\pi + 3K \rightarrow \overline{N} + \Omega$ leads to

 $r_{\Omega} = 0.00014 \text{fm}^{-4}$ or $r_{\Omega}/n_{\Omega} = 1/\tau_{\Omega} = 0.46/\text{fm}$

can achieve final density starting from only pions and kaons at t=0 in 2.2 fm/c

similarly one obtains and for $3\pi + 2K \rightarrow \Xi + \overline{N}$ or $\tau_{\Xi} = 0.71 \,\mathrm{fm}$ for $4\pi + K \rightarrow \Lambda + \overline{N}$ or $\tau_{\Lambda} = 0.66 \,\mathrm{fm}$

Why do all particle yields show one common freeze-out T?

density of particles varies rapidly (factor 2 within 8 MeV) with T near the phase transition due to increase in degrees of freedom.

also: system spends time at T_c -> volume has to triple (entropy cons.)

multi-particle collisions are strongly enhanced at high density and lead to chem. equilibrium very near to T_c independently of cross section

all particles can freeze out within narrow temperature interval

Lattice QCD by F. Karsch et al.

Density dependence of characteristic time for multi-strange baryon production

- near phase transition particle density varies rapidly with T (see previous slide)
 for SPS energies and above reaction such as 2[]+KKK→ Ω Nbar bring multi-strange baryons close to equilibrium rapidly
 in region around T_c equilibration time
- $\tau_{\Omega} \propto T^{-60}!$ increase np by 1/3: t = 0.2 fm/c (corresponds to increase in T by 8 MeV)
 - (corresponds to increase in T by 8 MeV) decrease np by 1/3: t = 27 fm/c
- R all particles freeze out within a very narrow temperature window due to the extreme temperature sensitivity of multi-particle reactions

In the early universe freeze-out happened after order of 0.1 s

