

Interaction of particles with matter - 2

Silvia Masciocchi, GSI and University of Heidelberg

> SS2017, Heidelberg May 3, 2017

Lectures

- Energy loss by ionization (by "heavy" particles)
- Interaction of electrons with matter:
 - Energy loss by ionization
 - Bremsstrahlung

- Cherenkov effect
- Transition radiation
- Interaction of photons
 - Photoelectric effect
 - Compton scattering
 - Pair production

Cherenkov effect

A charged particle with mass M and velocity $\beta = v/c$ travels in a medium with refractive index n:

$$n^2 = \varepsilon_1 = (c/c_m)^2$$

 ϵ_1 = real part of the medium dielectric constant c_m = speed of light in medium = c/n

If
$$v > c_m$$
, namely $\beta > \beta_{thr} = 1/n \rightarrow$
real photons are emitted:

- Photons are "soft"
 |p| ≈ |p'|
 - $\omega \ll \gamma M c^2$
- Characteristic emission angle

$$\cos \theta_{\rm c} = \frac{\omega}{{\rm k} \cdot {\rm v}} = \frac{1}{{\rm n}\,\beta}$$

Cherenkov 1934

Cherenkov angle

Cherenkov: first application

Threshold detector: use different materials (refractive indices) such that particles of different masses, at equal momentum p, produce Cherenkov radiation of not (pass the threshold or not):

Choose n_1 , n_2 such that for a given p ($\beta = p/E$):

$$\beta_{\pi} > \frac{1}{n_1} \qquad \beta_{\kappa}, \beta_{p} < \frac{1}{n_1}$$
$$\beta_{\pi}, \beta_{\kappa} > \frac{1}{n_2} \qquad \beta_{p} < \frac{1}{n_2}$$

Particle identification: light in C_1 and $C_2 \rightarrow pion$ light in C_1 and not in $C_2 \rightarrow kaon$ no light in both C_1 and $C_2 \rightarrow proton$

Cherenkov radiation: spectrum

Consider the spectrum of emitted photons per unit length versus:

Wavelength: short wavelengths dominate, (blue)

$$\frac{d^2 N}{d\lambda dx} = \frac{2\pi\alpha z^2}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2(\lambda)} \right) = \frac{2\pi\alpha z^2}{\lambda^2} \sin^2 \theta_C$$

e.g. integrate over the typical sensitivity range of a good/typical photomultiplier (300-600 nm):

$$\frac{dN}{dx} = \int_{-300 \text{ nm}}^{600 \text{ nm}} d\lambda \frac{d^2 N}{d\lambda dx} = 750 \quad z^2 \sin^2 \theta_C \text{ photons/cm}$$

• Energy

$$\frac{d^2 N}{dE dx} = \frac{z^2 \alpha}{\hbar c} \left(1 - \frac{1}{\beta^2 n^2(\lambda)} \right) = \frac{z^2 \alpha}{\hbar c} \sin^2 \theta_C$$

Cherenkov effect: typical numbers

• Number of photons per cm of radiator:

assume $n(\omega)$ constant (e.g. true for visible light produced in gases $300 < \lambda < 600$ nm)

	(n - 1)	$(\beta\gamma)_{thr}$	$\theta_c^\infty(deg)$	$N^\infty_\gamma(cm^{-1})$
H ₂	$0.14 \cdot 10^{-3}$	59.8	0.96	0.21
N_2	$0.3 \cdot 10^{-3}$	40.8	1.4	0.45
Freon	$13 \ 0.72 \cdot 10^{-3}$	26.3	2.2	1.1
H_2O	0.33	1.13	41.2	165
lucite	0.49	0.91	47.8	412

 Energy loss: the energy loss by Cherenkov radiation is negligible wrt the one by ionization!

 $\begin{array}{ll} \mbox{typical photon energy:} &\simeq 3 \ \mbox{eV} \\ \mbox{in water} & \left. \frac{dE}{d_x} \right|_{\rm cher} = 0.5 \ \mbox{keV/cm} = 0.5 \ \mbox{keV/g/cm}^2 \\ \mbox{cf. ionization} & \left. \frac{dE}{d_x} \right|_{\rm ion} \geq 2 \ \mbox{MeV/g/cm}^2 \\ \end{array}$

Cherenkov effect: momentum dependence

Asymptotic behavior of the Cherenkov angle and the number of produced photons, as a function of the particle momentum p (for $\beta \rightarrow 1$):

S.Masciocchi@gsi.de

Application: measurement of β

In a medium of known refractive index n, measure the Cherenkov angle and therefore determine the particle $\beta = p/E$ (\rightarrow identity)

RICH detectors

Principle: image the Cherenkov cone into a ring, of which measure the radius. Particle momentum provided by other detectors Components: radiator (+ mirror) + photon detector

The LHCb RICH-1 detector

Two radiators: aerogel + C_4F_{10} Spherical + flat mirrors Hybrid Photon Detectors

S.Masciocchi@gsi.de

Necessary radiator thickness

For a good measurement of the ring (and consequently of β), a sufficient number of photons must be produced and a sufficient number of photoelectrons must be detected!

 $n_{e} = n_{\gamma} \text{ (Cherenkov) x } \epsilon_{\text{light collection}} \text{ x } \eta_{\text{quantum efficiency}}$ $\epsilon_{\text{light collection}} \approx 0.8$ $\eta_{\text{quantum efficiency}} \approx 0.2$

Example: ask for $n_{a} \ge 4$ to reconstruct a good ring

The efficiency must be $\ge 90\%$ n_e follows a Poisson distribution: P(4)+P(5)+P(6)+... > 0.9 $\rightarrow < n_e > = 7$ \rightarrow need n_{γ} (Cherenkov) ~ 44 photons \rightarrow e.g. 0.4 m freon

Spherical mirror array: LHCb

S.Masciocchi@gsi.de

Transition radiation

A particle at high energy (= large γ) crossing the boundary between two different dielectrics, having different indices of refraction, can produce "transition radiation" \rightarrow can emit real photons

- Predicted by Ginzburg and Frank (1946)
- Observed (optically) by Goldsmith and Jelley (1959)
- Experimental confirmation with X-ray measurement (1970s)

Explanation: re-arrangement of electric field

Transition radiation: classical model

Simple classical model:

- electron moves in vacuum towards a conducting plate
- E-field described by method of mirror charges
- \rightarrow as generated by dipole:

$$\vec{p} = 2e\vec{a}$$
 $|\vec{E}_n| \propto \frac{\vec{p}}{(a^2 + \rho^2)^{\frac{3}{2}}}$

- Dipole moment changes in time \rightarrow induces the radiation of photons
- Radiated power: $\frac{dP}{d(\hbar \omega)} \propto \frac{\alpha \cdot E}{mc^2}$
 - ω -independent \rightarrow white spectrum
 - dP ~ γ (but check the relativistic generalization
 - dP ~ $\alpha \rightarrow$ one α per boundary

Transition radiation: full calculation

Full quantum mechanical calculation:

- Interference: coherent superposition of radiation from neighboring points in vicinity of the track
 - \rightarrow angular distribution strongly peaked forward
- Depth from boundary up to which contributions add coherently → formation length D
- Volume element producing coherent radiation V
- Photon energy: X-rays $E_{\gamma}^{max} \simeq \gamma \hbar \omega_{p}$

$$\theta \simeq \frac{1}{\gamma}$$
$$D \simeq \frac{\gamma \cdot C}{\omega_{p}}$$
$$V = \pi \rho_{max} D$$

Relevant parameter: plasma frequency ω_{p} : $\sqrt{\epsilon_{1}} = n(\omega) \simeq 1 - \frac{\omega_{p}^{2}}{\omega^{2}}$ with $\omega_{p} = \sqrt{\frac{4\pi\alpha n_{e}}{m_{e}c^{2}}} = 28.8\sqrt{\varrho \frac{Z}{A}} \text{ eV}$ Typical values: polyethylene CH₂ ω_{p} = 20 eV, p=1 g/cm³ \rightarrow D \approx 10 µm For d > D \rightarrow absorption effects important! Consider foils of thickness D! Per boundary: $\sim \alpha$ photons \rightarrow many boundaries !! O(100 foils) $\rightarrow <n_{\gamma} > \sim 1-2$

Transition radiation spectrum

X-ray photon energy spectra for a radiator consisting of 200 25 µm thick foils of Mylar and for a single surface

Principle of a transition radiation detector

Principle of a transition radiation detector

Choice of 1) radiator material and structure 2) photon detector

Maximize photon absorption in the detector

Minimize photon absorption in the radiator

S.Masciocchi@gsi.de

Principle of a transition radiation detector

Expected performance for polyethylene radiator foil stacks and various detector gases:

onset of TR production for electrons, muons, pions and kaons. Radiator of 100 foils, thickness d1, spacing d2

fraction of absorbed TR photons as a function of detector depth. For good absorption probability preferential use of Xe gas, typical dimension cm

S.Masciocchi@gsi.de

ALICE TRD

Demonstration of the onset of TR at $\beta \gamma \approx 500$ (X. Lu, Hd)

S.Masciocchi@gsi.de

ALICE TDR

Interaction of photons with matter

Characteristic of photons: can be removed from incoming beam of intensity "I", with one single interaction:

dI = - I μ dx μ (E, Z, ρ): absorption coefficient

Lambert-Beer law of attenuation: $I(x) = I_0 \exp(-\mu x)$

- Mean free path of photon in matter:
- To become independent from state (liquid, gaseous): mass absorption coefficient: $\tau = \frac{\mu}{\rho} = N_A \frac{\sigma}{A}$

Example: $E_v = 100 \text{ keV}$, Z=26 (iron), $\lambda = 3 \text{ g/cm}^2$ or 0.4 cm

U

$$\lambda = \frac{1}{n\sigma} = \frac{1}{\sigma}$$

Т

Interaction processes

The most important processes of interaction of photons with matter, in order of growing importance with increasing photon energy E, are:

- Photoelectric effect
- Compton scattering: incoherent scattering off an electron
- pair production: interaction in nuclear field

Other processes, not as important for energy loss:

- Rayleigh scattering: coherent $\gamma + A \rightarrow \gamma + A$: atom neither ionized nor excited
- Thomson scattering: elastic scattering $\gamma + e \rightarrow \gamma + e$
- Photo nuclear absorption: γ + nucleus \rightarrow (p or n) + nucleus
- Hadron pair production: $\gamma + A \rightarrow h^+ + h^- + A$

24

Absorption length

Particle Data Group, 2016

S.Masciocchi@gsi.de

Photoelectric effect

$$\gamma$$
 + atom \rightarrow atom⁺ + e⁻

$$E_e = hv - I_b$$

Where: $hv = E\gamma = photon energy$,

 I_{b} = binding energy of the electron (K, L, M absorption edges)

Binding energy depends strongly on $Z \rightarrow$ the cross section will depend strongly on Z: $I = \frac{7}{2}$

The de-excitation of the excited atom can happen via two main processes:

 Auger electrons: atom^{** +} → atom^{* +} + e⁻ Auger electrons deposit their energy locally due to their very small energy (<10 keV)

Fluorescence photons (X-rays) must interact via the photoelectric effect \rightarrow much longer range

The relative fluorescence yield increases with Z

$$w_{K} = P(fluor.) / [P(fluor.) + P(Auger)]$$

Auger electron emission

Photon total cross section

Compton scattering

Incoherent scattering of photon off an electron: $\gamma + e^- \rightarrow (\gamma)' + (e^-)'$

Energy of the outgoing photon:

$$E_{\gamma}' = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_e c^2} (1 - \cos \theta)}$$

Kinetic energy of the outgoing electron:

$$T_e = \frac{\frac{E_{\gamma}^2}{m_e c^2} (1 - \cos \theta)}{1 + \frac{E_{\gamma}}{m_e c^2} (1 - \cos \theta)}$$

Max energy transfer in back scattering:

$$\left(\frac{T_e}{E_{\gamma}}\right)_{\max} = \frac{E_{\gamma}}{m_e c^2} \frac{2}{1 + \frac{2E_{\gamma}}{m_e c^2}}$$
$$\Delta E = E_{\gamma} - T_{e,\max} = \frac{E_{\gamma}}{1 + \frac{2E_{\gamma}}{m_e c^2}} \to \frac{m_e c^2}{2}$$

Compton edge

If the scattered photon is not absorbed in the detector material, there will be a small amount of energy "missing" from the Full Energy Peak (FEP) \rightarrow Compton edge

FEP: photoelectric effect and Compton effect when the scattered photon is absorbed in the detector. Intensity depends on detector volume, width depends on detector resolution.

Compton effect: cross section

Klein-Nishina diagrams

Thomson cross section (ye \rightarrow ye): $\sigma_{Th} = \frac{8\pi}{3}r_e^2 = 0.66$ b

Integrating the differential cross section by Klein and Nishina:

Photon total cross section

Compton: angular distribution

$$\frac{\mathrm{d}\sigma_c}{\mathrm{d}\Omega} = \frac{r_e^2}{2} \frac{1}{(1 + \mathcal{E}(1 - \cos\theta))^2} \left[1 + \cos\theta + \frac{\mathcal{E}^2(1 - \cos\theta)^2}{1 + \mathcal{E}(1 - \cos\theta)} \right] \qquad \mathcal{E} = \frac{E_\gamma}{m_e c^2}$$

Klein-Nishina differential distribution

Photons with large energies peaked in forward direction

Pair production: Bethe-Heitler process

Interaction in the Coulomb field of the atomic nucleus (not possible in free space)

Angular distribution: the produced electrons are in a narrow forward cone, with opening angle of $\theta = m_e / E_v$

e

Pair production: Bethe-Heitler process

Cross section: raises above threshold, but eventually saturates at large E_v because of screening effects of the nuclear charge (Z = 82)Lead $E_v \gg m_e c^2$ $1 \, \mathrm{Mb}$ Cross section (barns/atom) $\sigma_{\text{Pair}} = 4 Z^2 \alpha r_e^2 (\frac{7}{9} \ln \frac{183}{7^{1/3}} - \frac{1}{54})$ $\sigma_{Rayleigh}$ 1 Me Pair 1 kb production κ_{nuc} $\approx 4 Z^2 \alpha r_e^2 (\frac{7}{9} \ln \frac{183}{7^{1/3}})$ σ_{g.d.r.} 1 b σ_{Compton} 10 mb 10 eV 1 keV 1 MeV 1 GeV 100 GeV

S.Masciocchi@gsi.de

Interaction of particles with matter, May 3, 2017

Compton scattering

Photon Energy

Pair production: Bethe-Heitler process

Pair production cross section

$$\sigma_{\text{Pair}} \approx \frac{7}{9} 4 \alpha r_e^2 Z^2 \ln \frac{183}{Z^{1/3}} = \frac{7}{9} \frac{A}{N_A} X_0$$

 X_0 : radiation length (in cm or g/cm²)

Absorption coefficient:

 $(\mu = n\sigma$ n=particle density)

$$\mu_{\text{Pair}} = \rho \cdot \frac{N_{\text{A}}}{A} \sigma_{\text{Pair}}$$
$$\approx \frac{7}{9} \frac{1}{X_0}$$

	$ ho~({ m g/cm^3})$	<i>X</i> ₀ (cm)
liq H_2	0.071	865
С	2.27	18.8
Fe	7.87	1.76
Pb	11.35	0.56
air	0.0012	30 420

Pair production: fractional e⁻,e⁺ energy

At ultra-high energies (TeV) \rightarrow Landau-Pomeranchuk-Migdal effect: quantum mechanical interference between amplitudes from different scattering centers. Relevant scale: formation length = length over which highly relativistic electron and photon split apart

Negative interference: reduction of cross section

37

Total photon cross section and absorption length

$$\sigma_{tot} = \sigma_{Ph} + \sigma_c + \sigma_p$$

$$\mu = \mu_{Ph} + \mu_c + \mu_p$$

$$\mu_i = n\sigma_i = \frac{N_A \rho}{A} \sigma_i$$

Figure 33.15: Photon total cross sections as a function of energy in carbon and lead, showing the contributions of different processes [51]:

- $\sigma_{p.e.}$ = Atomic photoelectric effect (electron ejection, photon absorption)
- $\sigma_{\text{Rayleigh}} = \text{Rayleigh}$ (coherent) scattering-atom neither ionized nor excited
- $\sigma_{\text{Compton}} =$ Incoherent scattering (Compton scattering off an electron)
 - $\tilde{\kappa}_{nuc}$ = Pair production, nuclear field
 - $\kappa_e =$ Pair production, electron field
 - $\sigma_{g.d.r.}$ = Photonuclear interactions, most notably the Giant Dipole Resonance [52].

In these interactions, the target nucleus is broken up.

Original figures through the courtesy of John H. Hubbell (NIST).

S.Masciocchi@gsi.de

Photon absorption length

1 MeV photon travels about 1 cm in Pb, about 5 cm in C

Contribution by pair production

Probability P that a photon interaction will result in conversion to an e⁺e⁻ pair

For increasing photon energy, pair production becomes dominant:

for Pb beyond 4 MeV for H beyond 70 MeV

We review the most important type of particle detectors in use in particle and nuclear physics:

- Gas detectors
- Semiconductor detectors
- Scintillators
- Calorimeters

Gas detectors

Secondary Ionization (due to δ-electrons)

Gas detectors

- Primary Ionization
- Secondary Ionization (due to δ-electrons)

Gas detectors

Modes of operation

depending on the strength of the electric field applied

W. Price, "Nuclear Radiation Detection", 1958

