





# Interaction of particles with matter - 1

Silvia Masciocchi, GSI and University of Heidelberg

> SS2017, Heidelberg April 27, 2017



Absolute basic principles:

• Particle must INTERACT with the material of the detector

Examples !

- It has to transfer energy / momentum in some way
- Knowing the interaction of the particle with the detector material in detail allows us to deduce extended, precise and quantitative information about the particle properties

# Particle detection happens via the energy the particle deposits in the material it traverses

#### Interactions with matter

Mechanisms through which a particle interacts with the material it traverses, in a detector:

#### • Charged particles:

- Ionization
- Excitation
- Bremsstrahlung
- Cherenkov radiation
- Transition radiation
- Photons:
  - Photo effect
  - Compton effect
  - Pair production
- Neutrinos: weak interaction

# Distinguish between energy loss via multiple interactions and total energy loss in a single interaction (e.g. pair production)



Hadrons: nuclear interactions

#### Interactions with matter - examples



#### Lectures

- Energy loss by ionization (by "heavy" particles)
- Interaction of electrons with matter:
  - Energy loss by ionization
  - Bremsstrahlung

- Interaction of photons
- Cherenkov effect
- Transition radiation







#### Interaction of charged particles

Charged particle X, with  $Mc^2 \gg m_e^2 c^2$  (electrons are discussed later) Dominant: Coulomb interaction between the particle X and the atom  $\rightarrow$ 2 electromagnetic processes:



2) inelastic collisions with the atomic electrons of the material atom + X  $\rightarrow$  atom<sup>+</sup> + e<sup>-</sup> + X ionization



## Energy loss by ionization dE/dx

- Charged particle: ze
- "heavy" particle:  $Mc^2 \gg m_e^2 c^2$  (electrons are discussed later)
- Energy high enough to "resolve" the inside of the atom: from the uncertainty principle

$$\lambda = \hbar / p$$
 e.g. 1 GeV/c  $\rightarrow$  1 fm

#### Interaction is dominated by elastic collisions with electrons:

- Classical derivation by N. Bohr (1913)
- Quantum mechanical derivation by
   H. Bethe (1930) and F. Bloch (1933)



#### dE/dx: classical derivation by Bohr (1913)

- Particle with charge ze moves with velocity v through a medium with electron density n
- Electrons are considered free and initially at rest



because of symmetry

• Momentum transfer to a single electron, transverse distance b

$$\Delta p_{\perp} = \int F_{\perp} dt = \int F_{\perp} \frac{dt}{dx} dx = \int F_{\perp} \frac{dx}{v} \qquad \qquad \Delta p_{\parallel} : \text{ averages to zero}$$
$$= \int_{-\infty}^{\infty} \frac{ze^2}{(x^2 + b^2)} \cdot \frac{b}{\sqrt{x^2 + b^2}} \cdot \frac{1}{v} dx = \frac{ze^2b}{v} \left[\frac{x}{b^2\sqrt{x^2 + b^2}}\right]_{-\infty}^{\infty} = \frac{2ze^2}{bv}$$

• Energy transfer to a single electron, at transverse distance b

$$\Delta E(b) = \frac{\Delta p^2}{2m_e}$$

#### dE/dx: classical derivation by Bohr (1913)

 To integrate over electrons present in the medium, consider a cylindrical barrel with N<sub>a</sub> electrons:

 $N_e = n (2\pi b) db dx$ 



 Energy loss per path length dx for distance between b and b+db in medium with electron density n:

$$-dE(b) = \frac{\Delta p^2}{2m_{\rm e}} \cdot 2\pi nb \, db \, dx = \frac{4z^2 e^4}{2b^2 v^2 m_{\rm e}} \cdot 2\pi nb \, db \, dx = \frac{4\pi \, n \, z^2 e^4}{m_{\rm e} v^2} \frac{db}{b} dx$$

• Diverges for  $b \rightarrow 0$ . Integrate over relevant range  $b_{min} - b_{max}$ :

$$-\frac{dE}{dx} = \frac{4\pi n \, z^2 e^4}{m_{\rm e} v^2} \cdot \int_{b_{\rm min}}^{b_{\rm max}} \frac{db}{b} = \frac{4\pi n \, z^2 e^4}{m_{\rm e} v^2} \ln \frac{b_{\rm max}}{b_{\rm min}}$$

#### dE/dx: classical derivation by Bohr (1913)

Determine the relevant range:

b<sub>min</sub> > λ: uncertainty principle → impact parameters below the electron de Broglie wavelength are not relevant:

$$b_{\min} = \lambda_{e} = \frac{h}{p} = \frac{2\pi\hbar}{\gamma m_{e}v}$$

 b<sub>max</sub>: interaction time must be shorter than "period" of the electron to guarantee relevant energy transfer:

$$b_{
m max} = rac{\gamma v}{\langle 
u_{
m e} 
angle} \,; \; \left[ \begin{array}{c} \gamma = rac{1}{\sqrt{1 - eta^2}} \end{array} 
ight]$$

• After integration over b:

$$-\frac{dE}{dx} = \frac{4\pi z^2 e^4}{m_{\rm e} c^2 \beta^2} n \cdot \ln \frac{m_{\rm e} c^2 \beta^2 \gamma^2}{2\pi \hbar \langle \nu_{\rm e} \rangle}$$

### **Bethe-Bloch equation**

Considering quantum mechanical effects:

$$-\left\langle \frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2}\ln\frac{2m_e c^2 \beta^2 \gamma^2 T_{\max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right] \left[\cdot \rho\right]$$

$$K = 4\pi N_A r_e^2 m_e c^2 = 0.307 \text{ MeV } g^{-1} \text{ cm}^2$$

 $T_{max} = 2m_e c^2 \beta^2 \gamma^2 / (1 + 2\gamma m_e / M + (m_e / M)^2)$ [Max. energy transfer in single collision]

- z : Charge of incident particle
- M : Mass of incident particle
- Z : Charge number of medium
- A : Atomic mass of medium
- I : Mean excitation energy of medium
- δ : Density correction [transv. extension of electric field]

 $N_A = 6.022 \cdot 10^{23}$ [Avogardo's number]

- $r_e = e^2/4\pi\epsilon_0 m_e c^2 = 2.8 \text{ fm}$ [Classical electron radius]
- me = 511 keV [Electron mass]

 $\beta = v/C$ [Velocity]

 $\gamma = (1 - \beta^2)^{-2}$ [Lorentz factor]

Validity:

```
\begin{array}{l} .05 < \beta \gamma < 500 \\ M > m_{\mu} \end{array}
```

density

#### **Bethe-Bloch equation**

Considering quantum mechanical effects:

$$-\left\langle \frac{dE}{dx} \right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[ \frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$
[\cdot \rho]

I = ħ <v> = effective ionization potential
 Or mean excitation energy of the medium
 <v> = average revolution frequency of electron

 $T_{max} \approx 2 m_e c^2 \beta^2 \gamma^2$  maximum energy transfer in a single collision, for M  $\gg m_e$ 

#### dE/dx of pions in copper







#### Small βγ

- quick fall of dE/dx as  $\beta^{-2}$  (Bohr): kinematic factor from  $\Delta p_{\perp} = \int F_{\perp} dt = \int F_{\perp} \frac{dx}{v}$
- Precisely it is  $\beta^{-5/3}$ : slower particles experience the electric field for a longer time  $\rightarrow$  stronger energy loss!
- Shell corrections: particle velocity can get close to the electron orbital velocity (βc~v<sub>e</sub>):
  - Assumption of electron to be at rest is no longer valid
  - Capture processes become possible



#### Large <sub>βγ</sub>

 Relativistic rise ~ In β<sup>2</sup>γ<sup>2</sup>
 The transverse electric field
 increases due to Lorentz
 transformation → increase of
 contribution from larger b



left: for small  $\gamma$ ,

right: for large  $\gamma$ 

Density correction must be considered: Fermi plateau —



#### Large $\beta\gamma$ : density correction –

- Real media are polarized → effective shielding of electric field far from particle path → effectively reduces the long range contribution to relativistic rise
- High energy limit:

$$\frac{\delta}{2} \to \ln \frac{\hbar \omega_p}{I} + \ln \beta \gamma - \frac{1}{2}$$

with the plasma energy:

 $\hbar\omega_p = \sqrt{4\pi n r_e^3} m_e \frac{c^2}{\alpha}$ effectively dE/dx grows like ln( $\beta\gamma$ )

- 50.0  $dE/dx \propto \beta^{-5/3}$  $\pi^{\pm}$  on Cu  $dE/dx \propto \beta^{-2}$ = 322 eV20.0 *dE/ dx* (MeV g<sup>-1</sup>cm<sup>2</sup>) Radiative effectss 10.0 become important Approx  $T_{max}$ 5.0 dE/dx without  $\delta$  $-100 \times$ Mininfumm shell -> ionization correct. 2.0  $T_{\rm cut} = 0.5 \, {\rm MeV}$ 1.0 Complete dE/dx0.5 1.0 1000 10000 0.1 10 100  $\beta \gamma = p/Mc$
- Plasma energy  $\propto \sqrt{n} \rightarrow$  correction much larger for liquids and solids! Logarithmic rise ~20% in liquids and solids, ~50% in gases

#### dE/dx

Particle Data Group: pdg.lbl.gov/2016/reviews/rp p2016-rev-passageparticles-matter.pdf

Different detector materials

 $\frac{dE}{dx} \approx \frac{Z}{A}$ (remember density!)

 $\begin{array}{l} d E/dx \ depends \ on \\ \beta \gamma = p/(Mc) \\ \rightarrow \ at \ a \ given \ p, \ d E/dx \ is \\ different \ for \ particles \ with \\ different \ mass \ M \end{array}$ 





#### dE/dx used in practice the ALICE Time Projection Chamber



#### ALICE: A Large Ion Collider Experiment









#### ALICE TPC







GSI

#### ALICE TPC



#### Measuring the heaviest anti-particles



## Range of particles

Integrate over (changing!!) energy loss from initial energy E to 0, to calculate the range:

$$R = \int_{E}^{0} \frac{\mathrm{d}E}{\mathrm{d}E/\mathrm{d}x}$$

Here: Range of heavy charged particles in liquid (bubble chamber) hydrogen, helium gas, carbon, iron, and lead. For example:

 For a K<sup>+</sup> whose momentum is 700 MeV/c, βγ = 1.42. For lead we read R/M ≈ 396, and so the range is 195 g cm<sup>-2</sup> (17 cm).



## **Range of particles**

Integrate over (changing!!) energy loss from initial energy E to 0, to calculate the range:

$$R = \int_{E}^{0} \frac{\mathrm{d}E}{\mathrm{d}E/\mathrm{d}x}$$



Mean range and energy loss due to ionization in lead, copper, aluminum and carbon



#### Particles stopped in medium



Energy loss curve vs depth showing Bragg peak

S.Masciocchi@gsi.de

Possibility to deposit a rather precise dose at a well defined depth (body), by variation of the beam energy

Initially with protons, later also with heavier ions such as <sup>12</sup>C.

Precise 3D irradiation profile, also with suitably shaped absorbers (custom made for patient).

High precision beam scanning.

Tumor treatment at HIT (Heidelberg Ion-Beam Therapy center) in collaboration between DKFZ and GSI



#### Heidelberg Ion-beam Therapy Center (HIT)





#### Delta electrons

Electrons liberated by ionization can have large energies. Above a certain threshold (e.g.  $T_{cut}$ ) they are called  $\delta$  electrons.

Early observation in emulsions.

$$T_{e} = 2m_{e} \frac{\vec{p}_{i}^{2} \cos^{2} \theta}{(E_{i} + m_{e})^{2} - \vec{p}_{i}^{2} \cos^{2} \theta}$$

$$\Rightarrow T_{e}^{max} = \frac{2m_{e}\vec{p}_{i}^{2}}{(E_{i} + m_{e})^{2} - \vec{p}_{i}^{2}}$$

$$\cong \frac{2m_{e}c^{2}\beta^{2}\gamma^{2}}{1 + 2\frac{m_{e}\gamma}{M} + \left(\frac{m_{e}}{M}\right)^{2}} \quad \text{for}|\vec{p}_{i}| \gg M, m_{e}$$

$$m_{e}, T_{e}$$

$$m_{e}, T_{e}$$

$$m_{e}, T_{e}$$

## Massive highly relativistic particle can transfer practically all its energy to a single electron!

Probability distribution for energy transfer to a single electron:

$$\frac{d^2 W}{dx \ dE} = 2m_e c^2 \pi r_e^2 \frac{z^2}{\beta^2} \cdot \frac{Z}{A} N_A \cdot \rho \cdot \frac{1}{E^2}$$

#### Delta electrons

Picture from CERN 2-meter hydrogen bubble chamber exposed to a beam of negative kaons K<sup>-</sup>, with energy 4.2 GeV. This piece corresponds to about 70 cm in the bubble chamber.

The 12 parallel lines are trails of bubbles – initiated by the ionization of hydrogen by the beam particles, which enter at the bottom of the picture.



#### **Delta electrons**



Cloud chamber

Limitation to the measurement of the incoming particle: most often the  $\delta$  electron is NOT detected as part of the ionization trail

- $\rightarrow$  broadening of track
- $\rightarrow$  broadening of energy loss distribution



## dE/dx fluctuations

The Bethe-Bloch formula describes the MEAN energy loss
 The energy loss is measured in a detector of finite thickness Δx with



#### dE/dx Landau distribution



 $\xi$  is a material constant

more precise: Allison & Cobb (using measurements and numerical solution) Ann. Rev. Nuclear Sci. 30 (1980) 253



## **Straggling functions**

Energy loss distribution normalized to thickness x For increasing x:

- Most probable value  $\Delta p/x$  shifts to larger values
- Relative width shrinks
- Asymmetry of distribution decreases



Figure 33.8: Straggling functions in silicon for 500 MeV pions, normalized to unity at the most probable value  $\delta_p/x$ . The width w is the full width at half maximum.

## Multiple (Coulomb) scattering

Incident particle can also scatter in the Coulomb field of the NUCLEUS ! Deflection of trajectory will be more significant because of the factor Z !





after k collisions

- $\langle \theta_k^2 \rangle = \sum_{m=1}^k \theta_m^2 = k \langle \theta^2 \rangle$
- Single collision (thin absorber): Rutherford scattering  $d\sigma/d\Omega \propto \sin^{-4}\theta/2$
- Few collisions: difficult problem
- Many (>20) collisions: statistical treatment "Molière theory"

#### Multiple (Coulomb) scattering: Molière theory

Obtain the mean deflection angle in a plane by averaging over many collisions and integrating over b:

$$\sqrt{\langle \theta^2(x) \rangle} = \theta_{\text{rms}}^{\text{plane}} = \frac{13.6 \text{ MeV}}{\beta pc} z \sqrt{\frac{x}{X_0}} (1 + 0.038 \ln \frac{x}{X_0})$$
  
• Material constant X<sub>0</sub>: radiation length  
•  $\propto \sqrt{x} \rightarrow \text{ use thin detectors}$   
•  $\propto 1/\sqrt{X_0} \rightarrow \text{ use light detectors}$   
•  $\propto 1/\beta p \rightarrow \text{ serious problem at low momenta}$ 

In 3 dimensions:  $\theta_{\rm rms}^{\rm space} = \sqrt{2} \, \theta_{\rm rms}^{\rm plane} \qquad 13.6 \rightarrow 19.2$ 

# Multiple scattering limits the momentum and tracking resolution, particularly at low momenta!

## Ionization yield

Mean number of electron-ion pairs produced along the track of the ionizing particle:

- Total ionization = primary ionization + secondary ionization due to energetic primary electrons  $n_t = n_p + n_s$
- Consider also the energy loss by excitation (smaller)
- $\rightarrow$  mean energy W to produce an electron-ion pair:  $n_t = \frac{\Delta E}{W}$

W > ionization potential  $I_0$  since:

- Also ionization of inner shells
- Excitation that may not lead to ionization
   n<sub>t</sub> ≈ 2-6 n<sub>p</sub>



## Ionization yield

|                | typical values |             |                 |                    |
|----------------|----------------|-------------|-----------------|--------------------|
|                | $I_0$ (eV)     | W (eV)      | $n_p (cm^{-1})$ | $n_t \; (cm^{-1})$ |
| H <sub>2</sub> | 15.4           | 37          | 5.2             | 9.2                |
| $N_2$          | 15.5           | 35          | 10              | 56                 |
| 02             | 12.2           | 31          | 22              | 73                 |
| Ne             | 21.6           | 36          | 12              | 39                 |
| Ar             | 15.8           | 26          | 29              | 94                 |
| Kr             | 14.0           | 24          | 22              | 192                |
| Xe             | 12.1           | 22          | 44              | 307                |
| $CO_2$         | 13.7           | 33          | 34              | 91                 |
| $CH_4$         | 13.1           | 28          | 16              | 53                 |
|                |                | in gases    | diff. due to    | diff. due to       |
|                |                | pprox 30 eV | $\rho$ and Z    | electronic struct. |
|                |                |             |                 |                    |

In comparison, in semiconductors: W = 3.6 eV in Si, 2.85 eV in Ge Additional factor 103 due to density  $\rightarrow$  many more electron-ion pairs!!



#### Streamer chamber image



Interaction of particles with matter, April 27, 2017

GSI

#### Interaction of electrons with matter

#### Energy loss by ionization

Bethe-Bloch equation must be modified to account for:

- Small mass of electron  $\rightarrow$  deflections become more important
- Incident and target electron have the same mass  $m_e (T_{max} = T/2)$
- Quantum mechanics: after the scattering, the incoming electron and the one from ionization are indistinguishable

$$-\left\langle \frac{dE}{dx} \right\rangle_{\rm el.} = K \frac{Z}{A} \frac{1}{\beta^2} \left[ \ln \frac{m_e \beta^2 c^2 \gamma^2 T}{2I^2} + F(\gamma) \right]$$

Energy loss for electrons and positrons is DIFFERENT:

- positron is not indistinguishable from electron in atom
- Low energy positrons have larger energy loss because of annihilation
- At same  $\beta$ , the difference is within 10%

#### Bremsstrahlung

Acceleration of charged particles in the Coulomb field of the nucleus:



Interaction of particles with matter, April 27, 2017

#### Bremsstrahlung: radiation length

$$-\frac{dE}{dx} = \frac{E}{X_0} \longrightarrow E(x) = E_0 \exp(-\frac{x}{X_0})$$

 $X_0$ : distance after which the energy of the electron is reduced to  $E_0/e$ 

For materials which are mixtures of more components:

$$\frac{1}{X_0} = \sum_i \frac{w_i}{X_{0i}}$$
 with weight fraction of substance i



#### Overview: energy loss by electrons



## Critical energy



Example: Cu Ec ≈ 610/30 MeV ≈ 20 MeV

#### Bremsstrahlung: energy spectrum

Normalized bremsstrahlung cross section  $yd\sigma/dy$  as a function of the fractional photon energy y=k/E



Cross section suppressed at low y: for small photon energies, successive radiations interfere (Landau-Pomeranchuk-Migdal effect) Stronger suppression for larger electron energy E

#### **Multiple scattering**

Difference between heavy particles and electrons:

- Heavy particle: the track is more or less straight
- Electron: can be scattered to large angles!



Transverse deflection of an electron of energy  $E=E_c$ , after traversing a distance  $X_0$  (= one radiation length):

Molière radius:





#### **Bethe-Bloch curve for muons**



#### Lectures

- Energy loss by ionization (by "heavy" particles)
- Interaction of electrons with matter:
  - Energy loss by ionization
  - Bremsstrahlung

- Interaction of photons
- Cherenkov effect
- Transition radiation





