





# Hadronic calorimeters

Silvia Masciocchi, GSI and University of Heidelberg

> SS2017, Heidelberg July 12, 2017



Experimental technique in nuclear and particle physics in which the detection of a particle and the measurement of its properties is based on ABSORPTION in the detector volume (partial or total)

This is a DESTRUCTIVE process:

The particle's energy is converted in a detectable signal until the particle is absorbed

Another note: calorimetry is addressed also to neutral particle (not only charged one, see magnetic spectrometer)



# **Electromagnetic calorimeters - reminder**

- Electrons, positrons, photons
- E > E<sub>c</sub>
  - Bremsstrahlung
  - Pair production

S.Masciocchi@gsi.de

- E < E<sub>c</sub>
  - Electrons, positrons stopped within X<sub>0</sub>
  - Photons need another 7-9 X<sub>0</sub>

Longitudinal containment (95%):  $t_{max}$  + 0.08 Z + 9.6 X<sub>0</sub> Transverse containment (95%): 2 x Moliere radius

Energy leakage: mostly by soft photons escaping the calorimeter at the sides (later leakage) or at the back (rear leakage)



#### Showers: em and hadronic



Fig. 8.16. Monte Carlo simulations of the different development of hadronic and electromagnetic cascades in the Earth's atmosphere, induced by 250 GeV protons and photons [51].

#### Hadronic calorimeters - outline

#### Hadronic showers

- Hadron interaction with matter
- Shower development (longitudinal and lateral)

#### • Hadronic calorimeters

- Sampling calorimeters
- Compensation
- Particle identification
- ATLAS hadronic calorimeters



#### Interaction of hadrons with matter

As reference, consider the interaction of protons (with  $E \ge 1$  GeV) with a nucleon (e.g. another p) or a nucleus:



# Interaction of hadrons with matter



| $\sqrt{s}$ (GeV) | $\sigma_{tot}$ for pp (mb) |
|------------------|----------------------------|
| 5                | 40                         |
| 100              | 50                         |
| 10000            | 100                        |

- Elastic cross section ~ 10 mb
- At high energy there is also a diffractive contribution (similar to elastic)
- Majority of  $\sigma_{tot}$  is due to the inelastic component  $\sigma_{inel}$
- Proton-nucleus:  $\sigma_{tot} (pA) \simeq \sigma_{tot} (pp) \cdot A^{2/3}$

# Hadronic interaction length

Average nuclear interaction length:  

$$\lambda_{W} = \frac{A}{N_{A}\rho \sigma_{tot}}$$
For inelastic processes  $\rightarrow$  absorption:  

$$\lambda_{A} = \frac{A}{N_{A}\rho \sigma_{inel}}$$

$$N(x) = N_{0} \exp\left(-\frac{x}{\lambda_{A}}\right)$$

$$\lambda_{A} \simeq 35 \frac{g}{cm^{2}} \cdot A^{\frac{1}{3}} \quad \text{for } Z \ge 15 \text{ and } \sqrt{s} \simeq 1-100 \text{ GeV}$$

$$\frac{C \quad Ar \ (lq) \quad Fe \quad U \quad scint.}{\lambda_{A} \ (cm) \quad 38.8 \quad 85.7 \quad 16.8 \quad 11.0 \quad 79.5} \qquad \qquad \lambda_{A} \gg X_{0} \text{ !!}$$

$$\rightarrow \text{hadronic calorimeters are larger} (\text{"thicker") than electromagnetic ones}$$

For 95% containment: Typical longitudinal size: 9  $\lambda_A$ Typical transverse size: 1  $\lambda_A$ 

# Hadronic shower

- p + nucleus  $\rightarrow \pi^+ + \pi^- + \pi^0 \dots + nucleus^*$ 
  - L nucleus 1 + n, p, α
  - ⊾ nucleus 2 + 5 p,n
  - ⊾ fission
- Secondary particles undergo further inelastic collisions with similar cross sections, until they fall below the pion production threshold
- Sequential decays:
  - $\pi^0 \rightarrow \gamma \gamma \rightarrow electromagnetic shower$
  - Fission fragments  $\rightarrow \beta$ -decay,  $\gamma$ -decay
  - Nuclear spallation: individual nucleons knocked-out of nucleus, de-excitation
  - Neutron capture  $\rightarrow$  nucleus<sup>\*</sup>  $\rightarrow$  fission (U)

At every "step" about 1/3 of deposited energy goes into em shower

- Mean number of secondary particles
   ∝ In E. Typical transverse momentum <p<sub>1</sub>> ~ 350 MeV/c
- Mean inelasticity (fraction of E in secondary particles) ≈ 50%

Extremely rough analytic description (**fluctuations are huge**): Similarly to em showers, but important differences!!! Variable: t =  $x/\lambda_A$  depth in units of interaction length

E<sub>thr</sub> = 290 MeV (diff!)



Compared to em shower:

- Number of particles in hadronic shower lower by a factor E<sub>thr</sub>/E<sub>c</sub>
- Intrinsic resolution worse by factor  $\sqrt{E_{thr}}/E_{c}$

10

Significant variations and fluctuations of the energy sharing!!

- Part of energy is invisible
   Neutron capture leads to fission → release of binding energy
- Variation in SPATIAL distribution of energy deposition ( $\pi^{\pm} \leftrightarrow \pi^{0}$ )
- Electromagnetic fraction grows with E:  $f_{em} \simeq f_{\pi 0}$  $\propto \ln[E(GeV)]$
- Energetic hadrons contribute to electromagnetic fraction by e.g. π + p → π<sup>0</sup> + n, but very rarely the opposite happens (a 1 GeV π<sup>0</sup> travels 0.2 µm before it decays)
- Below pion production threshold, mainly dE/dx by ionization



Monte-Carlo simulated air showers





12

Deposition of energy:

- Electromagnetic fraction (e,  $\pi^0$ ,  $\eta^0$ ) ~ 30% however  $\pi^0$  production is subject to large fluctuations!
- Ionization energy by charged hadrons (p,π,K) up to 40%
- Invisible fraction of energy
  - Hadrons break up nuclear bonds
    - $\rightarrow$  nuclear binding energy
    - $\rightarrow$  short-range nuclear fragments mostly absorbed before detector layers
  - Long-lived or stable neutral particles escape: neutrons, K<sup>0</sup>, neutrinos
  - Muons created as decay products of pions and kaons deposit very little part of their energy

#### Because of the invisible energy fraction and the large fluctuations, the energy resolution is significantly worse compared to the em case

 $\sim 30 - 40\%$ 

Shower simulations via intra- and inter-nuclear cascade models (e.g. GEISHA, CALOR, etc)

Common features, but significant variations! Need to tune to measured data



# Longitudinal shower development

- Strong peak near hadronic interaction length
- Followed by exponential decrease
- Shower depth:

 $t_{max} \approx 0.2 \text{ In E(GeV)} + 0.7$ 95% of energy in  $L_{95} = t_{max} + \lambda_{att}$ where  $\lambda_{att} \approx E^{0.3}$  (E in GeV,  $\lambda_{att}$  in units of  $\lambda_A$ )

Example: 350 GeV  $\pi^{\pm}$   $t_{max} = 1.9$   $L_{95} = 1.9 \pm 5.8$ Need about 8  $\lambda_A$  to contain 95% of energy Need about 11  $\lambda_A$  to contain 99% of energy



# Longitudinal shower development

Rather sharp peak close to  $\lambda_A$ 

Pions in tungsten:

Different definitions:

- length of hadron cascade ≡ one particle or less left
- 95% of energy
- Center of gravity



#### Lateral shower development

- Typical transverse momentum for secondary hadrons  $< p_{T} > ~ 350$  MeV/c
- Lateral extent at shower maximum  $R_{95} \simeq \lambda_A$  (sizably larger than em!!)
- Relatively well defined core with R ≃ R<sub>M</sub> (electromagnetic component) + exponential decay (hadronic component with large transverse momentum transfers in nuclear interactions)





- -

#### Hadronic calorimeters



Hadronic calorimeters, July 12, 2017

Homogeneous calorimeter that could measure entire visible energy loss generally would be too large and expensive to realize. In all cases fluctuations of invisible component make this expense not worth.

→ most common: **sampling calorimeters!** 

- Alternating layers of passive absorber (Fe, Pb, U) + sampling elements (scintillator, liquid Ar or Xe, MPWCs, layers of proportional tubes, streamer tubes, Geiger-Mueller tubes, ..)
- Also spaghetti or shish kebab calorimeter: absorber with scintillating fibers embedded



## Hadronic calorimeters

Frequently electron and hadron calorimeters are integrated in a single detector. Here: iron-scintillator calorimeter with separate wavelength-shifter readout for electrons and for hadrons (two components can be separated)



# **Energy resolution**

- Intrinsic contributions
  - Leakage and its fluctuations
  - Fluctuations of electromagnetic portion
  - Heavily ionizing particles with  $dE/dx \gg (dE/dx)_{min.ion.} \rightarrow saturation$

all scale like  $1/\sqrt{E}$  as statistical processes

- Sampling fluctuations
  - Dominate in em calorimeter, are nearly completely negligible in hadronic ones: d<sub>abs</sub> = thickness of one absorber layer

$$\sigma_{\rm sample}/{
m S}~\propto~\sqrt{{
m d}_{\rm abs}/{
m E}}$$

- Other contributions:
  - Noise:  $\sigma_E / E = C / E$
  - Inhomogeneities:  $\sigma_{E}/E = constant$

Add in quadrature:

$$\frac{\sigma_{\mathsf{E}}}{\mathsf{E}} = \frac{\mathsf{A}}{\sqrt{\mathsf{E}}} \oplus \mathsf{B} \oplus \frac{\mathsf{C}}{\mathsf{E}}$$

A: 0.5 – 1.0 (record 0.35) B: 0.03 – 0.05 C: 0.01 – 0.02

Hadronic calorimeters, July 12, 2017

# Quality of a calorimeter

... is based on the following criteria:

Limitations imposed by the complicated structure of the hadronic shower, with its very large fluctuations

• Linear response: signal  $\propto E$ 

often linearity is not over large range

• Energy resolution  $\frac{\sigma_{E}}{E} = \frac{\text{const}}{\sqrt{E}}$ 

fluctuations make things deviate from optimal resolution

• Signal independent from particle species

response to electromagnetic and hadronic components can be very different relative to each other  $\rightarrow$  e/h issue

22

# e/h (or e/ $\pi$ ) issue $\rightarrow$ compensation

Generally the response to electromagnetic and hadronic energy deposition is different!

Usually the electromagnetic component has higher weight, since the hadronic shower has an invisible component  $\rightarrow e / h > 1 \dots$  (\*)

This is a serious limitation to the measurement of the total energy flow in an event!

-rafio

е / п

**Optimization:** 

"Compensation"

"Overcompensation" (e / h < 1)

(\*) ratio of energy deposits of an electroninitiated shower compared to that of a hadron-initiated shower for the same initial energy of electrons and hadrons



#### How to get from e/h > 1 to $e/h \approx 1$ ?

It is important to understand the contributions to the signal: only that allows to reach an optimization

#### Let's consider an incident particle i with energy E(i):

Visible energy:  $E_v(i) = E_{dep}(i) - E_{nv}(i)$ Define visible fraction:

$$\mathsf{a}(\mathsf{i}) = \frac{\mathsf{E}_{\mathsf{v}}(\mathsf{i})}{\mathsf{E}_{\mathsf{v}}(\mathsf{i}) + \mathsf{E}_{\mathsf{nv}}(\mathsf{i})}$$



nv = invisible

Compare various signals to those of a minimum ionizing particle:

Electron

Hadronic shower component

$$\frac{e}{\min} = \frac{a(e)}{a(\min)}$$
$$\frac{h_i}{\min} = \frac{a(h_i)}{a(\min)}$$

Electron signal  

$$S(e) = k \cdot E \cdot \frac{e}{mip}$$
  
Hadronic signal  
 $S(h_i) = k \cdot E \cdot [f_{em} \frac{e}{mip} + (1-f_{em}) \frac{h_i}{mip}]$ 

#### Constant k is determined by calibration $f_{em}$ : fraction of primary energy of a hadron deposited in form of electromagnetic energy $\approx \ln (E / 1 \text{ GeV})$



In case:

$$\begin{array}{l} \displaystyle \frac{e}{mip} \neq \frac{h_i}{mip} & \rightarrow & \displaystyle \frac{S(h_i)}{E} \neq \mbox{ constant!} \\ \\ \displaystyle \frac{S(e)}{S(h_i)} = \displaystyle \frac{e/mip}{f_{em}(e/mip) \ + \ (1-f_{em})(h_i/mip)} \end{array}$$

So, in case

- Worsening of resolution
- S/E not constant!



Hadronic shower component has various contributions:

$$\frac{h_i}{mip} = f_{ion} \frac{ion}{mip} + f_n \frac{n}{mip} + f_y \frac{y}{mip} + f_b \frac{b}{mip}$$

- $\begin{array}{ll} f_{ion} & \mbox{fraction of hadronic component in charged particles, ionizing: $\pi^{\pm}$, $p$, $\mu^{\pm}$} \\ f_{n} & \mbox{fraction of neutrons} \end{array}$
- $f_{\gamma}$  fraction of photons
- $f_{b}$  fraction of nuclear binding energy

#### Example: 5 GeV proton

|                  | Fe  | U   |                                                         |
|------------------|-----|-----|---------------------------------------------------------|
| f <sub>ion</sub> | 57% | 38% | $\leftarrow$ dominated by spallation products (protons) |
| $f_\gamma$       | 3%  | 2%  |                                                         |
| $f_n$            | 8%  | 15% |                                                         |
| f <sub>b</sub>   | 32% | 45% | <pre>} strongly correlated</pre>                        |

|                    | Fe/Sci | Fe/Ar | U/Sci     | U/Ar | determined by     |
|--------------------|--------|-------|-----------|------|-------------------|
| ion/mip            | 0.83   | 0.88  | 0.93      | 1.0  | d <sub>act</sub>  |
| n/mip              | 0.5-2  | 0     | 0.8 - 2.5 | 0    | $d_{act}/d_{abs}$ |
| $\gamma/{\it mip}$ | 0.7    | 0.95  | 0.4       | 0.4  | d <sub>abs</sub>  |
| e/mip              | 0.9    | 0.95  | 0.55      | 0.55 | d <sub>abs</sub>  |

Increase  $h_i$ /mip via increase of  $f_n$ ,  $f_\gamma$  (materials) and n/mip,  $\gamma$ /mip (layer thickness)



S.Masciocchi@gsi.de

Hadronic calorimeters, July 12, 2017

## Software compensation

Consider the layers of active components of the calorimeter:

- Identify the layers with particularly large  $Ev \rightarrow \pi 0$  contribution
- Assign SMALL WEIGHT to these layers!

 $w_i^* = w_i (1 - cw_i)$   $w_i$  = measured, deposited energy

c = weight factor



## Software compensation

Energy resolution of non-compensating liquid-Ar calorimeter



overall response more Gaussian improved resolution, improved linearity

Hadronic calorimeters, July 12, 2017

# Hardware compensation

#### Essential if one wants to trigger!

#### Increase of h/mip or decrease of e/mip. Possibilities:

• Increase of hadronic response via fission and spallation of  $^{238}U$  $\rightarrow$  increase of  $^{ion}$  n

 $\rightarrow$  increase of  $\frac{100}{mip}$  or  $\frac{10}{mip}$ 

Increase of neutron detection efficiency in active material: high proton content

$$Z=1 \rightarrow \text{ increase of } \frac{n}{\text{mip}}$$

- Reduction of e/mip via high Z absorber and suitable choice of  $\frac{d_{abs}}{d_{act}}$ increase of  $Z_{abs} \rightarrow decrease$  of  $\frac{e}{mip} \leftarrow increase$  of  $d_{abs}$
- Long integration time  $\rightarrow$  sensitivity to  $\gamma$  capture after neutron thermalization

$$\rightarrow$$
 t long  $\rightarrow$  increase of  $\frac{n}{mi}$ 

## Hardware compensation



calorimeter response to neutrons

variation of contributions vs.  $R_d = d_{abs}/d_{act}$ 



# Time structure of showers

In em showers, all components cross the detector within few ns (speed  $\sim$  30 cm/ns) In hadronic showers, the component due to neutrons is delayed: they need to slow down before they produce a visible signal



signal width for 80 GeV e and  $\pi$  in spaghetti calorimeter

Size of signal depends on integration time  $\rightarrow$  a variation of the integration time of the electronics can enhance the hadronic signal (used in the ZEUS calorimeter)

## **ZEUS** calorimeter



measured ratio of electron/pion signals at (ZEUS) for  $E \ge 3$  GeV nearly compensated

#### **ZEUS** calorimeter



# Particle identification: e / $\pi$

# Electron/pion: hadron showers are deeper and wider and start later!

- Difference in transverse and longitudinal shower extent
- Signal for electron is faster
- $\rightarrow$  PID based on likelihood analysis





#### low energy loss for muon



for 95% electron efficiency muon probability  $1.7\cdot 10^{-5}$ 



# **ATLAS** hadronic calorimeters



# ATLAS hadronic calorimeters





accordion-shaped layers of Pb absorber in liquid Ar as sensitive material (ionization measured in intermediate electrodes)

hadronic tile calorimeters: steel sheets and scintillator tiles read out with scintillating fibers radially along outside faces into PMTs

#### **ATLAS hadronic calorimeters**

 $E = 1000 \text{ GeV} \rightarrow rac{\sigma_E}{E} = rac{\sigma_p}{p}$ 

$$\frac{\sigma_E}{E} = \frac{A}{\sqrt{E}} \oplus B \oplus \frac{C}{E}$$

0.04

1.00

ATLAS hadronic calorimeter  $A \simeq 0.50, \ B \simeq 0.033, \ C = 0.018$ 

hadronic shower in ATLAS

• visible EM 
$$\sim$$
 (50%)  
-  $e,~\gamma,~\pi^0$ 

• visible non-EM 
$$\sim$$
 (25%)

- ionization of  $\pi, \ p, \ \mu$ 

• invisible 
$$\sim$$
 (25%)

- nuclear break-up
- nuclear excitation

• escaped 
$$\sim$$
 (2%)

#### ATLAS hadronic calo: pion energy resolution



# Calibration and monitoring of calorimeters

The pulse height  $A_i$  measured in an event from a certain (ith) element of the calorimeter is related to the energy  $E_i$  deposited in that element by

$$\mathsf{E}_{\mathsf{i}} = \mathsf{\alpha}_{\mathsf{i}} \left( \mathsf{A}_{\mathsf{i}} - \mathsf{P}_{\mathsf{i}} \right)$$

where  $P_i$  is the pedestal (i.e. the origin of the scale) and  $\alpha_i$  is the calibration coefficient.

To keep good performance of the calorimeter, the following procedures are usually carried out:

- Pedestal determination by providing a trigger from a pulser without any signal at the input of the ADC ("random trigger events")
- Electronics channel control by test pulses applied to the input of the electronics chain
- Monitoring of the stability of the calibration coefficients α,
- Absolute energy calibration, i.e. determination of the  $\alpha_i$  values



Calibration by:

- Measure of a few modules of the final calorimeter in test beams of known particles (e, π, etc.) of known energy
  - $\rightarrow$  intercalibration of all modules in the final calorimeter
- Use of very high energy muons from cosmic rays (might not manage to cover ALL modules, at all angles)
- Use of physical signals (e.g. decays, etc.)

43