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Calorimetry

Experimental technique in nuclear and particle physics in which the 
detection of a particle and the measurement of its properties is based 
on ABSORPTION in the detector volume (partial or total)

This is a DESTRUCTIVE process:
The particle's energy is converted in a detectable signal until the 
particle is absorbed 

Another note: calorimetry is addressed also to neutral particle (not 
only charged one, see magnetic spectrometer)
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Outline

● Introduction
● Energy measurement: total absorption of the particle energy via shower 

production ...
● … particularly targeted to high momentum/energy particles

● Electromagnetic shower
● Electron bremsstrahlung and photon pair production
● Transverse and longitudinal shower development

● Electromagnetic calorimeters 
● Homogeneous and sampling calorimeters
● Energy resolution
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Introduction

Measurement of energy or momentum of particles:
Let's focus on high energy particles (hadrons, leptons, (photons))

This is NOT the best choice to measure high energy particles.
With increasing p (or E), the momentum resolution gets worse, or an 
impossibly long lever arm L is needed → switch to calorimeters !

You will see next week:
Magnetic spectrometers
Momentum of charged 
particles is measured in 
magnetic field, with 
tracking detectors to 
determine the trajectory 

p

p
∝ p

L2
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Introduction

Calorimeters are the ideal instrument to measure the full energy of 
particles, particularly at high momentum

                                                      

Resolution improves with energy!

Other advantages:
● Depth of shower ∝ ln (E/E

0
) → grows only with ln(E) (while the momentum 

resolution would be “controlled” only by L2  → unfeasible in reality)
● Calorimeter can cover full solid angle 
● Fast timing signal from calorimeter → can be used for triggering!
● Distinction of hadronic and electromagnetic showers using segmentation in 

depth

E

E
∝ 1

E
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What do calorimeters measure?

● An incident particle interacts with the calorimeter active and passive material
● A cascade process is initiated: shower development depends on particle type 

and on detector material
● Visible energy deposited in the active media of the calorimeter produces a 

detectable signal, proportional to the total energy deposited by the particle
● Essential to CALIBRATE the calorimeter, namely establish a precise 

relationship between the “visible energy” detected and the energy of the 
incoming particle
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Introduction: classification of calorimeters

By particle type:
● Electromagnetic calorimeters: electrons, positrons, photons, π0

● Hadronic calorimeters: charged and neutral hadrons, jets

By construction techniques:
● Homogeneous calorimeters: full absorption detectors, fully active 

medium for both energy degradation and signal generation
● Sampling calorimeters: alternate layers of absorber material to 

degrade the particle energy and active media to provide the detectable 
signal

TODAY !!
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Electromagnetic shower
Electrons (positrons) and photons interacting with matter
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Electromagnetic shower: electrons

Electrons have two dominant effects through which they loose energy in 
their interaction with matter:

● ionization / excitation of atoms → Bethe-Bloch
after the minimum around βγ ≈ 3, the rise is weak and the 
dE/dx remains relatively low

● Bremsstrahlung:
X

0
 = radiation length

Moliere radius (relevant for transverse size of the 

→ Critical energy E
c
 !!

dE
dx

= − E
X0

E = E0exp −x /X0

RM = 21.2MeV
Ec

⋅X0

shower)
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Overview: energy loss by electrons

Fractional energy 
loss per radiation 
length

From the 3rd 
lecture!!!
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Critical energy

Total energy loss of electrons:

Critical energy:

Example: Cu   E
c
 ≈ 610/30 MeV ≈ 20 MeV

For E > E
c
 Bremsstrahlung dominates !!!

dE
dx


Tot

= dE
dx


Ion
dE

dx

Brems

dE
dx

Ec
Brems

= dE
dx

Ec
Ion

From the 3rd 
lecture!!!
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Photons

Dominant effect for energies above 
a few MeV:

Pair production

Probability for pair production (PP):

d
dx

= 1
PP

e−x /PP  PP = 9
7

X0
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Electromagnetic shower

X
0
 is the 

characteristic scale
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Examples of used materials
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Analytic model of electromagnetic shower
A high energy electron/photon (above ~100 
MeV) enters matter:
● Electron looses energy by Bremsstrahlung  

e + nucleus  →  e + γ + nucleus
● Photon is absorbed by pair production        

γ + nucleus  →  e+ + e–   + nucleus     

Approximate model:
● Over distance X

0
, electron reduces via 

bremsstrahlung its energy to 1/e: E
1
 = E

2
/e

● Over distance ~X
0
, photon converts to e+e– 

Energy of electron and positron: E
±
 ≃ E

0
/2   

(precisely λ
PP

 = 9/7X
0
. Pair production 

probability in X
0
 is P = 1 - exp(-7/9)=0.54)

          Assumptions:
● For E>E

c
 no energy loss by ionization/excitation

● For E<E
c
 electrons loose energy only via ionization/excitation
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Analytic model of electromagnetic shower
An electromagnetic shower is characterized by:
● Number of particles in the shower
● Location of shower maximum
● Longitudinal shower distribution
● Transverse shower distribution

Simplified model (assuming e ≈ 2):
Introduce longitudinal variable t = x/X

0

Number of particles after traversing depth t: 

Each particle has energy:

The shower ends approximately  when E≈E
c
:

Maximum shower depth:

Maximum number of particles in shower:

Example: 1 GeV photon in CsI crystal: E
c
 ≃ 10 MeV, N

max
= E

0
/E

c
≃ 100, t

max
 ≃ 6.6 X

0

Nt  = 2 t

Et =
E0

N t
=

E0

2t  t=lnE0 /E/ ln2

Ec = Etmax =
E0

2tmax

2tmax = E0 /Ec

tmax=lnE0/Ec/ ln2
Nmax = exptmax ln2 = E0 /Ec
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Transverse shower development
● Emission of bremsstrahlung under SMALL angle
● 3D multiple scattering of electron in Moliere theory

Multiple scattering dominates the transverse shower development!!
The main contribution comes from low energy electrons, assuming 
approximate range of electrons to be X

0

Moliere radius: 

〈2〉≈m
E

=1

2

〈m
2 〉= 21.2MeV

pc

2

t

RM =  〈2〉x=X
0
⋅X0 ≈ 21MeV

Ec

X0
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Transverse shower development

Laterale Schauerbreite [X
0
]

Useful relations:

95% of energy within:
L(95%) = t

max
 + 0.08 Z + 9.6 X

0

R(95%) = 2 R
M

X0 = 180A

Z2 g cm−2

Ec = 580 MeV
Z

tmax = ln
E
Ec

− {1 einducedshower
0.5  inducedshower
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Transverse shower profile

● Central part: multiple 
Coulomb scattering of 
electrons (positrons) mostly 
“early” in the shower 
development

● Tail: low energy photons (and 
electrons) produced in 
Compton scattering and 
photoelectric effect, mostly 
late in the shower evolution

Lateral width increases with increasing longitudinal shower depth
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Longitudinal shower profile

Parametrization (Longo 1975)

● First increase of secondaries
● Then absorption dominates

Remember:
● Most of the energy of the incident γ is 

absorbed in 10-15 X
0

● The max position increases slowly with 
E

0
 ( ~ lnE, not E!)

● Energy leakage mostly due to soft 
photons at the sides and the back

dE
dt

= E0 texp − t
Energy deposit
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Longitudinal shower profile

Shower containment: 

L(95%) = t
max

 + 0.08 Z + 9.6 X
0
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Electromagnetic calorimeters

● Homogeneous calorimeters: full absorption detectors, fully active 
medium for both energy degradation and signal generation

● Sampling calorimeters: alternate layers of absorber material to 
degrade the particle energy and active media to provide the detectable 
signal
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Electromagnetic calorimeters
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Homogeneous em calorimeters

Absorbing material  ≡  detection material
● Scintillating crystals (sodium iodide NaI, bismuth germanate BGO, 

caesium iodide CsI, lead tungstate PbWO
4
, etc.)

● Energy loss by ionization (noble liquids)
● Cherenkov (lead glass SF5)
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Energy resolution of homogeneous calo

Contributions to the energy resolution σ
E
/E:

● Shower fluctuations (intrinsic) stochastic term

● photon/electron statistics in photon detector

● Electronic noise

● Leakage, calibration                                               ≃ constant

Total energy resolution of electromagnetic calorimeter:

∝ 1

E

∝ 1

E

∝ 1
E

E

E
= A

E
B
E

X⊕ ⊕
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Examples

● PHOS in ALICE (PbWO
4
 crystals)

● PbWO
4
 calorimeter in CMS

● Alternative to scintillators → Cherenkov radiator
e.g. lead glass
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PHOS: PHOton Spectrometer in ALICE

Array of 22 x 22 x 180 cm3 PbWO
4
 crystals.

Depth = 20 X
0
. Total ~ 18,000 crystals.

Characteristics: dense, fast, relatively radiation 
hard

Emission spectrum: 420-550 nm
Readout: 5x5 mm2 avalanche photodiodes,
Q=85%

Light yield of PbWO
4
 relatively low and strongly 

temperature dependent!!
Operate detector at -25º C, need to stabilize to 
0.3º C (monitor with resistive temperature 
sensors)
Crystals cold, electronics warm
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PHOS in ALICE
12.5 t of crystals, covering 8m2 at 4 m from beam line
In front: charged particle veto – MWPC with cathode pad readout
Test beams of pions and electrons at CERN PS and SPS: 0.6 – 150 GeV
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Importance of energy resolution

Peaks sit on combinatorial background. S/B depends on resolution
π0, η → γγ

Invariant mass spectrum from the inclusive reaction: 
6 GeV/c   π–  + 12C → π0 + X
measured at 122 cm distance
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CMS crystal calorimeter (PbWO
4
)

Most important Higgs discovery channel:
H → γγ
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CMS crystal calorimeter (PbWO
4
)
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CMS crystal calorimeter (PbWO
4
)

               The crystals                          End-cap electromagnetic calorimeter
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Homogeneous calo: alternative to scintillators

DISADVANTAGE OF SCINTILLATING CRYSTALS: high costs and 
limitation in producing large volumes

Alternative: use Cherenkov radiator
                   Electrons and positrons of em shower emit Cherenkov light
● Number of photons is proportional to total path length of electrons and 

positrons: N
ph

 ∝ E
0

● Resolution limited by photoelectron statistics (typical: about 1000 photo 
electrons per GeV shower energy)

Mostly used: lead glass, e.g. SF5: n=1.67, β
thr

=0.6 or E
thr

=0.62 MeV for electrons

Blocks of typical size 14 x 14 x 42 cm3 → diameter 3.3 R
M
 and depth 17.5 X

0

Readout with photomultipliers.
Typical performance: E

E
= 0.010.05E GeV 
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Lead glass calorimeter

Lead glass blocks from the OPAL calorimeter
Now recycled in NA62 (photon veto) 
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Sampling calorimeters

Signal generated in material different from 
material where the main energy loss occurs.
Shower (energy loss) only “sampled”
Simpler and more economical solution.

Converter medium:                                   
Pb, W, U, Fe ← energy loss
Detection medium:                           
scintillator, liquid Ar ← sampling of shower

Longitudinal shower development: 

Transverse shower development:

Energy loss in absorber and detection medium varies event-by-event
SAMPLING FLUCTUATIONS: additional contribution to energy resolution
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Sampling calorimeters

History:

● 1954: N.L. Grigorov put forward idea of sampling calorimeters using 
proportional counters and scintillation counters between thick iron 
sheets to measure cosmic ray particles with E > 1014 eV
● 1957: installation on Pamir mountains with 10m2 of double layer of 

emulsions to study cosmic ray showers

1960-70's: particle experiments at accelerators
● 1965: C. Heusch and C. Prescott in CALTECH studied em shower 

development in plastic scintillators + lead absorbers, and lucite-based 
materials with lead absorbers

● 1973: H. Schopper and his group in Karlsruhe made studies with 
similar detectors for a hadronic calorimeter
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Sampling fluctuations

Energy deposition is dominated by electrons at small energies
Range of 1 MeV electron in U: R ≃ 0.4 mm
For thickness d of absorber layers ≥ 0.4mm: only fraction f of these 
electrons reaches the detection medium

                            f(e, conv → det) ∝ 1/d ∝ 1/t
conv

Fraction of electrons generated in detection medium 
               
                                       f(e,det) ∝ 

Number of charged particles in shower: N ≃ E
0
 / E

c

tdet

tconv
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Sampling fluctuations
Fluctuations:

Common parametrization:

Good energy resolution for:
● E

c
 small ↔ Z large

● T
conv

 small: x < X
0
, fine sampling

E

E
∝ 1

N
∝ Ec

E  tconv  1−
tconv

tdet

Fe: 1−≫
E

E
∝ 1

E  tconv

tdet

Pb: 1−≪
E

E
∝ 1

E
 tconv

E

E
= 3.2% Ec MeV 

F  tconv

E GeV 
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Example: PHENIX PbScint calorimeter

Alternating layers of Pb sheets and plastic scintillator sheets connected to 
PMT via scintillating fibres
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Example: PHENIX PbScint calorimeter
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Example: PHENIX PbScint calorimeter

Nominal energy resolution: stochastic term: 8%/√E
                                            Constant term:   2%
Time resolution: 200 ps
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Example: PHENIX PbScint calorimeter

Lateral shower profile well understood
→ position resolution in mm range
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Liquid-argon sampling calorimeter

Alternative to scintillator and optical readout: use of liquid noble gas and 
operation of sampling sections as ionization chamber

For faster readout: interleave electrodes between metal plates and 
electronics directly on electrodes inside liquid

Example: electromagnetic calorimeter of ATLAS
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Outlook

At TeV energies we can also do muon calorimetry → they loose energy 
proportionally to their energy → stopping them becomes possible

Example: Future Circular Collider → muons with energy > 1 TeV
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Calorimeters in a collider experiment: CMS

●  Trackers
●  Calorimeters
●  Muon detectors


