

Electromagnetic calorimeters

Silvia Masciocchi, GSI and University of Heidelberg

> SS2017, Heidelberg June 28, 2017

Experimental technique in nuclear and particle physics in which the detection of a particle and the measurement of its properties is based on ABSORPTION in the detector volume (partial or total)

This is a DESTRUCTIVE process:

The particle's energy is converted in a detectable signal until the particle is absorbed

Another note: calorimetry is addressed also to neutral particle (not only charged one, see magnetic spectrometer)

- Introduction
 - Energy measurement: total absorption of the particle energy via shower production ...
 - ... particularly targeted to high momentum/energy particles
- Electromagnetic shower
 - Electron bremsstrahlung and photon pair production
 - Transverse and longitudinal shower development
- Electromagnetic calorimeters
 - Homogeneous and sampling calorimeters
 - Energy resolution

Introduction

Measurement of energy or momentum of particles: Let's focus on high energy particles (hadrons, leptons, (photons))

You will see next week:

Magnetic spectrometers

Momentum of charged particles is measured in magnetic field, with tracking detectors to determine the trajectory

 $\frac{\sigma_{\rm p}}{\rm p} \propto \frac{\rm p}{\rm l^2}$

This is NOT the best choice to measure high energy particles. With increasing p (or E), the momentum resolution gets worse, or an impossibly long lever arm L is needed \rightarrow switch to **calorimeters** ! Calorimeters are the ideal instrument to measure the full energy of particles, particularly at high momentum

$$\frac{\sigma_{\rm E}}{\rm E} \propto \frac{1}{\sqrt{\rm E}}$$

Resolution improves with energy!

Other advantages:

- Depth of shower ∝ ln (E/E₀) → grows only with ln(E) (while the momentum resolution would be "controlled" only by L² → unfeasible in reality)
- Calorimeter can cover full solid angle
- Fast timing signal from calorimeter \rightarrow can be used for triggering!
- Distinction of hadronic and electromagnetic showers using segmentation in depth

What do calorimeters measure?

- An incident particle interacts with the calorimeter active and passive material
- A cascade process is initiated: shower development depends on particle type and on detector material
- Visible energy deposited in the active media of the calorimeter produces a detectable signal, proportional to the total energy deposited by the particle
- Essential to CALIBRATE the calorimeter, namely establish a precise relationship between the "visible energy" detected and the energy of the incoming particle

Introduction: classification of calorimeters

TODAY !!

By particle type:

- Electromagnetic calorimeters: electrons, positrons, photons, π⁰
- Hadronic calorimeters: charged and neutral hadrons, jets

By construction techniques:

- Homogeneous calorimeters: full absorption detectors, fully active medium for both energy degradation and signal generation
- Sampling calorimeters: alternate layers of absorber material to degrade the particle energy and active media to provide the detectable signal

Electromagnetic shower

Electrons (positrons) and photons interacting with matter

 e^{-} 50 GeV/c 1.0 2.0 3.0 Bepth (m)

Big European Bubble Chamber filled with Ne:H $_2$ = 70%:30%, 3T Field, L=3.5 m, X $_0$ \approx 34 cm, 50 GeV incident electron

Electromagnetic shower: electrons

Electrons have two dominant effects through which they loose energy in their interaction with matter:

 ionization / excitation of atoms → Bethe-Bloch after the minimum around βγ ≈ 3, the rise is weak and the dE/dx remains relatively low

 X_0 = radiation length

• Bremsstrahlung:

$$\frac{dE}{dx} = -\frac{E}{X_0}$$
$$E = E_0 \exp(-x/X_0)$$

Moliere radius (relevant for transverse size of the shower)

$$R_{M} = \frac{21.2 \,\text{MeV}}{E_{c}} \cdot X_{0}$$

 \rightarrow Critical energy E_c !!

S.Masciocchi@gsi.de

Overview: energy loss by electrons

From the 3rd lecture!!!

Critical energy

200Copper Total energy loss of electrons: $X_0 = 12.86 \text{ g cm}^{-2}$ $E_{c}^{\circ} = 19.63 \text{ MeV}$ 100 $\left(\frac{dE}{dx}\right)_{Tot} = \left(\frac{dE}{dx}\right)_{Ion} + \left(\frac{dE}{dx}\right)_{Brems}$ $dE/dx \times X_0$ (MeV) 70 EXact Drennsstri Rossi: 50 Dions P Ionization per X_0 **40** = electron energy **Critical energy:** 30 Ionization $\left(\frac{dE}{dx}(E_c)\right)_{Brems} = \left(\frac{dE}{dx}(E_c)\right)_{I}$ 20 **Brems** = ionization 10 20 2 10 50 100 200 5 Electron energy (MeV)

Example: Cu $E_c \approx 610/30 \text{ MeV} \approx 20 \text{ MeV}$

For E > E_c **Bremsstrahlung dominates** !!!

From the 3rd

lecture!!!

Photons

Dominant effect for energies above a few MeV:

Pair production

Probability for pair production (PP):

$$\frac{d\,\omega}{dx} = \frac{1}{\lambda_{PP}} e^{-x/\lambda_{PP}} \rightarrow \lambda_{PP} = \frac{9}{7}X_0$$

Electromagnetic shower

X₀ is the characteristic scale

L.Fussel 1939

Electron Shower

L.Fussel 1939

Photon Shower

material	Ζ	$X_0 [{ m gcm^{-2}}]$	<i>X</i> ₀ [cm]	E_c [MeV]	R_M [cm]
plastic scint.			34.7	80	9.1
Ar (liquid)	18	19.55	13.9	35	9.5
Fe	26	13.84	1.76	21	1.77
BGO		7.98	1.12	10	2.33
Pb	82	6.37	0.56	7.4	1.60
U	92	6.00	0.32	6.8	1.00
Pb glass (SF5)			2.4	11.8	4.3

Analytic model of electromagnetic shower

A high energy electron/photon (above ~100 MeV) enters matter:

- Electron looses energy by Bremsstrahlung
 e + nucleus → e + γ + nucleus
- Photon is absorbed by pair production
 γ + nucleus → e⁺ + e⁻ + nucleus

Approximate model:

- Over distance X_0 , electron reduces via bremsstrahlung its energy to 1/e: $E_1 = E_2/e$
- Over distance $\sim X_0$, photon converts to e⁺e⁻ Energy of electron and positron: $E_{\pm} \simeq E_0/2$ (precisely $\lambda_{PP} = 9/7X_0$. Pair production probability in X_0 is P = 1 - exp(-7/9)=0.54)

Assumptions:

- For E>E_c no energy loss by ionization/excitation
- For E<E_c electrons loose energy only via ionization/excitation

Analytic model of electromagnetic shower

An electromagnetic shower is characterized by:

- Number of particles in the shower
- Location of shower maximum
- Longitudinal shower distribution
- Transverse shower distribution

Simplified model (assuming $e \approx 2$): Introduce longitudinal variable $t = x/X_0$

Number of particles after traversing depth t: Each particle has energy:

The shower ends approximately when $E \approx E_c$:

Maximum shower depth:

Maximum number of particles in shower:

$$\begin{split} \mathsf{N}(t) &= \mathsf{r}^{t} \\ \mathsf{E}(t) &= \frac{\mathsf{E}_{\cdot}}{\mathsf{N}(t)} = \frac{\mathsf{E}_{\cdot}}{\mathsf{r}^{t}} \to t = \ln(\mathsf{E}_{\cdot}/\mathsf{E})/\ln 2 \\ \mathsf{E}_{\mathsf{c}} &= \mathsf{E}(t_{\mathsf{max}}) = \frac{\mathsf{E}_{\cdot}}{\mathsf{r}^{t_{\mathsf{max}}}} \\ 2^{t_{\mathsf{max}}} &= \mathsf{E}_{\cdot}/\mathsf{E}_{\mathsf{c}} \\ t_{\mathsf{max}} = \ln(\mathsf{E}_{\cdot}/\mathsf{E}_{\mathsf{c}})/\ln\mathsf{r} \\ \mathsf{N}_{\mathsf{max}} &= \exp(t_{\mathsf{max}}\ln\mathsf{r}) = \mathsf{E}_{\cdot}/\mathsf{E}_{\mathsf{c}} \end{split}$$

Example: 1 GeV photon in CsI crystal: $E_c \approx 10$ MeV, $N_{max} = E_0/E_c \approx 100$, $t_{max} \approx 6.6$ X₀

Transverse shower development

- Emission of bremsstrahlung under SMALL angle
- 3D multiple scattering of electron in Moliere theory

$$\langle \theta_{\rm m}^2 \rangle = \left(\frac{21.2\,{\rm MeV}}{\beta\,{\rm pc}}\right)^2 {\rm t}$$

Multiple scattering dominates the transverse shower development!!

The main contribution comes from low energy electrons, assuming approximate range of electrons to be X_0

Moliere radius:
$$R_{M} = \sqrt{\langle \theta^{2} \rangle_{x=X_{0}} \cdot X_{0}} \approx \frac{21 \text{ MeV}}{E_{c}} X_{0}$$

Transverse shower development

Useful relations:

$$\begin{split} X_0 &= \frac{180A}{Z^2} (g \ cm^{-2}) \\ E_c &= \frac{580 \ MeV}{Z} \\ t_{max} &= ln \frac{E}{E_c} - \begin{cases} 1 & einduced shower \\ 0.5 & \gamma induced shower \end{cases} \end{split}$$

95% of energy within: L(95%) = t_{max} + 0.08 Z + 9.6 X₀ R(95%) = 2 R_M

Transverse shower profile

Lateral width increases with increasing longitudinal shower depth

- Central part: multiple Coulomb scattering of electrons (positrons) mostly "early" in the shower development
- Tail: low energy photons (and electrons) produced in Compton scattering and photoelectric effect, mostly late in the shower evolution

Longitudinal shower profile

Parametrization (Longo 1975)

 $\frac{\mathrm{d}\mathsf{E}}{\mathrm{d}t} = \mathsf{E}_0 \mathsf{t}^\alpha \exp(-\beta \mathsf{t})$

- First increase of secondaries
- Then absorption dominates

Remember:

- Most of the energy of the incident γ is absorbed in 10-15 $X_{_0}$
- The max position increases slowly with E₀ (~ InE, not E!)
- Energy leakage mostly due to soft photons at the sides and the back

Energy deposit

Longitudinal shower profile

Shower containment:

$$L(95\%) = t_{max} + 0.08 Z + 9.6 X_0$$

• Homogeneous calorimeters: full absorption detectors, fully active medium for both energy degradation and signal generation

 Sampling calorimeters: alternate layers of absorber material to degrade the particle energy and active media to provide the detectable signal

Electromagnetic calorimeters

	Scintillation/ Crystal					
Homogeneous Calorimeters	Semiconductor	Existing Electromagnetic Calorimeters Technology/Experiment Depth Resolution Year				
	Cherenkov	NaI(Tl) (Crystal Ball) Bi ₄ Ge ₃ O ₁₂ (BGO) (L3)	$20X_0$ $22X_0$	$2.7\%/{ m E}^{1/4}$ $2\%/\sqrt{E}\oplus 0.7\%$	1983 1993	
	lonization (Noble Liquids)	CsI (KTeV) CsI(Tl) (BaBar) CsI(Tl) (BELLE)	$27X_0$ 16–18 X_0 16 X_0	$2\%/\sqrt{E} \oplus 0.45\%$ $2.3\%/E^{1/4} \oplus 1.4\%$ 1.7% for $E_{\gamma} > 3.5$ GeV	1996 1999 1998	
Sampling Calorimeters	Scintillation	PbWO ₄ (PWO) (CMS) Lead glass (OPAL) Liquid Kr (NA48)	$25X_0$ $20.5X_0$ $27X_0$	$\frac{3\%/\sqrt{E} \oplus 0.5\% \oplus 0.2/E}{5\%/\sqrt{E}}$ $\frac{3.2\%/\sqrt{E} \oplus 0.42\% \oplus 0.09/H}{3.2\%/\sqrt{E}}$	1997 1990 E 1998	
	Gas	Scintillator/depleted U (ZEUS) Scintillator/Pb (CDF)	$20-30X_0$ $18X_0$	$18\%/\sqrt{E}$ $13.5\%/\sqrt{E}$	1988 1988	
	Solid State	Scintillator fiber/Pb spaghetti (KLOE)	$15X_0$	$5.7\%/\sqrt{E} \oplus 0.6\%$	1995	
	Liquids	Liquid Ar/Pb (NA31) Liquid Ar/Pb (SLD) Liquid Ar/Pb (H1) Liquid Ar/depl. U (DØ) Liquid Ar/Pb accordion (ATLAS)	$27X_0$ $21X_0$	$\begin{array}{c} 7.5\%/\sqrt{E} \oplus 0.5\% \oplus 0.1/E\\ 8\%/\sqrt{E}\\ -\end{array}$	1988 1993	
	Common Absorbers: Pb, Fe, Cu, U		$20-30X_0$ $20.5X_0$ $25X_0$	$\begin{array}{l} 12\%/\sqrt{E} \oplus 1\% \\ 16\%/\sqrt{E} \oplus 0.3\% \oplus 0.3/E \\ 10\%/\sqrt{E} \oplus 0.4\% \oplus 0.3/E \end{array}$	1998 1993 1996	

Homogeneous em calorimeters

Absorbing material \equiv detection material

 Scintillating crystals (sodium iodide Nal, bismuth germanate BGO, caesium iodide Csl, lead tungstate PbWO₄, etc.)

	Nal(TI)	BGO	CsI(TI)	PbWO ₄
density (g/cm ³)	3.67	7.13	4.53	8.28
<i>X</i> ₀ (cm)	2.59	1.12	1.85	0.89
R_M (cm)	4.5	2.4	3.8	2.2
d <i>E/</i> dx _{mip} (MeV/cm)	4.8	9.2	5.6	13.0
light yield (photons/MeV)	$4\cdot 10^4$	$8\cdot 10^3$	$5\cdot 10^4$	$3\cdot 10^2$
energy resolution σ_E/E	$1\%/\sqrt{E}$	$1\%/\sqrt{E}$	$1.3\%/\sqrt{E}$	$2.5\%/\sqrt{E}$

- Energy loss by ionization (noble liquids)
- Cherenkov (lead glass SF5)

Energy resolution of homogeneous calo

Contributions to the energy resolution σ_{F}/E :

- Shower fluctuations (intrinsic) stochastic term
- photon/electron statistics in photon detector
- Electronic noise
- Leakage, calibration

Total energy resolution of electromagnetic calorimeter:

$$\frac{\sigma_{\mathsf{E}}}{\mathsf{E}} = \frac{\mathsf{A}}{\sqrt{\mathsf{E}}} \oplus \frac{\mathsf{B}}{\mathsf{E}} \oplus \mathsf{X}$$

$$\infty \frac{1}{\sqrt{E}}$$
$$\infty \frac{1}{\sqrt{E}}$$
$$\infty \frac{1}{E}$$

≃ constant

- PHOS in ALICE (PbWO₄ crystals)
- PbWO₄ calorimeter in CMS
- Alternative to scintillators → Cherenkov radiator e.g. lead glass

PHOS: PHOton Spectrometer in ALICE

Array of 22 x 22 x 180 cm³ PbWO₄ crystals. Depth = 20 X₀. Total ~ 18,000 crystals.

Characteristics: dense, fast, relatively radiation hard

Emission spectrum: 420-550 nm Readout: 5x5 mm² avalanche photodiodes, Q=85%

Light yield of PbWO₄ relatively low and strongly temperature dependent!!

Operate detector at -25° C, need to stabilize to 0.3° C (monitor with resistive temperature sensors)

Crystals cold, electronics warm

PHOS in ALICE

12.5 t of crystals, covering 8m² at 4 m from beam line
In front: charged particle veto – MWPC with cathode pad readout
Test beams of pions and electrons at CERN PS and SPS: 0.6 – 150 GeV

electronic noise: 1 ch = 400 e \rightarrow noise about 700 e

Electromagnetic calorimeters, June 28, 2017

Importance of energy resolution

Invariant mass spectrum from the inclusive reaction:

 $6 \text{ GeV/c} \quad \pi^- + {}^{12}\text{C} \rightarrow \pi^0 + X$

measured at 122 cm distance

S.Masciocchi@gsi.de

CMS crystal calorimeter (PbWO₄)

Most important Higgs discovery channel: $H \rightarrow \gamma \gamma$

CMS crystal calorimeter (PbWO₄)

CMS crystal calorimeter (PbWO₄)

The crystals

End-cap electromagnetic calorimeter

Homogeneous calo: alternative to scintillators

DISADVANTAGE OF SCINTILLATING CRYSTALS: high costs and limitation in producing large volumes

Alternative: use Cherenkov radiator

Electrons and positrons of em shower emit Cherenkov light

- Number of photons is proportional to total path length of electrons and positrons: $N_{ph} \propto E_0$
- Resolution limited by photoelectron statistics (typical: about 1000 photo electrons per GeV shower energy)

Mostly used: lead glass, e.g. SF5: n=1.67, β_{thr} =0.6 or E_{thr} =0.62 MeV for electrons Blocks of typical size 14 x 14 x 42 cm³ \rightarrow diameter 3.3 R_M and depth 17.5 X₀ Readout with photomultipliers.

Typical performance:

$$\frac{\sigma_{\rm E}}{\rm E} = 0.01 + 0.05 \sqrt{\rm E(GeV)}$$

Lead glass calorimeter

Lead glass blocks from the OPAL calorimeter Now recycled in NA62 (photon veto)

Sampling calorimeters

Signal generated in material different from material where the main energy loss occurs. Shower (energy loss) only "sampled" Simpler and more economical solution.

Converter medium: Pb, W, U, Fe \leftarrow energy loss Detection medium: scintillator, liquid Ar \leftarrow sampling of shower

Longitudinal shower development:

Transverse shower development:

Energy loss in absorber and detection medium varies event-by-event SAMPLING FLUCTUATIONS: additional contribution to energy resolution

$\begin{aligned} t_{max} &= t_{max}^{abs} \frac{x+y}{x} \\ R(95\%) &= 2R_M \frac{x+y}{x} \end{aligned} \right\} & x &= \sum x_i \text{ absorber} \\ y &= \sum y_i \text{ detection element} \end{aligned}$

History:

- 1954: N.L. Grigorov put forward idea of sampling calorimeters using proportional counters and scintillation counters between thick iron sheets to measure cosmic ray particles with E > 10¹⁴ eV
 - 1957: installation on Pamir mountains with 10m2 of double layer of emulsions to study cosmic ray showers

1960-70's: particle experiments at accelerators

- 1965: C. Heusch and C. Prescott in CALTECH studied em shower development in plastic scintillators + lead absorbers, and lucite-based materials with lead absorbers
- 1973: H. Schopper and his group in Karlsruhe made studies with similar detectors for a hadronic calorimeter

Sampling fluctuations

Energy deposition is dominated by electrons at small energies Range of 1 MeV electron in U: $R \approx 0.4$ mm For thickness d of absorber layers ≥ 0.4 mm: only fraction f of these electrons reaches the detection medium

f(e, conv
$$\rightarrow$$
 det) \propto 1/d \propto 1/t_{conv}

Fraction of electrons generated in detection medium

$$f(e,det) \propto rac{t_{det}}{t_{conv}}$$

Number of charged particles in shower: $N \simeq E_0 / E_c$

Sampling fluctuations

Fluctuations:

$$\frac{\sigma_{\rm E}}{{\rm E}} \propto \frac{1}{\sqrt{{\rm N}}} \propto \sqrt{\frac{{\rm E}_{\rm c}}{{\rm E}}} \sqrt{\alpha t_{\rm conv}} + (1-\alpha) \frac{t_{\rm conv}}{t_{\rm det}}$$

Fe: $(1-\alpha) \gg \alpha$ $\frac{\sigma_{\rm E}}{{\rm E}} \propto \frac{1}{\sqrt{{\rm E}}} \sqrt{\frac{t_{\rm conv}}{t_{\rm det}}}$
Pb: $(1-\alpha) \ll \alpha$ $\frac{\sigma_{\rm E}}{{\rm E}} \propto \frac{1}{\sqrt{{\rm E}}} \sqrt{t_{\rm conv}}$

Common parametrization:

$$\frac{\sigma_{\rm E}}{\rm E} = 3.2\% \ \sqrt{\frac{\rm E_{c}(MeV)}{\rm F}} \ \sqrt{\frac{\rm t_{conv}}{\rm E(GeV)}}$$

Good energy resolution for:

- $E_c \text{ small } \leftrightarrow Z \text{ large}$
- T_{conv} small: $x < X_0$, fine sampling

Alternating layers of Pb sheets and plastic scintillator sheets connected to PMT via scintillating fibres

individual towers $5 \times 5 \text{ cm}^2$

38 cm depth (18X₀) 66 sampling cells

in total covering 48 m² in 15552 individual towers

Parameter	Value
Lateral segmentation	$5.535 \times 5.535 \text{ cm}^2$
Active cells	66
Scintillator	4 mm Polystyrene
	(1.5% PT/0.01% POPOP)
Absorber	1.5 mm Pb
Cell thickness	5.6 mm (0.277 X ₀)
Active depth	
(mm)	375 mm
(Rad. length)	18
(Abs. length)	0.85
WLS Fiber	1mm, BCF-99-29a
WLS fibers per tower	36
PMT type	FEU115 M, 30 mm
Photocathode	Sb-K-Na-Cs
Rise time (25% - 80%)	\leq 5 ns

one module of PHENIX EMCal

and entire WestArm

Nominal energy resolution: stochastic term: 8%/√E Constant term: 2%

Time resolution: 200 ps

Lateral shower profile well understood \rightarrow position resolution in mm range

Electromagnetic calorimeters, June 28, 2017

Liquid-argon sampling calorimeter

Alternative to scintillator and optical readout: use of liquid noble gas and operation of sampling sections as ionization chamber

For faster readout: interleave electrodes between metal plates and electronics directly on electrodes inside liquid

Example: electromagnetic calorimeter of ATLAS

At TeV energies we can also do muon calorimetry \rightarrow they loose energy proportionally to their energy \rightarrow stopping them becomes possible

Example: Future Circular Collider \rightarrow muons with energy > 1 TeV

Calorimeters in a collider experiment: CMS

- Trackers
- Calorimeters
- Muon detectors