Gaseous detectors measurement of ionization position determination

Introduction

- Primary Ionization
- Secondary Ionization (due to δ-electrons)

Introduction

- Primary Ionization
- Secondary Ionization (due to δ-electrons)

Ionization

Primary ionization

$$X + p \rightarrow X^+ + p + e^-$$

Secondary ionization

$$X + e^{-} \rightarrow X^{+} + e^{-} + e^{-}$$

p = charge particle traversing the gas X = gas atom e^{-} = delta-electron (δ)

if E_{δ} is high enough ($E_{\delta} > E_i$)

Relevant Parameters
for gas detectorsDifferences
due to δ -electronsIonization energy
Average energy/ion pair: E_i
: $\langle n_T \rangle = \frac{L \cdot \langle \frac{dE}{dx} \rangle_i}{W_i}$ Average number of primary ion pairs [per cm]: n_p [about 2-6 times n_p]
[L: layer thickness]

Typical values:

 $E_i \sim 30 \text{ eV}$ n_T ~ 100 pairs / 3 keV incident particle

Table for most common gases

Gas	ρ (g/cm ³) (STP)	<i>I₀</i> (eV)	W _i (eV)	<i>dE/dx</i> (MeVg ⁻¹ cm ²)	<i>n_p</i> (cm ⁻¹)	<i>n_t</i> (cm ⁻¹)
H ₂	8.38 · 10 ⁻⁵	15.4	37	4.03	5.2	9.2
He	1.66 · 10 ⁻⁴	24.6	41	1.94	5.9	7.8
N ₂	1.17 · 10 ⁻³	15.5	35	1.68	(10)	56
Ne	8.39 · 10 ⁻⁴	21.6	36	1.68	12	39
Ar	1.66 · 10 ⁻³	15.8	26	1.47	29.4	94
Kr	3.49 · 10 ⁻³	14.0	24	1.32	(22)	192
Xe	5.49 · 10 ⁻³	12.1	22	1.23	44	307
CO ₂	1.86 · 10 ⁻³	13.7	33	1.62	(34)	91
CH ₄	6.70 · 10 ⁻⁴	13.1	28	2.21	16	53
C ₄ H ₁₀	2.42 · 10 ⁻³	10.8	23	1.86	(46)	195

 $(\mathsf{E}_{\mathsf{i}} = \mathsf{I}_{\mathsf{o}})$

Quelle: K. Kleinknecht, Detektoren für Teilchenstrahlung, B.G. Teubner, 1992

Ionization statistics

Production of ion/electron pairs is a Poissonian distributed

$$P(n_p, \langle n_p \rangle) = \frac{\langle n_p \rangle^{n_p} e^{-\langle n_p \rangle}}{n_p!}$$

with $\langle n_p \rangle = L/\lambda$ and $\lambda = 1/(n_e \sigma_I)$

Recombination and electron attachment:

Admixture of electronegative gases (O_2 , F, CI) influences detection efficiency **Diffusion**:

Influences the spatial resolution ...

Mobility of charges:

Influences the timing behavior of gas detectors ...

Avalanche process via impact ionization:

Important for the gain factor of the gas detector ...

Transport of electrons/ions in gas

Diffusion:

classical kinetic theory of gases

 $\frac{dN}{dx} = \frac{N_0}{\sqrt{4\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$

after a diffusion time t the electrons/ions are Gaussian distributed with a spread

$$\sigma(r) = \sqrt{6Dt}$$

where D is the diffusion coefficient

the mean free path of electrons/ions in the gas:

$$\mathsf{D} = \frac{1}{3}v\lambda$$

m=mass of particle

D depends on gas pressure P and temperature T

 $v = \sqrt{\frac{8kT}{\pi}}$

 $\lambda = \frac{1}{\sqrt{2}} \frac{\mathbf{kT}}{\sigma_0 P}$

Diffusion in electric field

Drift in direction of E-field superimposed to statistical diffusion

Extra velocity influences longitudinal diffusion Transverse diffusion not affected

E-field reduced diffusion in longitudinal direction

Diffusion in magnetic field

In the presence of a B-field different effects on longitudinal and transverse diffusion

No Lorentz force along B-field direction

Transverse diffusion as function of drift length for different B fields

B-Field can substantially reduce diffusion in transverse direction

Transport of electrons/ions in gas

Drift and Mobility:

with external E-field: electrons/ions obtain velocity v_D in addition to thermal motion; on average electrons/ions move along field lines of electric field E

 $\vec{v}_{\rm D} = \mu_{\pm} |\vec{\sf E}|$

μ_+ : ion mobility

for ions $v_D \sim E/P$, i.e. for constant pressure constant mobility

typical: E ~ 1 kV / cm-atm`

μ_{-} : electron mobility

in cold gas approximation $(T_{kin} \sim kT) \rightarrow v_D \sim E, \mu = \text{const.}$ in hot gas $(T_{kin} >> kT) \rightarrow v_D = \text{const.}, \mu = \text{not const.}$

Compare:

Electrons: v_D of order cm/µs lons: v_D of order cm/ms

Einstein relation for ideal gases in thermal equilibrium the gain in velocity may affect the diffusion rate and thereby the time behavior of the detector (e.g. drift chamber) 10

Drift velocity

11

Drift velocity

Drift velocity in several argon-isobutane (C₄H₁₀) mixtures

Avalanche multiplication

Large electric field yields large kinetic energy of electrons ...

→ Avalanche formation

Larger mobility of electrons results in liquid drop like avalanche with electrons near head ...

Mean free path: λ_{ion} [for a secondary ionization]

Probability of an ionization per unit path length: $\alpha = 1/\lambda_{\text{ion}}$ [1st Townsend coefficient]

 $dn = n \cdot \alpha \, dx \qquad \qquad \begin{array}{l} n(\mathbf{x}) = \text{ electrons} \\ \text{at location } \mathbf{x} \\ n = n_0 e^{\alpha x} \end{array}$

Townsend avalanche

Drop-like shape of an avalanche Left: cloud champer picture Right: schematic view

Gain:

$$G = \frac{n}{n_0} = e^{\alpha x}$$
 and more general for $\alpha = \alpha(x)$: $G = \frac{n}{n_0} = \exp\left[\int_{x_1}^{x_2} \alpha(x) dx\right]$

[Raether limit: $G \approx 10^8$; $\alpha x = 20$; then sparking sets in ...]

Avalanche multiplication

Gas amplification factor

lonization mode:

full charge collection no multiplication; gain ≈ 1

Proportional mode:

multiplication of ionization signal proportional to ionization measurement of dE/dx secondary avalanches need quenching; gain $\approx 10^4 - 10^5$

Limited proportional mode: [saturated, streamer]

strong photoemission requires strong quenchers or pulsed HV; gain $\approx 10^{10}$

Geiger mode:

massive photoemission; full length of the anode wire affected; discharge stopped by HV cut

Proportional counter

Planar design disadvantage:

E uniform and \perp to the electrodes amount of ionization produced proportional to path length and to position where the ionization occurs \rightarrow not proportional to energy

Problem solved using Cylindrical proportional counter:

Single anode wire in a cylindrical cathode $E\sim1/r$: weak field far from the wire electrons/ions drift in the volume multiplication occurs only near the anode

Avalanche development

Time development of an avalanche near the wire of a proportional counter

- a) a single primary electron proceeds towards the wire anode,
- b) in the region of increasingly high field the electron experiences ionizing collisions (avalanche multiplication),
- c) electrons and ions are subject to lateral diffusion,
- d) a drop-like avalanche develops which surrounds the anode wire,
- e) the electrons are quickly collected (~1ns) while the ions begin drifting towards the cathode generating the signal at the electrodes.