Particle physics lecture: Dirac equation

additional material

Frank Meier Universität Heidelberg

November 17, 2016

Klein-Gordon:

$$(\partial_{\mu}\partial^{\mu}+m^2)\phi=0$$

- We've derived and identified the corresponding continuity equation
- Has problems: negative solutions in relativistic case

Dirac attacked this by looking out for

$$\hat{H} = \widehat{\sqrt{p^2 + m}}$$

and used

$$\hat{H}\psi = (\alpha \hat{\mathbf{p}} + \beta m)\psi$$

where α and β were some yet to be found mathematical objects.

Obeying the following rules would do the trick:

$$\alpha_i \alpha_j + \alpha_j \alpha_i = 2\delta_{ij}$$
$$\alpha_i \beta + \beta \alpha_i = 0$$
$$\beta^2 = 1$$

Matrices of rank 4 are the minimal objects doing that.

The matrices can be constructed from Pauli matrices (which hints to spin- $\frac{1}{2}$ already. . .)

Use of $\gamma\text{-matrices}$ allows to write the Dirac equation in covariant form:

$$(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$$

Or even more compact using Feynman slash notation:

$$(i\partial_{\mu}-m)\psi=0$$

Both ways are *very compact* notations. Keep in mind that due to *Einstein convention*, this is...

$$(i\gamma^0\partial_0 + i\gamma^1\partial_1 + i\gamma^2\partial_2 + i\gamma^3\partial_3 - m)\psi$$

... and which is a system of **four** differential equations because ψ is a spinor with four components and the γ -matrices are 4 × 4 in size.

Covariance is built into the γ -matrices:

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}$$

Four components hints somewhat naturally to two families, particles and antiparticles, in two spin states $\pm \frac{1}{2}$.

Overview of matrices used

Pauli matrices:

$$\sigma_1 = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $\sigma_2 = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_3 = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

 $\alpha,\,\beta$ matrices:

$$\alpha_i = \begin{pmatrix} \mathbf{0} & \sigma_i \\ \sigma_i & \mathbf{0} \end{pmatrix} \qquad \beta = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$$

 γ matrices:

$$\gamma^{\mathbf{0}} = \beta$$
 $\gamma^{i} = \beta \alpha_{i} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{0} & \sigma_{i} \\ \sigma_{i} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \sigma_{i} \\ -\sigma_{i} & \mathbf{0} \end{pmatrix}$

 $i\in\{1,2,3\}$

General free particle solution

... to see, if Dirac can handle relativistic cases

General free particle solution

... to see, if Dirac can handle relativistic cases

Antiparticles

... already anticipated, but how to interpret the two more solutions?

General free particle solution

... to see, if Dirac can handle relativistic cases

Antiparticles

... already anticipated, but how to interpret the two more solutions?

Spin and helicity

... anticipated as well, but ready for a surprise?

General free particle solution

... to see, if Dirac can handle relativistic cases

Antiparticles

... already anticipated, but how to interpret the two more solutions?

Spin and helicity

... anticipated as well, but ready for a surprise?

and some more properties

... to see what else the Dirac equation has on offer.

This page intentionally left blank

Spin and Dirac equation

Recall quantum mechanics:

 \blacktriangleright Time dependence of some observable ${\cal O}$

$$\frac{d\mathcal{O}}{dt} = \frac{d}{dt} \langle \hat{\mathcal{O}} \rangle = i \langle \psi | [\hat{H}, \hat{\mathcal{O}}] | \psi \rangle$$

Spin and Dirac equation

Recall quantum mechanics:

• Time dependence of some observable $\mathcal O$

$$\frac{d\mathcal{O}}{dt} = \frac{d}{dt} \langle \hat{\mathcal{O}} \rangle = i \langle \psi | [\hat{H}, \hat{\mathcal{O}}] | \psi \rangle$$

Non-relativistic QM for a free particle:

$$\hat{H}_{\text{Schrödinger}} = rac{\hat{p}^2}{2m}$$

One can show: $[\hat{H}_{Schrödinger}, \hat{L}] = 0$ hence angular momentum is conserved.

Spin and Dirac equation

Recall quantum mechanics:

► Time dependence of some observable *O*

$$\frac{d\mathcal{O}}{dt} = \frac{d}{dt} \langle \hat{\mathcal{O}} \rangle = i \langle \psi | [\hat{H}, \hat{\mathcal{O}}] | \psi \rangle$$

Non-relativistic QM for a free particle:

$$\hat{H}_{\text{Schrödinger}} = \frac{\hat{p}^2}{2m}$$

One can show: $[\hat{H}_{Schrödinger}, \hat{L}] = 0$ hence angular momentum is conserved.

► How about conservation in relativistic QM using the Dirac equation? ⇒ blackboard

This page intentionally left blank

Quantisation of spin

From QM we know

$$[\hat{L}_x, \hat{L}_y] = i\hat{L}_z$$

 $\hat{L}^2 \psi = \ell(\ell+1) \psi$

Angular momentum is quantised.

- Spin operator ŝ depends linearly on σ, which have well-known commutator rules.
- In relativistic QM, one can show:

$$[\hat{S}_x, \hat{S}_y] = i\hat{S}_z$$
$$\hat{S}^2 \psi = S(S+1) \psi$$

Hence, particles have quantised spin as well.

Quantisation of spin

Furthermore, Pauli matrices cause

$$\hat{\mathbf{S}}^2 = \frac{3}{4} \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 & \\ & & & 1 \end{pmatrix} \Rightarrow s = \frac{1}{2}$$

 \Rightarrow The Dirac equation describes fermions.