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Exercise 8: Goodness of Fits

How can we judge if a fit describes the fitted data well? A simple example will
show that a good x?/n.d.f. is not always sufficient for that. However, there are
other possibilities to guaranty the goodness of a fit. This can especially be a
problem if we have a large background and look for a small signal. Do we really
find a signal or is it just a statistical fluctuation of the background?

Exercise 8.1

Assume we measure something that is constant. e.g.:

oo

x 1 2 3 4 5) 6 7
Y 2 2 2 2 4 4 4
oy || 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06
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Table 1: Measurements of a constant parameter.

Make a plot of x versus y with TGraphErrors and make a y2-fit. Calculate
x?%/n.d.f. with n.d.f=number of degrees of freedom (= number of available meas-
urements minus number of free parameters) using the functions GetChisquare
and GetNDF. You will yield a x?/n.d.f. very close to 1. However, one can tell
that this is not exactly a good fit. It demonstrates that just having a good
x?%/n.d.f. is not enough to be convinced of the goodness of a fit.

Exercise 8.2

Two simple checks of fits are very common: the pull distribution and the sign
check. The pull distribution is a distribution of
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where (z;, y;) are the data points with o; the error on y; and f is the fit function.
For a good fit, this should yield a Gaussian with a mean of 0 and a o of 1.



The sign check depends on the sign of y; — f(z;). Here one calculates the
sum of the sign changes. When the sign between two consequitive z; values
remains the same, +1 is added, otherwise -1 is added. When the points are
randomly distributed around the model prediction, the sum should be close to
0.

Generate 10,000 random numbers according to a Gaussian distribution with
a mean of 0 and a sigma of 1.4. Store the values in a histogram with 500 bins
between -5 and 5. Calculate the sign sum and plot the pull distribution. Skip
empty bins.

Exercise 8.3

In particle physics, especially in searches for new particles, the main problem is
that there can be relatively small signals over a large background. We will try
to find a small signal amidst background by a combined fitting technique.

Download ex83.root from the webpage. You will find there a histogram of
the invariant mass of two particles. There are also a Monte Carlo simulation
of the background. Let us assume that theorists have predicted that the new
particle has a mass around 14.

First, one need to parametrise the background. This can be done well using
a Landau distribution. Try to fit the background by using a Landau.

After extracting the parameters describing the background, one can focus
on the signal distribution. The signal is fitted with the sum of the expected
signal distribution (here a Gaussian around 14) together with the background
parametrisation. The luminosity in the background Monte Carlo sample is
twice the luminosity in the data. Try to extract the number of particles found
by making this combined fit. What is the width and the mass of the particle?
How many standard deviations is the observed signal from zero?

Exercise 8.4

A measure of how well a theory fits the data is to form the following quantity,
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For cases where the errors are approximately Gaussian in nature or, equi-
valently, where the contents of each bin are greater than about 10, A is termed
x? and is distributed according to the following analytical probability density
function (p.d.f),
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where n = the number of degrees of freedom (n.d.f).

The ’goodness-of-fit’ is then best expressed by forming the probability of
having a data set that, by chance, fits the theory as well (or worse) than the
data set you have, namely,
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The file ex84_data.dat contains a histogram of data values: The first two
columns are the bin boundaries, i.e. the values at the low and high edge of the
bin, and the third column gives the number of entries n; in bin . We will treat
these entries as Poisson random variables ie they are assumed to derive from a
Poisson distribution of mean n; and hence have a standard deviation of |/n;.
The files ex84_theoryl.dat and ex84_theory2.dat are theoretical predictions
of the data and in exactly the same format. Note that lines beginning with a
character 'I” are comments and should be ignored.

e (a) Download the template. It contains a function readFile which reads
in the data of one file, filling arrays with bin edges and contents. It also
produces a histogram of the data read.

e (b) Determine the A value of the data set for each of the two theories.

e (c) Because the data set contains many bins with only a few or no entries,
one does not expect A to follow the y2-distribution. Write a Monte
Carlo program to determine the actual p.d.f. for the two hypotheses
ex84_theoryl.dat and ex84_theory2.dat (hint: generate N from
a random Poisson distribution with mean equal to the value of the theory
prediction in that bin. You can generate them via x=gRandom->Poisson (nu).
Compute A and record the value in a histogram. Repeat the experiment
many times, e.g. 10°. )

e (d) What are the P-values for the two theories? Which theory best de-
scribes the data? Use the histogram generated in (c) to obtain the actual
p.d.f.

o (e*) Compare the actual p.d.f.s obtained with the y? distribution for the
same n.d.f. (N.B. Use TMath::Gamma(), with argument (ng.r/2.) of type
double. ). What would the P-values be if one assumes a x? distribution?



