Discovery of Violations of Fundamental Symmetry Principles in the Decay of Neutral K-mesons

Stefan Paul

Seminar on Nobel Prizes in Particle Physics

15.01.2016

Stefan Paul 1 / 23

Table of contents

Introduction

The neutral kaon system

The Cronin-Fitch-experiment

Theoretical description and the search for direct CPV

Stefan Paul 2 / 23

Symmetries

- symmetries play an important role in physics:
 - enabled postulation of undiscovered particles
 - deep connection to conservation laws
- continuous symmetries (Noether's theorem)
- discrete symmetries (represented by operators in QM)

▶ charge conjugation C: $X \to \overline{X}$

• parity transformation P: $\vec{r} \rightarrow -\vec{r}$

▶ time reversal symmetry T: $t \rightarrow -t$

Pauli & Lüders 1955:

CPT-theorem

Physical phenomena are invariant under combined action of C. P & T.

Stefan Paul 3 / 23

The path to the discovery of CP violation

- ► for a long time also separate C-, P- & T-symmetry were assumed to be valid
- Until 1956: Lee & Yang postulated C- & P-violation in the weak interaction
- Experimental confirmation for C- & P-violation by Wu in 1957
- ▶ Nobel Prize 1957 awarded to Lee and Yang

Stefan Paul 4 / 23

The path to the discovery of CP violation

- ▶ for a long time also separate C-, P- & T-symmetry were assumed to be valid
- Until 1956: Lee & Yang postulated C- & P-violation in the weak interaction
- Experimental confirmation for C- & P-violation by Wu in 1957
- Nobel Prize 1957 awarded to Lee and Yang

► Landau 1957: violations of C and P compensate each other
→ apparent CP-invariance

Stefan Paul 4 / 23

► Evidence for CP violation in the decay of neutral K-mesons observed by James Cronin & Val Fitch in 1964

VOLUME 13, NUMBER 4

PHYSICAL REVIEW LETTERS

27 JULY 1964

EVIDENCE FOR THE 2π DECAY OF THE K20 MESON*†

J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay Princeton University, Princeton, New Jersey (Received 10 July 1964)

- CP violation implies T violation if CPT invariance is assumed
- ► Sakharov 1967: Conditions for the baryon asymmetry in the early universe (baryogenesis) include CP violation
- ▶ 1980 Cronin and Fitch received the Nobel Prize "for the discovery of violations of fundamental symmetry principles in the decays of neutral K-mesons"

James Cronin (left) and Val Fitch (right)

Stefan Paul 5 / 23

The neutral kaon system

- strong eigenstates: $|K^0\rangle = |d\overline{s}\rangle \& |\overline{K}^0\rangle = |s\overline{d}\rangle$
- generated in strong interactions, typical production channels:

$$\pi^{-} + p \rightarrow \Lambda + K^{0}$$

 $p + \overline{p} \rightarrow K^{+} + \overline{K}^{0} + \pi^{-}$

- neutral kaons decay to hadronic and semi-leptonic final states via weak interaction
- ▶ mixing of K^0 & \overline{K}^0 via weak interaction
- \triangleright physical states are superposition of $K^0 \& \overline{K}^0$
- $ightharpoonup K^0 \& \overline{K}^0$ are no eigenstates of CP:

$$CP |\mathsf{K}^0\rangle = -|\overline{\mathsf{K}}^0\rangle$$

 $CP |\overline{\mathsf{K}}^0\rangle = -|\mathsf{K}^0\rangle$

6/23

CP eigenstates

▶ **CP eigenstates** are linear combinations of the strong eigenstates:

$$\begin{split} |\mathsf{K}_1\rangle &= \frac{1}{\sqrt{2}} \left(|\mathsf{K}^0\rangle - |\overline{\mathsf{K}}^0\rangle \right), \qquad \mathit{CP} \, |\mathsf{K}_1\rangle = + \, |\mathsf{K}_1\rangle \qquad \text{"CP even"} \\ |\mathsf{K}_2\rangle &= \frac{1}{\sqrt{2}} \left(|\mathsf{K}^0\rangle + |\overline{\mathsf{K}}^0\rangle \right), \qquad \mathit{CP} \, |\mathsf{K}_2\rangle = - \, |\mathsf{K}_2\rangle \qquad \text{"CP odd"} \end{split}$$

for the final states of neutral kaon decays to pions one finds:

e.g. for
$$K^0 \to \pi^0 \pi^0$$
 $J^P : 0^- \to 0^- 0^- \Rightarrow L = 0$
 $CP |\pi^0 \pi^0\rangle = P |\pi^0 \pi^0\rangle = (-1)^2 (-1)^L = + |\pi^0 \pi^0\rangle$

From similar arguments: $CP \, |\pi\pi\rangle = + \, |\pi\pi\rangle$ CP even $CP \, |\pi\pi\pi\rangle = - \, |\pi\pi\pi\rangle$ CP odd

assuming CP invariance in the decays thus yields:

CP even:
$$K_1 \rightarrow \pi\pi$$
, $K_1 \not\rightarrow \pi\pi\pi$
CP odd: $K_2 \rightarrow \pi\pi\pi$, $K_2 \not\rightarrow \pi\pi$

Stefan Paul 7 / 23

expect large difference in lifetimes:

$$m_{\rm K} - 2m_{\pi} \approx 220 \, {\rm MeV} \gg m_{\rm K} - 3m_{\pi} \approx 80 \, {\rm MeV} \quad \Rightarrow \quad \tau_1 \ll \tau_2$$

• indeed a short-lived and a long-lived particle K_S & K_L were observed in experiment, before the discovery of CPV it was thus natural to identify:

$$\begin{split} |\mathsf{K}_{\mathcal{S}}\rangle &= |\mathsf{K}_{1}\rangle = \frac{1}{\sqrt{2}}\left(|\mathsf{K}^{0}\rangle - |\overline{\mathsf{K}}^{0}\rangle\right) \\ |\mathsf{K}_{\mathcal{L}}\rangle &= |\mathsf{K}_{2}\rangle = \frac{1}{\sqrt{2}}\left(|\mathsf{K}^{0}\rangle + |\overline{\mathsf{K}}^{0}\rangle\right) \\ \tau_{\mathcal{S}} &= 0.9 \cdot 10^{-10} s, \quad \tau_{\mathcal{L}} = 0.5 \cdot 10^{-7} s \end{split}$$

tiny mass difference: $m_S \approx m_L \approx 498 MeV$,

$$\frac{\Delta m}{m} \approx 7 \cdot 10^{-15}$$

(Angelopoulos et. al. 2001)

Stefan Paul 8 / 23

Meson oscillations (assuming CP invariance)

- $ightharpoonup K^0 \leftrightarrow \overline{K}^0$ -mixing arises from box-diagrams
- ▶ WF for production of a K^0 at t = 0:

WF for production of a K⁰ at
$$t=0$$
:
$$|\psi(t)\rangle = \frac{1}{\sqrt{2}} \left(e^{-\frac{t}{2\tau_S} + im_S t} \left| \mathsf{K}_S \right\rangle + e^{-\frac{t}{2\tau_L} + im_L t} \left| \mathsf{K}_L \right\rangle \right)$$

▶ probabilities to be in state K^0 or \overline{K}^0 after time t:

$$\begin{split} &P(\mathsf{K}^{0}_{t=0}\to\mathsf{K}^{0}) = |\braket{\mathsf{K}^{0}|\psi(t)}|^{2} = \frac{1}{4}\left[e^{-t/\tau_{S}} + e^{-t/\tau_{L}} + 2cos(\Delta mt)e^{-t/2(\tau_{S}+\tau_{L})}\right] \\ &P(\mathsf{K}^{0}_{t=0}\to\overline{\mathsf{K}}^{0}) = |\braket{\overline{\mathsf{K}}^{0}|\psi(t)}|^{2} = \frac{1}{4}\left[e^{-t/\tau_{S}} + e^{-t/\tau_{L}} - 2cos(\Delta mt)e^{-t/2(\tau_{S}+\tau_{L})}\right] \end{split}$$

Stefan Paul 9/23

Kο

Meson oscillations (assuming CP invariance)

▶ probabilities to be in state K^0 or \overline{K}^0 after time t:

$$\begin{split} &P(\mathsf{K}^{0}_{t=0}\to\mathsf{K}^{0}) = |\left<\mathsf{K}^{0}|\psi(t)\right>|^{2} = \frac{1}{4}\left[e^{-t/\tau_{S}} + e^{-t/\tau_{L}} + 2cos(\Delta mt)e^{-t/2(\tau_{S}+\tau_{L})}\right] \\ &P(\mathsf{K}^{0}_{t=0}\to\overline{\mathsf{K}}^{0}) = |\left<\overline{\mathsf{K}}^{0}|\psi(t)\right>|^{2} = \frac{1}{4}\left[e^{-t/\tau_{S}} + e^{-t/\tau_{L}} - 2cos(\Delta mt)e^{-t/2(\tau_{S}+\tau_{L})}\right] \end{split}$$

Stefan Paul 9 / 23

Regeneration

- ▶ $K^0(S = +1)$ and $\overline{K}^0(S = -1)$ interact differently with nuclear matter due to their opposite strangeness
- ► K⁰ only scatters (quasi-)elastically with nucleons:

$$K^0+N\to K^0+N^{(*)}$$

► K

or

can also excite hyperons or
resonances thereof:

$$\overline{\mathsf{K}}^0[s\overline{d}] + N[uud/udd] \to \pi^0[d\overline{d}] + \Lambda/\Sigma/Y^*[suu/sud]$$

 \Rightarrow much stronger absorption of $\overline{\mathsf{K}}^0$

Regeneration

Production of K_s as a K_t -beam traverses nuclear matter.

coherent regeneration: K_S generated in forward direction have identical momentum and phase as incident K_I

Stefan Paul 10 / 23

Experimental setup
Regeneration measurements
Results
CP violation

The Cronin-Fitch-experiment

VOLUME 13, NUMBER 4

PHYSICAL REVIEW LETTERS

27 JULY 1964

EVIDENCE FOR THE 2π DECAY OF THE K2° MESON*†

J. H. Christenson, J. W. Cronin, [‡] V. L. Fitch, [‡] and R. Turlay [§]
Princeton New Jersey
(Received 10 July 1964)

- ► located at the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory
- mainly intended for study of regeneration in neutral kaons
- advent of spark chamber detectors enabled a new level of precision

Stefan Paul 11 / 23

Experimental setup

- ► K⁰ beam produced by bombarding a Be-target with 30GeV-protons from AGS
- ▶ after freely propagating 57 feet (\sim 17.4m) the initial K⁰-beam has become purely K,

Stefan Paul 12 / 23

Experimental setup Regeneration measurements Results CP violation

Experimental Setup

- ▶ 2 modes of operation
- detection of charged decay products in 2 spectrometers
- spark chambers triggered on coincidence between both spectrometer arms
- ► analysis program yields 3-momenta \vec{p}_1 and \vec{p}_2 of detected particles

Stefan Paul 13 / 23

Experimental setup Regeneration measurements Results CP violation

Experimental Setup

- ▶ 2 modes of operation
- detection of charged decay products in 2 spectrometers
- spark chambers triggered on coincidence between both spectrometer arms
- ► analysis program yields 3-momenta \vec{p}_1 and \vec{p}_2 of detected particles
- identification of 2π decays:
 - 1. via 3-momentum sum $\vec{p}_1 + \vec{p}_2$
 - 2. by invariant mass $m^* = m_K$?

Stefan Paul 13 / 23

Regeneration measurements

- coherent K_S regeneration measurements
 - 1. calibration for rare CP violating decays $K_L \to \pi\pi$ as these are simulated by the rapid $K_S \to \pi\pi$ decays
 - 2. important observation: number of detected $K_S \to \pi\pi$ events negligible in He gas

Stefan Paul 14 / 23

Results - mass distribution of all K, decays in He gas

broad peak due to 3-body-decays:

$$K_L \rightarrow \pi^+ \ell^- \nu_\ell$$
 $K_L \rightarrow \pi^- \ell^+ \overline{\nu}_\ell$
 $K_L \rightarrow \pi^+ \pi^- \pi^0$

no signature of decays to two pions recognizable (i.e. no sharp peak around $m^* = m_K \approx 498 MeV$

15/23

Results - angular distribution for different mass ranges

- ▶ data from 22700 K, decays
- uniform background from 3-body-decays
- ▶ after background correction: 45±9 events in forward peak $(\cos\theta > 0.9999)$ at $m^* \approx m_K$
- \triangleright as coherent regeneration of K_S negligible in He, these 45 events correspond to $K_I \to \pi^+\pi^-$ decays

$$BR = \frac{\Gamma(K_L \to \pi^+ \pi^-)}{\Gamma(K_L \to \text{all charged modes})}$$
$$= (2.0 \pm 0.4) \cdot 10^{-3}$$

CP violation

• we identified $|K_S\rangle = |K_1\rangle \& |K_L\rangle = |K_2\rangle$

- ▶ conclusion: observation of $K_L \to \pi^+\pi^-$ events implies that K_L is not a pure CP-eigenstate \Rightarrow (indirect) **CP** violation!
- ► The actual **physical states** are then given by:

$$\begin{split} |\mathsf{K}_{L}\rangle &= \frac{1}{\sqrt{1+|\epsilon|^2}} \big(|\mathsf{K}_{2}\rangle + \epsilon \, |\mathsf{K}_{1}\rangle \big) \approx |\mathsf{K}_{2}\rangle \\ |\mathsf{K}_{S}\rangle &= \frac{1}{\sqrt{1+|\epsilon|^2}} \big(|\mathsf{K}_{1}\rangle + \epsilon \, |\mathsf{K}_{2}\rangle \big) \approx |\mathsf{K}_{1}\rangle \end{split}$$

with $\epsilon \approx 2.3 \cdot 10^{-3}$

Stefan Paul 17 / 23

Experimental setup Regeneration measurements Results CP violation

CP violation

▶ 2nd possibility: CP is violated in the decay (direct CPV)

$$|\mathsf{K}_L\rangle = |\mathsf{K}_2\rangle \rightarrow |\pi\pi\rangle$$

$$\mathsf{CP}\text{--}1 \rightarrow \mathsf{CP}\text{-+}1$$

also both effects can be realized at the same time:

$$|\mathsf{K}_{L}\rangle = |\mathsf{K}_{2}\rangle + \epsilon\,|\mathsf{K}_{1}\rangle$$

$$|\mathsf{K}_{L}\rangle = |\mathsf{K}_{2}\rangle + \epsilon\,|\mathsf{K}_{1}\rangle$$

$$|\mathsf{\epsilon}$$
 indirect
$$\mathsf{CPV}$$

$$|\pi\pi\rangle$$

$$\mathsf{CP} = +1$$

• direct CPV is quantified by the parameter ϵ'

Stefan Paul 18 / 23

Theoretical description of CPV

- 1. superweak theory proposed by Wolfenstein (1964)
 - predicts fifth fundamental interaction: "superweak force" transforming K_I into K_S
 - includes only indirect but **no direct CPV** ($\epsilon' = 0$)
- 2. Cabbibo-Kobayashi-Maskawa(CKM)-matrix (1973)
 - describes quark mixing due to weak interaction
 - ► CPV enters via a complex phase factor in CKM-matrix
 - complex phase requires matrix of rank ≥ 3 ⇒ postulation of 3rd quark generation (NP 2008)
 - indirect and direct CPV postulated

$$V_{\textit{CKM}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

where
$$c_{12} = cos(\theta_{12}), s_{12} = sin(\theta_{12}), ...$$

Stefan Paul 19 / 23

Search for direct CP violation

$$\Re\left(\frac{\epsilon'}{\epsilon}\right) \approx \frac{1}{6} \left(1 - \frac{\left|\frac{\Gamma(\mathsf{K}_L \to \pi^0 \pi^0)}{\Gamma(\mathsf{K}_S \to \pi^0 \pi^0)}\right|^2}{\left|\frac{\Gamma(\mathsf{K}_L \to \pi^+ \pi^-)}{\Gamma(\mathsf{K}_S \to \pi^+ \pi^-)}\right|^2}\right)$$

- two generations of experiments gave definite results:
 - ▶ at CERN: NA31 followed by NA48
 - ▶ at FNAL: E731 followed by KTeV
- first **proof of direct CPV** by NA31 in 1993: $\Re\left(\frac{\epsilon'}{\epsilon}\right) = (23 \pm 6.5) \cdot 10^{-4}$

- lacktriangle average from these experiments: $\Re\left(rac{\epsilon'}{\epsilon}
 ight)=(16.7\pm1.6)\cdot 10^{-4}$
- ▶ these measurements ruled out the superweak theory as complete description of CPV while confirming the predictions of the CKM-formalism!

Stefan Paul 20 / 23

Recent studies of CPV

current PDG values for CPV parameters in K-system:

$$|\epsilon| = (2.228 \pm 0.011) \cdot 10^{-3}$$

 $\Re\left(\frac{\epsilon'}{\epsilon}\right) = (1.65 \pm 0.26) \cdot 10^{-3}$

- ► CPV was also observed for D- & B-mesons
- current research mainly focused on CPV in B-system as the large mass difference between $B^0 \& \overline{B}^0$ yields strong interference effects between direct and indirect CP violation
- huge experimental efforts at B-factories and LHCb

Stefan Paul 21/23

Sources

- J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Lett. 13, 138 Published 27 July 1964
- J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. 140, B74 Published 11 October 1965
- Val L. Fitch The Discovery of Charge-Conjugation Parity Asymmetry, Nobel Lecture, 1980, http://www.nobelprize.org/nobel_prizes/physics/laureates/1980/fitch-lecture.pdf
- James W. Cronin CP Symmetry Violation The Search For Its Origin, Nobel Lecture, 1980, http://www.nobelprize.org/nobel_prizes/physics/laureates/1980/cronin-lecture.pdf
- Mark Thomson Modern Particle Physics, Cambridge University Press, August 31, 2013
- Mark Thomson Handout 12: The CKM Matrix and CP Violation, Lecture Slides, 2009, http://www.hep.phy.cam.ac.uk/ thomson/lectures/partIllparticles/Handout12_2009.pdf
- Angelopoulos, A. et al. 2001. Eur. Phys. J., C22, 5579.
- I. I. Bigi, A. I. Sanda CP Violation, Cambridge University Press, April 30, 2009, Publisher: Cambridge University Press, April 30, 2009
- K. Kleinknecht CP Violation and K Decays, Annual Review of Nuclear Science, Vol. 26: 1-50 (Volume publication date December 1976)
- A. Kellerbauer 50 Jahre CP-Verletzung, Physik in unserer Zeit Volume 45, Issue 4, pages 168-175, Juli 2014
- L. Wolfenstein, Phys. Rev. Lett. 13, 562 Published 2 November 1964
- M. Kobayashi, T. Maskawa, Prog. Theor. Phys. (1973) 49 (2), 652-657.
- W. Wislicki Direct CP Violation In Neutral Kaon Decays, 2003, http://arxiv.org/abs/hep-ex/0303037v1
- Gianluca Lamanna Search for Direct CP violation in charged Kaons with NA48/2 experiment (PhD Thesis), 2006, http://inspirehep.net/record/1186241/files/tesidott2311.pdf
- Particle Data Group CP Violation in Meson Decays, 2012, http://pdg.lbl.gov/2012/reviews/rpp2012-rev-cp-violation.pdf
- https://en.wikipedia.org/wiki/Neutral_particle_oscillation

Stefan Paul 22 / 23

Figure sources

- Gianluca Lamanna Search for Direct CP violation in charged Kaons with NA48/2 experiment (PhD Thesis), 2006, http://inspirehep.net/record/1186241/files/tesidott2311.pdf
- J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay Phys. Rev. Lett. 13, 138 Published 27 July 1964
- J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay Phys. Rev. 140, B74 Published 11 October 1965
- http://www.nobelprize.org/nobel_prizes/physics/laureates/1980/cronin-facts.html
- http://www.nobelprize.org/nobel_prizes/physics/laureates/1980/fitch-facts.html
- Mark Thomson Modern Particle Physics, Cambridge University Press, August 31, 2013
- https://en.wikipedia.org/wiki/Kaon#/media/File:Kaon-box-diagram-with-bar.svg
- I. I. Bigi, A. I. Sanda CP Violation, Cambridge University Press, April 30, 2009, Publisher: Cambridge University Press, April 30, 2009
- J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay Phys. Rev. 140, B74 Published 11 October 1965
- https://universe-review.ca/I15-25-CPviolation2.jpg
- W. Wislicki Direct CP Violation In Neutral Kaon Decays, 2003, http://arxiv.org/abs/hep-ex/0303037v1

Stefan Paul 23 / 23