Statistical Methods in Particle Physics

10. Machine Learning

Heidelberg University, WS 2023/24

<u>Klaus Reygers</u>, Martin Völkl (lectures) Ulrich Schmidt (tutorials)

You

Which topics should be covered in a introductory lecture on machine learning?

ChatGPT

An introductory lecture on machine learning should cover fundamental concepts and provide a broad overview of the field. Here are key topics that you might consider covering:

Introduction to Machine Learning:

- Definition of machine learning.
- Distinction between traditional programming and machine learning.
- Overview of real-world applications.

2. Types of Machine Learning:

- Supervised learning, unsupervised learning, and reinforcement learning.
- Explanation of each type with examples.

3. Supervised Learning:

- Definition and examples.
- Key components: input features, labels, and the learning process.
- Common algorithms: linear regression, logistic regression, decision trees, and support vector machines.

4. Unsupervised Learning:

- Definition and examples.
- Key components: clustering and dimensionality reduction.
- Common algorithms: k-means clustering, hierarchical clustering, and principal component analysis (PCA).

5. Reinforcement Learning:

- Definition and examples.
- Key components: agents, environments, and rewards.
- Common algorithms: Q-learning and deep reinforcement learning.

6. Introduction to Neural Networks:

- Basic structure of artificial neural networks.
- Neurons, layers, and activation functions.
- Feedforward and backpropagation concepts.

7. Deep Learning:

- Explanation of deep neural networks.
- Convolutional Neural Networks (CNNs) for image processing.
- Recurrent Neural Networks (RNNs) for sequential data.

8. Evaluation Metrics:

- Accuracy, precision, recall, F1 score, and confusion matrix.
- Choosing appropriate metrics based on the problem.

9. Feature Engineering:

- Importance of selecting relevant features.
- Techniques for feature selection and extraction.

10. Model Training and Evaluation:

- Splitting data into training and testing sets.
- Cross-validation.
- Overfitting and underfitting.

11. Challenges and Considerations:

- Bias and fairness in machine learning.
- Ethical considerations.
- Limitations and challenges in real-world applications.

12. Practical Examples and Demos:

- Showcase simple examples or demos to illustrate key concepts.
- Demonstrate how to implement a basic machine learning model using a popular framework.

13. **Resources for Further Learning:**

· Point to relevant books, online courses, and resources for those interested in diving deeper into machine learning.

Multivariate analysis: An early example from particle physics

(Garrido, Juste and Martinez, ALEPH 96-144)

G. Cowan, Lecture on Statistical data analysis Signal: $e^+e_- \rightarrow W^+W^$ often 4 well separated hadron jets

Background: $e^+e^- \rightarrow qqgg$ 4 less well separated hadron jets

Input variables based on jet structure, event shape, ... none by itself gives much separation.

Neural network output:

Machine learning

"Machine learning is the subfield of computer science that gives computers the ability to learn without being explicitly programmed" – Wikipedia

Example: spam detection

Write a computer program with **explicit rules** to follow

if email contains V!agrå

then mark is-spam;

if email contains ...

if email contains ...

Traditional Programming

J. Mayes, Machine learning 101

Write a computer program to learn from examples try to classify some emails; change self to reduce errors; repeat;

Machine Learning Programs

Manual feature engineering vs. automatic feature detection

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 10. Machine Learning

4

AI, ML, and DL

"Al is the study of how to make computers perform things that, at the moment, people do better."

"deep" in deep learning: artificial neural nets with many neurons and multiple layers of nonlinear processing units for feature extraction

Elaine Rich, Artificial intelligence, McGraw-Hill 1983

Some successes and unsolved problems in Al

Arithmetic (1945)	Facu
Sorting lists of numbers (1959)	- Easy
Playing simple board games (1959)	
Playing chess (1997)	
Recognizing faces in pictures (2008)	<u> </u>
Usable automated translation (2010)	a lot o
Playing Go (2016)	
Usable real-time translation of spoken words (2016)	
Driverless cars	Real
Automatically providing captions for pictures	Rear
Understanding a story & answering questions about it	
Human-level automated translation	
Interpreting what is going on in a photograph	Nowh
Writing interesting stories	solve
Interpreting a work of art	
Human-level general intelligence	

M. Woolridge, The Road to Conscious Machines

ed, after of effort

progress

nere near d

Impressive progress in certain fields:

- Image recognition
- Speech recognition
- Recommendation systems
- Automated translation
- Chatbots based on Large Language Models (LLMs)
- Analysis of medical data

How can we profit from these developments in physics?

Different modeling approaches

- Simple mathematical representation like linear regression. Favored by statisticians.
- Complex deterministic models based on scientific understanding of the physical process. Favored by physicists.
- Complex algorithms to make predictions that are derived from a huge number of past examples ("machine learning" as developed in the field of computer science). These are often black boxes.
- Regression models that claim to reach causal conclusions. Used by economists.
- D. Spiegelhalter, The Art of Statistics Learning from data

Application of machine learning in experimental particle physics

- Event reconstruction and particle identification
- Monte Carlo simulation
 - use generative models for faster MC event generation
- Data acquisition / trigger
 - faster algorithms
- Offline data analysis
 - better algorithms
- Detector monitoring
 - anomaly detection

"Machine Learning in High Energy Physics Community White Paper", arXiv:1807.02876

Machine learning: The "hello world" problem

Recognition of handwritten digits

- MNIST database (Modified National Institute of Standards and Technology database)
- 60,000 training images and 10,000 testing images labeled with correct answer
- 28 pixel x 28 pixel
- Algorithms have reached "nearhuman performance"
- Smallest error rate (2018): 0.18%

Play with MNIST data set and Keras (Stefan Wunsch, CERN IML Workshop): https://github.com/stwunsch/iml_tensorflow_keras_workshop

https://en.wikipedia.org/wiki/MNIST_database

Machine learning: Image recognition

ImageNet database

- ▶ 14 million images, 22,000 categories
- 1.4 million images, 1000 categories
- In 2017, 29 of 38 competing teams got less than 5% wrong

Since 2010, the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC):

https://en.wikipedia.org/wiki/ImageNet

p	motor scooter	leopard
p	motor scooter	leopard
hip	motor scooter	leopard
p	motor scooter	leopard
hip	motor scooter	leopard
oat	go-kart	jaguar
p	motor scooter	leopard
hip	motor scooter	leopard
oat	go-kart	jaguar
ian	moped	cheetah
p	motor scooter	leopard
hip	motor scooter	leopard
oat	go-kart	jaguar
ian	moped	cheetah
oat	bumper car	snow leopard

https://www.tensorflow.org/tutorials/image_recognition

ImageNet: Large Scale Visual Recognition Challenge

O. Russakovsky et al, arXiv:1409.0575 figure from https://arxiv.org/pdf/1703.09039.pdf

Adversarial examples

Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy, arXiv:1412.6572v1

 $+.007 \times$

"panda" 57.7% confidence

"nematode" 8.2% confidence

 $sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$

x + $\epsilon \text{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon" 99.3 % confidence

Three types of learning

Reinforcement learning

- The machine ("the agent") predicts a scalar reward given once in a while
- Weak feedback

Supervised learning

- The machine predicts a category based on labeled training data
- Medium feedback

Unsupervised learning

- Describe/find hidden structure from "unlabeled" data
- Cluster data in different sub-groups with similar properties

LeCun 2018, Power And Limits of Deep Learning, https://www.youtube.com/watch?v=0tEhw5t6rhc

arXiv:1312.5602

Aurélien Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow Example:

anomaly detection

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 10. Machine Learning

Feature 1

13

Learning resources

- Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, free online http://www.deeplearningbook.org/
- *First Course for Engineers and Scientists*, draft version available: http://smlbook.org/
- Simon J.D. Prince, Understanding Deep Learning, draft version available: https://udlbook.github.io/udlbook/
- Aurélien Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow
- Kevin Patrick Murphy, Probabilistic Machine Learning, https://probml.github.io/pml-book/
- A Living Review of Machine Learning for Particle Physics, https://github.com/iml-wg/HEPML-LivingReview
- Tilman Plehn, Anja Butter, Barry Dillon, Claudius Krause, Modern Machine Learning for LHC Physicists, https://arxiv.org/abs/2211.01421

Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön, Machine Learning - A

Useful libraries

- scikit-learn, <u>https://scikit-learn.org/</u>
- PyTorch, <u>https://pytorch.org/</u>
- TensorFlow, <u>https://www.tensorflow.org/</u>
- XGBoost, <u>https://xgboost.ai/</u>

OPyTorch

Multivariate classification

Consider events which can be either signal or background events. Each event is characterized by *n* observables:

Goal: classify events as signal or background in an optimal way. This is usually done by mapping the feature vector to a single variable, i.e., to scalar "test statistic": $\mathbb{R}^n \to \mathbb{R}$: $y(\vec{x})$

A cut y > c to classify events as signal corresponds to selecting a potentially complicated hyper-surface in feature space. In general superior to classical "rectangular" cuts on the x_i .

 $\vec{x} = (x_1, \dots, x_n)$ "feature vector"

Classification: Learning decision boundaries

k-Nearest-Neighbor, Boosted Decision Trees, Multi-Layer Perceptrons, Support Vector Machines

. . .

G. Cowan: https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Supervised learning in a nutshell

Supervised Machine Learning requires labeled training data, i.e., a training sample where for each event it is known whether it is a signal or background event

Design function $y(\vec{x}, \vec{w})$ with ajdustable parameters \vec{w}

Design a loss function

Find best parameters which minimize loss

M. Kagan, https://indico.cern.ch/event/619370/

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 10. Machine Learning

18

Supervised learning: classification and regression

The codomain Y of the function y: $X \rightarrow Y$ can be a set of labels or classes or a continuous domain, e.g., \mathbb{R}

 $Y = \{0, 1\}$ e.g., signal or background Binary classification: $Y = \{c_1, c_2, ..., c_n\}$ Multi-class classification:

Labels sometimes represented as "one-hot vector" (no ordering btw. labels):

- Y =finite set of labels \rightarrow classification
- $Y = real numbers \rightarrow regression$

"All the impressive achievements of deep learning amount to just curve fitting"

J. Pearl, Turing Award Winner 2011, https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/

 $t_a = \{0, 0, ..., 1, ..., 0\}$

Supervised learning: Training, validation, and test sample

- Decision boundary fixed with training sample
- Performance on training sample becomes better with more iterations
- Danger of overtraining: Statistical fluctuations of the training sample will be learnt
- Validation sample = independent labeled data set not used for training \rightarrow check for overtraining
- Sign of overtraining: performance on validation sample becomes worse \rightarrow Stop training when signs of overtraining are observed ("early stopping")
- Determine performance using performance metric (such as accuracy, precision, recall, etc.): apply classifier to independent **test sample**
- Often: test sample = validation sample (only small bias)

Supervised learning: Cross validation

Rule of thumb if training data not expensive

- Training sample: 50%
- Validation sample: 25%
- Test sample: 25%

Cross validation (efficient use of scarce training data)

- Split training sample in k independent subset T_k of the full sample T
- Frain on $T \setminus T_k$ resulting in k different classifiers
- For each training event there is one classifier that didn't use this event for training
- Validation results are then combined

often test sample = validation sample, i.e., training : validation/test = 50:50

Hyperparameter optimization

- Example of hyperparameters
 - Number of layers/nodes in an ANN, learning rate, number of leaves in a decision tree, ...
- This parameters are fixed during model training, i.e., they are not optimized with gradient descent.
- Various approaches to hyperparameter optimization
 - Grid search
 - Random search
 - Bayesian optimization
- Tools
 - Optuna, <u>https://optuna.readthedocs.io</u>
 - scikit-optimize, <u>https://scikit-optimize.github.io/stable/</u>

• • • •

Image from CS231n lecture

More precise sampling of the important parameter in the case of random search.

Often used loss functions

Squared error loss:

- often used in regression

Cross entropy:

– consider binary classification

 $-t \in \{0, 1\}$

- Often used in classification

More on entropy

 $I(x) = -\log p(x)$ Self-information of an event x:

- Measure of the "amount of surprise" of an outcome value x.
- If $\log \equiv \log_2$: Shannon information measured in bits.

Shannon entropy:

$$H(P) = -\sum p$$

- Expected amount of information of an event drawn from a distribution P.
- Measure of the minimum of amount of bits needed on average to encode symbols drawn from a distribution In the above (trivial) example: $H = -\sum 1/2^5 \log_2(1/2^5) = 5$ bits

Cross entropy:

- H(P, Q) = -E[
- actually follows a distribution P
- distribution P)

Example: 32 equally likely outcomes. A given observed event contains $-\log_2(1/2^5)$ bits = 5 bits of information.

$p_i \log p_i$

$$\log q_i] = -\sum p_i \log q_i$$

Can be interpreted as a measure of the amount of bits needed when a wrong distribution Q is assumed while the data

Measure of dissimilarity between distributions P and Q (i.e, a measure of how well the model Q describes the true

Logistic Regression for Binary Classification (1)

Logistic regression can be viewed as a modification of linear regression. The output of the model is number in [0, 1] which is usual interpreted as a probability.

First, a score z is calculated from the feature vector \vec{x} :

 $z = w_0 + w_1 x_1 + w_2 x_2 + ... + w_p x_p = \vec{w}^T \vec{x}$

$$y(ec{x};ec{w}) = rac{e^{ec{w}^{ op}ec{x}}}{1+e^{ec{w}^{ op}ec{x}}}$$

training data set $\{\vec{x}_i, y_i\}_{i=1}^n$ where $y_i \in \{0, 1\}$. The optimal parameters are then given by:

$$\hat{\vec{w}} = \operatorname{argmax}_{\vec{w}} \sum_{i=1}^{n} \log p(y_i | \vec{x}_i; \vec{w})$$

The score z is mapped to the interval [0, 1] using the *logistic function* $h(z) = \frac{e^z}{1 + e^z}$:

We can then find the optimal parameters \vec{w} with the aid of the maximum likelihood method. Consider a

Logistic Regression for Binary Classification (2) In our model $p(y = 1 | \vec{x}, \vec{w}) \equiv y(\vec{x}, \vec{w})$ and accordingly $p(y = 0 | \vec{x}, \vec{w}) = 1 - y(\vec{x}, \vec{w})$.

The log-likelihood therefore reads:

$$\log p(y_i | \vec{x}_i; \vec{w}) = \begin{cases} \log y(\vec{x}_i, \vec{w}) & \text{if } y_i = 1\\ \log(1 - y(\vec{x}_i, \vec{w})) & \text{if } y_i = 0 \end{cases}$$

So we need to maximize

$$\frac{1}{n} \sum_{i=1}^{n} \begin{cases} \log y(\vec{x}_{i}, \vec{w}), & \text{if } y_{i} = 1 \\ \log(1 - y(\vec{x}_{i}, \vec{w})), & \text{if } y_{i} = 0 \end{cases}$$

Maximizing the log-likelihood therefore is nothing else but minimizing the cross entropy loss function.

This optimization problem has no closed-form solution and needs to be done numerically.

Multinomial logistic regression: Softmax function

In the previous example we considered two classes, 0 and 1. For multi-class classification, the logistic function can generalized to the softmax function.

Consider K classes and let z_i be the score for class

A probability for class *i* can be predicted with the softmax function:

$$\sigma(\vec{z})_i = \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}}$$
 for $i = 1,...,K$

The softmax functions is often used as the last activation function of a neural network in order to predict probabilities in a classification task.

Multinomial logistic regression is also known as softmax regression.

s *i*,
$$\vec{z} = (z_1, \dots, z_K)$$

Simple example of logistic regression with scikit-learn (1)

Read data

Data are from the wikipedia article on logistic regression

```
# data: 1. hours studies, 2. passed (0/1)
filename = "data/exam.txt"
df = pd.read csv(filename, engine='python', sep='\s+')
```

```
x_tmp = df['hours_studied'].values
x = np.reshape(x tmp, (-1, 1))
y = df['passed'].values
```

Fit the model

```
from sklearn.linear model import LogisticRegression
clf = LogisticRegression(penalty='none', fit intercept=True)
clf.fit(x, y);
```

Calculate predictions

hours studied tmp = np.linspace(0., 6., 1000) hours studied = np.reshape(hours studied tmp, (-1, 1)) y pred = clf.predict proba(hours studied)

https://scikit-learn.org

Simple example of logistic regression with scikit-learn (2)

Plot result

df.plot.scatter(x='hours studied', y='passed') plt.plot(hours studied, y pred[:,1]) plt.savefig("logistic regression.pdf")


```
plt.xlabel("preparation time in hours", fontsize=14)
plt.ylabel("probability of passing exam", fontsize=14)
```

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 10. Machine Learning

Reminder: Neyman–Pearson lemma

The likelihood ratio

$$t(\vec{x}) = \frac{f(\vec{x}|H_1)}{f(\vec{x}|H_0)}$$

is an optimal test statistic, i.e., it provides highest "signal efficiency" $1 - \beta$ for a given "background efficiency" α .

Accept hypothesis if

 $t(\vec{x}) = \frac{f(\vec{x}|H_1)}{f(\vec{x}|H_0)} > c$

Problem: the underlying pdf's are almost never known explicitly.

Two approaches:

- trees, neural networks, ...)

- H_1 : signal hypothesis
- H_0 : background hypothesis

$$(\frac{1}{1}) > 0$$

1. Estimate signal and background pdf's and construct test statistic based on Neyman-Pearson lemma

2. Decision boundaries determined directly without approximating the pdf's (linear discriminants, decision)

Estimating PDFs from histograms?

Consider 2d example:

approximate PDF by N(x, y|S) and N(x, y|B)

M bins per variable in *d* dimensions: *M*^d cells \rightarrow hard to generate enough training data (often not practical for d > 1)

the feature space are referred to as the "curse of dimensionality"

G. Cowan': https://www.pp.rhul.ac.uk/~cowan/stat_course.html

In general in machine learning, problems related to a large number of dimensions of

Naïve Bayesian classifier (also called "projected likelihood classification") Application of the Neyman-Pearson lemma (ignoring correlations between the x_i):

where
$$f_1(x_1) = \int dx_2 dx_3 \dots dx_n f(x_1, x_2, \dots, x_n)$$

 $f_2(x_2) = \int dx_1 dx_3 \dots dx_n f(x_1, x_2, \dots, x_n)$
 \vdots

In practice, the $f_k(x_k)$ are often obtained from the 1d histograms of the feature k of the feature training feature vectors. Some smoothing is typically applied by fitting a suitable function to the 1d histogram.

Classification of feature vector \vec{x} : $y(\vec{x}) = -\frac{1}{1}$ LS

Performance not optimal if true PDF does not factorize

 $f(x_1, x_2, \dots, x_n)$ approximated as $L = f_1(x_1) \cdot f_2(x_2) \cdot \dots \cdot f_n(x_n)$

$$\frac{L_{\rm s}(\vec{x})}{(\vec{x}) + L_{\rm b}(\vec{x})} = \frac{1}{1 + L_{\rm b}(\vec{x})/L_{\rm s}(\vec{x})}$$

k-nearest neighbor method (1)

k-NN classifier

- Estimates probability density around the input vector
- small volume around the point \vec{x}

Algorithms finds *k* nearest neighbors:

Probability for the event to be of signal type:

 $p_s(\vec{x}) =$

k-NN is an example of a **nonparametric model** (methods only uses training data to make predictions). By contrast, parametric models learn parameters from data.

• $p(\vec{x} \mid S)$ and $p(\vec{x} \mid B)$ are approximated by the number of signal and background events in the training sample that lie in a

$$k = k_s + k_b$$

$$\frac{k_s(\vec{x})}{k_s(\vec{x}) + k_b(\vec{x})}$$

k-nearest neighbor method (2)

Simplest choice for distance measure in feature space is the Euclidean distance:

$$R = |\vec{x} - \vec{y}|$$

Better: take correlations between variables into account:

$$R = \sqrt{(\vec{x} - \vec{y})^T V^{-1} (\vec{x} - \vec{y})}$$

V = covariance matrix

"Mahalanobis distance"

The k-NN classifier has best performance when the boundary that separates signal and background events has irregular features that cannot be easily approximated by parametric learning methods.

Fisher linear discriminant

Linear discriminant is simple. Can still be optimal if amount of training data is limited. Ansatz for test statistic: $y(\vec{x}) = \sum_{w_i x_i}^n w_i x_i = \vec{w}^T \vec{x}$

Choose parameters w_i so that separation between signal and background distribution is maximum.

Need to define "separation".

Fisher: maximize
$$J(\vec{w}) = \frac{(\tau_s - \tau_b)^2}{\sum_s^2 + \sum_b^2}$$

$$f(y|\mathbf{s}), f(y|\mathbf{b})$$

Fisher linear discriminant: Variable definitions

Mean and covariance for signal and background:

$$\mu_i^{s,b} = \int x_i f(\vec{x})$$

$$V_{ij}^{\mathsf{s},\mathsf{b}} = \int (x_i - \mu_i^{\mathsf{s},\mathsf{b}})(x_j - \mu_j^{\mathsf{s},\mathsf{b}}) f(\vec{x}|H_{\mathsf{s},\mathsf{b}}) \, \mathrm{d}\vec{x}$$

Mean and variance of $y(\vec{x})$ for signal and background:

$$\tau_{\mathsf{s},\mathsf{b}} = \int y(\vec{x}) f(\vec{x}|H_{\mathsf{s},\mathsf{b}}) \, \mathsf{d}\vec{x} = \vec{w}^{\mathsf{T}} \vec{\mu}_{\mathsf{s},\mathsf{b}}$$
$$\Sigma_{\mathsf{s},\mathsf{b}}^2 = \int (y(\vec{x}) - \tau_{\mathsf{s},\mathsf{b}})^2 f(\vec{x}|H_{\mathsf{s},\mathsf{b}}) \, \mathsf{d}\vec{x} = \vec{w}^{\mathsf{T}} V_{\mathsf{s},\mathsf{b}} \vec{w}$$

G. Cowan': https://www.pp.rhul.ac.uk/~cowan/stat_course.html

 $|H_{\rm s,b})\,\mathrm{d}\vec{x}$

Fisher linear discriminant: Determining the coefficients *w_i* Numerator of $J(\vec{w})$:

$$(\tau_{s} - \tau_{b})^{2} = \left(\sum_{i=1}^{n} w_{i}(\mu_{i}^{s} - \mu_{i}^{b})\right)^{2} = \sum_{i,j=1}^{n} w_{i}w_{j}(\mu_{i}^{s} - \mu_{i}^{b})(\mu_{j}^{s} - \mu_{j}^{b})$$
$$\equiv \sum_{i,j=1}^{n} w_{i}w_{j}B_{ij} = \vec{w}^{\mathsf{T}}B\vec{w}$$

Denominator of $J(\vec{w})$:

 $\Sigma_{s}^{2} + \Sigma_{b}^{2} = \sum_{i,j=1}^{\prime\prime} w_{i}w_{j}$

Maximize:

 $J(\vec{w}) = \frac{\vec{w}^{\mathsf{T}} B \vec{w}}{\vec{w}^{\mathsf{T}} W \vec{w}} = \frac{\mathsf{separation between classes}}{\mathsf{separation within classes}}$

G. Cowan': https://www.pp.rhul.ac.uk/~cowan/stat_course.html

$$v_j (V^{\mathsf{s}} + V^{\mathsf{b}})_{ij} \equiv \vec{w}^{\mathsf{T}} W \vec{w}$$

Fisher linear discriminant: Determining the coefficients *w_i*

Setting $\frac{\partial J}{\partial w_i} = 0$ gives:

$$y(\vec{x}) = \vec{w}^{\mathsf{T}} \vec{x} \quad \text{with} \quad \vec{w} \propto W^{-1} (\vec{\mu}_{\mathsf{s}} - \vec{\mu}_{\mathsf{b}})$$

We obtain linear decision boundaries.

Weight vector \vec{w} can be interpreted as a direction in feature space on which the events are projected.

G. Cowan': https://www.pp.rhul.ac.uk/~cowan/stat_course.html

linear decision boundary

Fisher linear discriminant: Remarks

covariance but different means, the Fisher discriminant is

$$y(\vec{x}) \propto$$

(as $y(\vec{x})$ is a monotonic function of the likelihood ratio)

Test statistic can be written as

neural networks).

- In case the signal and background pdfs $f(\vec{x}|H_s)$ and $f(\vec{x}|H_b)$ are both multivariate Gaussian with the same
 - $\ln \frac{f(\vec{x}|H_{\rm s})}{f(\vec{x}|H_{\rm b})}$
- That is, in this case the Fisher discriminant is an optimal classifier according to the Neyman-Pearson lemma

where events with y > 0 are classified as signal. Same functional form as for the **perceptron** (prototype of

Example: Classification with scikit-learn (1)

Iris flower data set

- Introduced 1936 in a paper by Ronald Fisher
- Task: classify flowers
- Three species: iris setosa, iris virginica and iris versicolor
- Four features: petal width and length, sepal width/length, in centimeters

https://archive.ics.uci.edu/ml/datasets/lris

https://en.wikipedia.org/wiki/Iris_flower_data_se

Example: Classification with scikit-learn (2)

```
# import some data to play with
# columns: Sepal Length, Sepal Width, Petal Length and Petal Width
iris = datasets.load_iris()
X = iris.data
y = iris.target
```

: *# just to create a nice table* df = pd.DataFrame({"Sepal Length (cm)": X[:,0], "Sepal Width (cm)": X[:,1], 'category': y}) df.head()

	Sepal Length (cm)	Sepal Width (cm)	Petal Length (cm)	Petal Width (cm)	category		
0	5.1	3.5	1.4	0.2	0		
1	4.9	3.0	1.4	0.2	0		
2	4.7	3.2	1.3	0.2	0		
3	4.6	3.1	1.5	0.2	0		
4	5.0	3.6	1.4	0.2	0		
list(iris.target_names)							
['setosa', 'versicolor', 'virginica']							
<pre># split data into training and test data sets x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)</pre>							


```
'Petal Length (cm)': X[:,2], 'Petal Width (cm)': X[:,3],
```


Example: Classification with scikit-learn (3)

Softmax regression

from sklearn.linear_model import LogisticRegressi log_reg = LogisticRegression(multi_class='multinon log reg.fit(x train, y train);

k-nearest neighbor

from sklearn.neighbors import KNeighborsClassifie kn neigh = KNeighborsClassifier(n neighbors=5) kn neigh.fit(x train, y train);

Fisher linear discriminant

```
from sklearn.discriminant_analysis import LinearD
fisher ld = LinearDiscriminantAnalysis()
fisher ld.fit(x train, y train);
```

Classification accuracy

```
for clf in [log_reg, kn_neigh, fisher_ld]:
   y pred = clf.predict(x test)
   acc = accuracy_score(y_test, y_pred)
   print(type(clf). name )
   print(f"accuracy: {acc:0.2f}")
    # confusion matrix: columns: true class, row.
   print(confusion matrix(y test, y pred),"\n")
```


on mial', penalty='none')	Output:			
۵.۳	LogisticRegression accuracy: 0.96 [[29 0 0] [0 23 0] [0 3 20]]			
	KNeighborsClassifier accuracy: 0.95 [[29 0 0] [0 23 0] [0 4 19]]			
DiscriminantAnalysis	LinearDiscriminantAnalysis accuracy: 0.99 [[29 0 0] [0 23 0] [0 1 22]]			
: predicted class	With scikit-learn it is extremely simple to test and apply different classification methods			

Examples of metrics: Accuracy, precision and recall

Precision:

Fraction of correctly classified instances among all instances that obtain a certain class label:

Accuracy:

Fraction of correct predictions:

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Iris classification example: precision and recall for softmax classification see <u>sklearn.metrics.classification_report</u>

https://en.wikipedia.org/wiki/Precision_and_recall

Recall:

Fraction of positive instances that are correctly classified.

$recall = \frac{TP}{TP + FN}$			TP: true positives FP: false positives FN: false negatives				
"е	fficiency"		2	presidion res			
			$F_1 = \frac{2}{p_1}$	recision + reca			
<pre>y_pred = log_reg.predict(x_test) print(classification_report(y_test, y_pred))</pre>							
	precision	recall	fl-score	support			
0	1.00	1.00	1.00	29			
1	0.88	1.00	0.94	23			
2	1.00	0.87	0.93	23			
accuracy			0.96	75			
macro avg	0.96	0.96	0.96	75			
weighted avg	0.96	0.96	0.96	75			

Perceptron (1)

The perceptron was designed for image recognition. It was first implemented in hardware (400 photocells, weights = potentiometer settings).

Rosenblatt, 1957

THE MARK I PERCEPTRON

Mark 1 Perceptron. Source: Rosenblatt, Frank (1961) Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms

Perceptron (2)

McCulloch–Pitts (MCP) neuron (1943)

- First mathematical model of a biological neuron
- Boolean input
- Equal weights for all inputs
- Threshold hardcoded

Improvements by Rosenblatt:

- Different weights for inputs
- Algorithm to update weights and threshold given labeled training data

Shortcoming of the perceptron: it cannot learn the XOR function

Minsky, Papert, 1969

The biological inspiration: the neuron

https://en.wikipedia.org/wiki/Neuron https://en.wikipedia.org/wiki/List of animals by number of neurons

10¹¹ neurons, each with on average 7000 synaptic connections

Non-linear transfer / activation function

 $y(\vec{x}) =$ Discriminant:

Examples for *h*:
$$\frac{1}{1+e^{-x}}$$
 ("sigmoid

$$h\left(w_0+\sum_{i=1}^n w_i x_i\right)$$

d" or "logistic" function), tanh x

> Non-linear activation function needed in neural networks when feature space is not linearly separable

Neural net with linear activation functions is just a perceptron

Feedforward neural network with one hidden layer

hidden layer

superscripts indicates layer number

$$\phi_i(\vec{x}) = h\left(w_{i0}^{(1)} + \sum_{j=1}^n w_{ij}^{(1)} x_j\right)$$

$$y(\vec{x}) = h\left(w_{10}^{(2)} + \sum_{j=1}^{m} w_{1j}^{(2)}\phi_j(\vec{x})\right)$$

Straightforward to generalize to multiple hidden layers

Neural network output and decision boundaries

P. Bhat, Multivariate Analysis Methods in Particle Physics, inspirehep.net/record/879273

decision boundaries for different cuts on NN output

Fun with neural nets in the browser

http://playground.tensorflow.org

Network training

- \vec{x}_a : training event, *t_a* : correct label for training event *a* e.g., $t_a = 1$, 0 for signal and background, respectively
- \vec{w} : vector containing all weights

Loss function (example):

$$E(\vec{w}) = \frac{1}{2} \sum_{a=1}^{N} (y(\vec{x}_a, \vec{w}) - t_a)^2 = \sum_{a=1}^{N} E_a(\vec{w})$$

Weights are determined by minimizing the loss function (also called error function)

$$a = 1, ..., N$$

Back-propagation (1)

Start with an initial guess $\vec{w}^{(0)}$ for the weights an then update weights after each training event:

Gradient descent:

 W_1

 $\vec{w}^{(\tau+1)} = \vec{w}^{(\tau)} - \eta \nabla E_a(\vec{w}^{(\tau)})$ learning rate

Choosing a good learning rate can be essential:

https://github.com/rasbt/python-machine-learning-book/blob/master/code/ch02/ch02.ipynb

Back-propagation (2)

Let's write network output as follows:

$$y(\vec{x}) = h(u(\vec{x}))$$
 with $u(\vec{x}) = \sum_{j=0}^{m} w_{1j}^{(2)} \phi_j(\vec{x}), \ \phi_j(\vec{x}) = h\left(\sum_{k=0}^{n} w_{jk}^{(1)} x_k\right) \equiv h(v_j(\vec{x}))$

Here we defined $\phi_0 = x_0 = 1$ and the sums start from 0 to include the offsets.

Weights from hidden layer to output:

$$E_a = \frac{1}{2}(y_a - t_a)^2 \rightarrow \frac{\partial E_a}{\partial w_{1j}^{(2)}} = (y_a - t_a)h'(u(\vec{x}_a))\frac{\partial u}{\partial w_{1j}^{(2)}} = (y_a - t_a)h'(u(\vec{x}_a))\phi_j(\vec{x}_a)$$

Further application of the **chain rule** gives weights from input to hidden layer.

"Learning representations by back-propagating errors.", Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams

Example of a loss landscape of a modern artificial neural network

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, Tom Goldstein Visualizing the Loss Landscape of Neural Nets

https://papers.nips.cc/paper_files/paper/2018/hash/ a41b3bb3e6b050b6c9067c67f663b915-Abstract.html

More on gradient descent

Stochastic gradient descent

- just uses one training event at a time
- fast, but quite irregular approach to the minimum
- can help escape local minima
- one can decrease learning rate to settle at the minimum ("simulated annealing")

Batch gradient descent

- use entire training sample to calculate gradient of loss function
- computationally expensive
- Mini-batch gradient descent
 - calculate gradient for a random sub-sample of the training set

Aurélien Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 10. Machine Learning

Universal approximation theorem

https://en.wikipedia.org/wiki/Universal_approximation_theorem

"A feed-forward network with a single hidden layer containing a finite number of neurons (i.e., a multilayer perceptron), can approximate continuous functions on compact subsets of \mathbb{R}^n ."

One of the first versions of the theorem was proved by George Cybenko in 1989 for sigmoid activation functions

The theorem does not touch upon the algorithmic learnability of those parameters Mathematics of Control, Signals, and Systems

© 1989 Springer-Verlag New York Inc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenko†

Abstract. In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set of affine functionals can uniformly approximate any continuous function of *n* real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of single hidden layer neural networks. In particular, we show that arbitrary decision regions can be arbitrarily well approximated by continuous feedforward neural networks with only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The paper discusses approximation properties of other possible types of nonlinearities that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.

https://link.springer.com/article/10.1007/BF02551274

Deep neural networks

Deep networks: many hidden layers with large number of neurons

Challenges

- Hard too train ("vanishing gradient problem")
- Training slow
- Risk of overtraining

Big progress in recent years

- Interest in NN waned before ca. 2006
- Milestone: paper by G. Hinton (2006): "learning for deep belief nets"
- Image recognition, AlphaGo, ...
- Soon: self-driving cars, ...

Drawbacks of the sigmoid activation function

http://cs231n.stanford.edu/slides

Sigmoid

$$\sigma(x) = \frac{1}{1+e^{-x}}$$

- Saturated neurons "kill" the gradients
- Sigmoid outputs are not zero-centered
- exp() is a bit compute expensive

Activation functions

http://cs231n.stanford.edu/slides

Maxout $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

ReLU (Rectified Linear Unit)

http://cs231n.stanford.edu/slides

$$f(x) = \max(0, x)$$

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Actually more biologically plausible than sigmoid

But: gradient vanishes for x < 0

Bias-variance tradeoff

Goal: generalization of training data

- Simple models (few parameters): danger of bias
 - training samples would result in similar classification boundaries ("small variance")
- Complex models (many parameters): danger of overfitting
 - Iarge variance of decision boundaries for different training samples

Classifiers with a small number of degrees of freedom are less prone to statistical fluctuations: different

https://scikit-learn.org/stable/ auto_examples/model_selection/ plot_underfitting_overfitting.html

Example of overtraining

Too many neurons/layers make a neural network too flexible \rightarrow overtraining

Network "learns" features that are merely statistical fluctuations in the training sample

G. Cowan: https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Error on training and validation sample vs. model complexity

Machine Learning – A First Course for Engineers and Scientists, Online draft version July 8, 2022, http://smlbook.org © Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön 2022.

Regularization: Avoid overfitting

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x))$$

Data loss: Model predictions should match training data

In common use: L2 regularization L1 regularization

http://cs231n.stanford.edu/slides

Regularization: Model should be "simple", so it works on test data

Occam's Razor:

"Among competing hypotheses, the simplest is the best" λ William of Ockham, 1285 - 1347

 $L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1) + \lambda R(W)$

 $R(W) = \sum_k \sum_l W_{k,l}^2$ $R(W) = \sum_k \sum_l |W_{k,l}|$

Another approach to prevent overfitting: Dropout

- Randomly remove nodes during training
- Avoid co-adaptation of nodes

(a) Standard Neural Net

Srivastava et al., "Dropout: A Simple Way to Prevent Neural Networks from Overfitting"

(b) After applying dropout.

Xavier and He initialization

- Initial weights determine speed of convergence and whether algorithm converges at all
- Xavier Glorot and Yoshua Bengio
 - Paper "<u>Understanding the Difficulty of Training</u> **Deep Feedforward Neural Networks**"
 - Idea: Variance of the outputs of each layer to be equal to the variance of its inputs

Activation function	Uniform distri
Logistic	$r = \sqrt{\frac{6}{n_{\rm in} + n_{\rm out}}}$
tanh	$r = 4\sqrt{\frac{6}{n_{\rm in}+n_{\rm ou}}}$
ReLU (and variants)	$r = \sqrt{2}\sqrt{\frac{6}{n_{\rm in}+1}}$

Layer with n_{in} inputs connected to n_{out} neurons in the next layer

Normal distribution ($\mu = 0$) ibution [-r, r] $n_{\rm in} + n_{\rm out}$ $\bigvee n_{in} + n_{out}$ nout

Pros and cons of multi-layer perceptrons

Pros:

Capability to learn non-linear models

Cons:

- Loss function can have several local minima
- Hyperparameters need to be tuned
 - In number of layers, neurons per layer, and training iterations
- Sensitive to feature scaling
 - preprocessing needed (e.g., scaling of all feature to range [0,1])

Decision trees

leaf node (no further branching)

Leaf nodes classify events as either signal or background

MiniBooNE Detector

≥ 0.2 GeV

MiniBooNE: 1520 photomultiplier signals, goal: separation of v_e from v_{μ} events

arXiv:physics/0508045v1

Decision trees

Easy to interpret and visualize: Space of feature vectors split up into rectangular volumes (attributed to either signal or background)

How to build a decision tree in an optimal way?

Finding optimal cuts

Separation btw. signal and background is often measured with the Gini index (or Gini impurity):

Here *p* is the purity:

$$p = \frac{\sum_{\text{signal}} w_i}{\sum_{\text{signal}} w_i + \sum_{\text{background}} w_i}$$

sets B and C:

$$\Delta = W_A G_A - W_B G_B - V$$

G = p(1-p)

 w_i = weight of event *i*

[usefulness of weights will W_i become apparent soon]

Improvement in signal/background separation after splitting a set A into two

 $N_C G_C$ where $W_X = \sum_{i} w_i$

Separation measures

Entropy:

p(1-p)Gini index:

 $1 - \max(p, 1 - p)$ Misclassification rate:

[after Corrado Gini, used to measure income and wealth inequalities, 1912]

Decision tree pruning

When to stop growing a tree?

- When all nodes are essentially pure?
- Well, that's overfitting!

Pruning

Cut back fully grown tree to avoid overtraining, i.e., replace nodes and subtrees by leaves

Single decision trees: Pros and cons

Pros:

- Requires little data preparation
- Can use continuous and categorical inputs

Cons:

- Danger of overfitting training data
- Sensitive to fluctuations in the training data
- Hard to find global optimum
- When to stop splitting?

Ensemble methods: Combine weak learners

Bootstrap Aggregating (Bagging)

- the derived training sets
- Classify example with majority vote, or average output from each tree as mode

Boosting

- Train N models in sequence, giving more weight to examples not correctly classified by previous model
- Take weighted average to classify exar

Sample training data (with replacement) and train a separate model on each of

compute
el output
$$y(\vec{x}) = \frac{1}{N_{\text{trees}}} \sum_{i=1}^{N_{\text{trees}}} y_i(\vec{x})$$

mples
$$y(\vec{x}) = \frac{\sum_{i=1}^{N_{\text{trees}}} \alpha_i y_i(\vec{x})}{\sum_{i=1}^{N_{\text{trees}}} \alpha_i}$$

Random forests

- machine learning" (arXiv:1803.08823v3)
- Use bagging to select random example subset
- Train a tree, but only use random subset of features at each split
 - this reduces the correlation between different trees
 - makes the decision more robust to missing data

One of the most widely used and versatile algorithms in data science and

Boosted decision trees: Idea

H. Voss, Lecture: Graduierten-Kolleg, <u>http://tmva.sourceforge.net/talks.shtml</u>

AdaBoost (short for Adaptive Boosting)

Initial training sample

with equal weights normalized as

Train first classifier f_1 :

- $f_1(\vec{x}_i) > 0$ classify as signal

 $\vec{x}_1, \ldots, \vec{x}_n$: multivariate event data $y_1, ..., y_n$:true class labels, +1 or -1 $w_1^{(1)}, ..., w_n^{(1)}$ event weights

 $f_1(\vec{x}_i) < 0$ classify as background

AdaBoost: Updating events weights

Define training sample k+1 from training sample k by updating weights:

Weight is increased if event was misclassified by the previous classifier → "Next classifier should pay more attention to misclassified events"

At each step the classifier f_k minimizes error rate

$$\varepsilon_k = \sum_{i=1}^n w_i^{(k)} I(y_i f_k(\vec{x}_i) \leq 0),$$

$$\sum_{i=1}^{n} w_i^{(k)} = 1$$

$$I(X) = 1$$
 if X is true, 0 otherwise

AdaBoost: Assigning the classifier score

Assign score to each classifier according to its error rate:

 $\alpha_k = \ln$

Combined classifier (weighted average):

It can be shown that the error rate of the combined classifier satisfies

$$\frac{1-\varepsilon_k}{\varepsilon_k}$$

$$2\sqrt{\varepsilon_k(1-\varepsilon_k)}$$

Gradient boosting

- Like in AdaBoost, decision trees are iteratively added to an ensemble Can be applied to classification and regression
- Basic idea
 - Train a first decision tree
 - Then train a second one on the residual errors made by the first tree
 - And so on ...

Labeled training data: $\{\vec{x}_i, y_i\}$

Model prediction at iteration m: F

New model: $F_{m+1}(\vec{x}) = F_m(\vec{x}) + h_m(\vec{x})$

Find $h_m(\vec{x})$ by fitting it to $\{(\vec{x}_1, y_1 - F_m(\vec{x}_1)), (\vec{x}_2, y_2 - F_m(\vec{x}_1))\}$

$$\vec{r}_m(\vec{x}_i)$$

$$(\vec{x}_2)), \ldots (\vec{x}_n, y_n - F_m(\vec{x}_n)))$$

General remarks on multi-variate analyses (MVAs)

MVA Methods

- More effective than classic cut-based analyses
- Take correlations of input variables into account

Important: find good input variables for MVA methods

- Good separation power between S and B
- No strong correlation among variables
- No correlation with the parameters you try to measure in your signal sample!

Pre-processing

- Apply obvious variable transformations and let MVA method do the rest
- $\cos \theta$ as input variable
- It is generally useful to bring all input variables to a similar numerical range

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics http://tmva.sourceforge.net/talks.shtml

Make use of obvious symmetries: if e.g. a particle production process is symmetric in polar angle θ use $|\cos \theta|$ and not

Example of a feature transformation

 $var 0^{I} = \sqrt{var 0^{2} + var 1^{2}}$ $\operatorname{var} 1^{|} = \operatorname{a} \operatorname{tan} \left(\frac{\operatorname{var} 0}{\operatorname{var} 1} \right)$

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics http://tmva.sourceforge.net/talks.shtml

In this case a linear classifier works well after feature transformation

Which method to use?

- Linear model
- Nearest Neighbors
- (Deep?) Neural network
- Decision tree ensemble
- • •

M. Kagan, https://indico.cern.ch/event/619370/

No free lunch theorem

"Folkloric" version:

Any two optimization algorithms are equivalent when their performance is averaged across all possible problems

In other words:

If an algorithm performs well on a certain class of problems then it necessarily pays for that with degraded performance on the set of all remaining problems

How do we pay for our lunch?

Domain knowledge and/or biases in the choice of the algorithms (link)

Relevance for practical problem?

David Wolpert, William Macready, 1997 https://de.wikipedia.org/wiki/No-free-Lunch-Theoreme

Practical advice – Which algorithm to choose?

M. Kagan, https://indico.cern.ch/event/619370/

From Kaggle competitions:

Structured data: "High level" features that have meaning

- feature engineering + decision trees
- Random forests
- ► XGBoost

Unstructured data: "Low level" features, no individual meaning

- deep neural networks
- e.g. image classification: convolutional NN

