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Which topics should be covered in a introductory lecture on machine learning?

ChatGPT

An introductory lecture on machine learning should cover fundamental concepts and
provide a broad overview of the field. Here are key topics that you might consider

covering:

1. Introduction to Machine Learning:
* Definition of machine learning.
* Distinction between traditional programming and machine learning.
* Overview of real-world applications.
2. Types of Machine Learning:
* Supervised learning, unsupervised learning, and reinforcement learning.
* Explanation of each type with examples.
3. Supervised Learning:
* Definition and examples.
* Key components: input features, labels, and the learning process.
* Common algorithms: linear regression, logistic regression, decision trees, and
support vector machines.
4. Unsupervised Learning:
* Definition and examples.
* Key components: clustering and dimensionality reduction.
* Common algorithms: k-means clustering, hierarchical clustering, and principal
component analysis (PCA).
5. Reinforcement Learning:
* Definition and examples.
* Key components: agents, environments, and rewards.

* Common algorithms: Q-learning and deep reinforcement learning.

10.

11.

12.

13.
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Introduction to Neural Networks:
* Basic structure of artificial neural networks.
* Neurons, layers, and activation functions.
* Feedforward and backpropagation concepts.
Deep Learning:
* Explanation of deep neural networks.
* Convolutional Neural Networks (CNNs) for image processing.
* Recurrent Neural Networks (RNNs) for sequential data.
Evaluation Metrics:
* Accuracy, precision, recall, F1score, and confusion matrix.
* Choosing appropriate metrics based on the problem.
Feature Engineering:
* Importance of selecting relevant features.
* Techniques for feature selection and extraction.
Model Training and Evaluation:
* Splitting data into training and testing sets.
* Cross-validation.
* Overfitting and underfitting.
Challenges and Considerations:
* Bias and fairness in machine learning.
* Ethical considerations.
* Limitations and challenges in real-world applications.
Practical Examples and Demos:
* Showcase simple examples or demos to illustrate key concepts.
* Demonstrate how to implement a basic machine learning model using a popular
framework.
Resources for Further Learning:
* Point to relevant books, online courses, and resources for those interested in

diving deeper into machine learning.
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Multivariate analysis: An early example from particle physics

G. Cowan, Lecture on Statistical data analysis
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https://www.pp.rhul.ac.uk/~cowan/stat/stat_6.pdf

Machine learning

"Machine learning is the subfield of computer science that gives computers the
ability to learn without being explicitly programmed"” — Wikipedia

—xample: spam detection J. Mayes. Machine learning 101

Traditional Programming Machine Learning Programs

Manual feature engineering vs. automatic feature detection
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https://docs.google.com/presentation/d/1kSuQyW5DTnkVaZEjGYCkfOxvzCqGEFzWBy4e9Uedd9k/preview?imm_mid=0f9b7e&cmp=em-data-na-na-newsltr_20171213&slide=id.g168a3288f7_0_58

Al, ML, ana DL

"Al Is the study of how to make computers perform things that, at the moment, people do better."
Elaine Rich, Artificial intelligence, McGraw-Hill 1983

G. Marcus, E. Davis,
Rebooting Al

Artificial
Intelligence

GeasoningD < Search >

C(nowleng
. Representation
Machine

GlanninD

Learning

"deep” In deep learning: artificial neural nets with many neurons and multiple layers of nonlinear processing
units for feature extraction
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http://rebooting.ai/

Some successes and unsolved problems in Al

Arithmetic (1945) | M. Woolridge,
+ Easy The Road to Conscious Machines

Sorting lists of numbers (1959)
Playing simple board games (1959)

Playing chess (1997)
Recognizing faces in pictures (2008) , , o
| | Solved, after Impressive progress in certain fields:
Usable automated translation (2010) a lot of effort N
Playing Go (2016) » Image recognition
Usable real-time translation of » Speech recognition

spoken words (2016) .
P » Recommendation systems

Driverless cars

, . | | - Real progress » Automated translation
Automatically providing captions for pictures

» Chatbots based on Large Language Models (LLMSs)

Understanding a story & answering

questions about it » Analysis of medical data
Human-level automated translation

Interpreting what is going on in a photograph | Nowhere near
o . _ solved
Writing interesting stories
A E O LG How can we profit from these
Human-level general intelligence | devek)pments N phySiCS?
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https://www.penguin.co.uk/books/307/307639/the-road-to-conscious-machines/9780241333907.html

Different modeling approaches

= Simple mathematical representation like linear regression. Favored by statisticians.

= Complex deterministic models based on scientific understanding of the physical process.
Favored by physicists.

= Complex algorithms to make predictions that are derived from a huge number of past examples
(“machine learning” as developed in the field of computer science). These are often black boxes.

= Regression models that claim to reach causal conclusions. Used by economists.

D. Spiegelhalter, The Art of Statistics — Learning from data
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Application of machine learning in experimental particle physics

= Event reconstruction and particle identification
= Monte Carlo simulation

» use generative models for faster MC event generation
= Data acquisition / trigger

» faster algorithms
= Offline data analysis

» better algorithms
= Detector monitoring

» anomaly detection

“Machine Learning in High Energy Physics Community White Paper”,
arXiv:1807.02876
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https://arxiv.org/abs/1807.02876

Machine learning: The "hello world" problem

Recognition of handwritten digits

» MNIST database 00O 0 00 06 Qop oo oY 0 O 0O
(Modiified National Institute of (VYN V2 2 020 0N/
Standards and Technology 2222932222922 9%22
datab
labase) 333333335>3333333

» 60,000 training images and 10,000 H & ¢4 49 Yy #4544 4\ ¢4
testing images labeled with correct 55555 %S 65 -

TS5 855459
e b6 bblbbbbode bbbl

» 28 pixel x 28 pixel T77 7770702 FT7 77

» Algorithms have reached "near- ¥ 3 ¢ ® 8 8% P & B P TT T & ¢ ?
human performance” ?199999%949%94934979 9

» Smallest error rate (2018): 0.18% https://en.wikipedia.org/wiki/MNIST_database

Play with MNIST data set and Keras (Stefan Wunsch, CERN IML Workshop):
https://github.com/stwunsch/iml_tensorflow_keras_workshop

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Volkl | 10. Machine Learning 9



Machine learning: Image recognition

ImageNet database
» 14 million images, 22,000 categories

» Since 2010, the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRO):
1.4 million images, 1000 categories

» In 2017, 29 of 38 competing teams got less than 5% wrong

https://en.wikipedia.org/wiki/ImageNet

A ‘ I T

container ship motor scooter leopard
mite container ship motor scooter ~ ledpard
black widow | lifeboat | go-kart| jaguar
cockroach amphibian| moped | cheetah
tick fireboat | bumper car snow leopard
starfish drilling platform | golfcart Egyptian cat

https://www.tensorflow.org/tutorials/image_recognition
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ImageNet: Large Scale Visual Recognition Challenge

—rror rate in percent:

30
\e‘arge error rate reduction due to Deep CNN
AlexNet
' VGG GoogLeNet
‘N .

2010 2011 2012 2013 2014 2015 Human

N
&)

N
-

-
o

&)

Accuracy (Top-5 error)
o

Clarifai

o

O. Russakovsky et al, arXiv:1409.0575
figure from https://arxiv.org/pdf/1703.09039.pdf
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Adversarial examples

lan J. Goodfellow, Jonathon Shlens, Christian Szegedy, arXiv:1412.6572v1

+ .007 x

g

) | T +
2 sign(VJ (0, ,y)) esign(V,J (8, z,v))

“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence
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Three types of learning

Reinforcement learning

» The machine ("the agent”) predicts a scalar
reward given once in a while

» Weak feedback

Supervised learning

» The machine predicts a category based
on labeled training data

» Medium feedback

Unsupervised learning

» Describe/find hidden structure from
"unlabeled" data

» Cluster data in different sub-groups with
similar properties

Feature 2 _
New instances

LeCun 2018, Power And Limits of Deep Learning,
https://www.youtube.com/watch”?v=0tEhw5terhc

= <

'} 1!

arxXiv:1312.5602

Aurélien Géron,

4 et o Hands-On Machine
Anomaly x oy 3 o , : 0
o .\X- o | earning with Scikit-
e 0 O Normal
©e82°7% o _earn and TensorFlow
0%, %88 ¢ _
° o o —xample:
@) .
.. .. Training instances an0m3|y deteCtlon
B>
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L earning resources

= |lan Goodfellow and Yoshua

Bengio and Aaron Courville, Deep Learning, free online

nttp://www.deeplearningbook.org/

= Andreas Lindholm, Niklas Wahlstrom, Fredrik Lindsten, and Thomas B. Schon, Machine Learning - A
First Course for Engineers and Scientists, draft version available: http://smlbook.org/

= Simon J.D. Prince, Understanding Deep Learning, draft version available:
https://udlbook.github.io/udlbook/

= Aurélien Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow

= Kevin Patrick Murphy, Probabilistic Machine Learning, https://probml.github.io/pml-book/

= A Living Review of Machine Learning for Particle Physics,

https://qithub.com/iml-wg/H

PML-Living

Review

= Tilman Plehn, Anja Butter, Barry Dillon, Claudius Krause, Modern Machine Learning for LHC
Physicists, https://arxiv.org/abs/2211.01421

14
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http://www.deeplearningbook.org/
http://smlbook.org/
https://udlbook.github.io/udlbook/
https://probml.github.io/pml-book/
https://github.com/iml-wg/HEPML-LivingReview
https://arxiv.org/abs/2211.01421

Useful libraries

= scikit-learn, https://scikit-learn.org/

= PyTlorch, https://pytorch.org/

= [ensorFlow, https://www.tensorflow.org/

= XGBoost, https://xgboost.ai/

. 1F amlic
.o” O Py TOI’Ch TensorFlow XGBoost
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https://scikit-learn.org/
https://pytorch.org/
https://www.tensorflow.org/
https://xgboost.ai/

Multivariate classification

Consider events which can be either signal or background events.

—ach event is characterized by n observables:

X = (X1, ..., Xn) "feature vector"

Goal: classify events as signal or background in an optimal way.

This Is usually done by mapping the feature vector to a single variable, i.e., to scalar "test statistic”:

Acuty>ctoc
feature space. |

ass|

R" - R: y(X)

'y events as signal corresponds to selecting a potentially complicated hyper-surface in

N ge

neral superior to classical "rectangular® cuts on the xi.
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Classification: Learning decision boundaries

rectangular cuts non linear

k-Nearest-Neighbor,
Boosted Decision Trees,
Multi-Layer Perceptrons,
Support Vector Machines

G. Cowan:
https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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M. Kagan,

SUperWSed ‘eamiﬂg in d nUtSheH https://indico.cern.ch/event/619370/

Supervised Machine Learning requires labeled training data, i.e., a training sample where for each event it is
known whether it is a signal or background event

y()?’ w EEE— Loss
Function with Function
adjustable
parameters Compare
prediction
. with true Loss
Tr.ue labels: abel
Higgs =1 I EEEEEE—————————S
Bkg =0
Design function y(x, w) with ajdustable parameters w v LW
Design a loss function
FInd best parameters which minimize loss ~
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Supervised learning: classification and regression

The codomain Y of the function y: X = Y can be a set of labels or classes or
a continuous domain, e.g., R

Binary classification: Y ={0,1} e.g., signal or background

Multi-class classification: Y ={c., o, ..., Cn}

Labels sometimes represented as "one-hot vector”
(no ordering btw. labels):

t,=40,0,...,1,...,0}

Y = finite set of labels — classification

Y =real numbers — regression

"All the impressive achievements of deep learning amount to just curve fitting"

J. Pearl, Turing Award Winner 2011,

https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Volkl | 10. Machine Learning
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Supervised learning: Training, validation, and test sample

= Decision boundary fixed with training sample

= Performance on training sample becomes better with more iterations

= Danger of overtraining:

Statistical fluctuations of the training sample will be learnt

= Validation sample = independent labeled data set not used for training

— check for overtraining

= Sign of overtraining: performance on va

— Stop training when signs of overtraini

= Determine performance using performance metric (such as accuracy, precision, recall, etc.):

idation sample becomes wo
ng are observed ("early stop

apply classifier to independent test sample

= Often: test sample = validation sample (only small bias)

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. V6lkl | 10. Machine Learning
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Supervised learning: Cross validation

Rule of thumb If training data not expensive
» Training sample: 50%

» Validation sample: 259 L
P & often test sample = validation sample,

> Test sample: 25% .e., training : validation/test = 50:50
Cross validation (efficient use of scarce - Va'tidatiOﬂ tratiﬂing
_ Se Se
training data)

»  Split training sample in k independent sulbset -:::l run 1

T« of the full sample T

» Train on T\ Tk resulting in k different classifiers ':-::I run 2
» For each training event there is one classifier

that didn't use this event for training --u- run 3
» Validation results are then combined |:|:|:- ‘un 4

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. V6Ikl | 10. Machine Learning 21



Image from CS231n lecture

Hyperparameter optimization Grid Search
= Example of hyperparameters B 5
» Number of layers/nodes in an ANN, learning rate, number of o :é;
leaves in a decision tree, ... ®  ©® ® =
= [his parameters are fixed during model training, 1.e., they are . ® & féf-
not optimized with gradient descent. 5
= \arious approaches to hyperparameter optimization Important Parameter
» Grid search Random Search
» Random search camo? Sog
» Bayesian optimization ‘ f ® | B
- Tools L RS S —— §;
» Optuna, https://optuna.readthedocs.io .. ° é
» scikit-optimize, https://scikit-optimize.github.io/stable/ . §
> ... .

Important Parameter

More precise sampling of the important
parameter in the case of random search.
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https://optuna.readthedocs.io
https://scikit-optimize.github.io/stable/
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture6.pdf

Often used loss functions

value predicted

by the model true value
1 « \ /
Squared error loss: J(w) = = Z(y(?}, W) — t;)°
n <
- often used in regression =1

predicted “probability”
for outcome t =1

\ /

- Z —tilog y(X;, w) — (1 — t;) log(1 — y(X;, w))

Z { log y(X;, w), if t; =1

binary cross entropy

Cross entropy:

(—
AN

S|
N

|

— consider binary classification
-t e {0, 1}

— Often used in classification

log(1l — y(x;,w)), if t; =0
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More on entropy

Self-information of an event x:  /(x) = — log p(x)

» Measure of the “amount of surprise” of an outcome value x.

» If log = logz: Shannon information measured in bits.
Example: 32 equally likely outcomes. A given observed event contains —loge(1/25) bits = 5 bits of information.

Shannon entropy: H(P) = — Z pi log p

» Expected amount of information of an event drawn from a distribution P.
» Measure of the minimum of amount of bits needed on average to encode symbols drawn from a distribution
» In the above (trivial) example: H = — ) 1/25 loge(1/2%) = 5 bits

Cross entropy: H(P,Q) = —E[logg] = — ) pjloga;

» Can be interpreted as a measure of the amount of bits needed when a wrong distribution Q is assumed while the data
actually follows a distribution P

» Measure of dissimilarity between distributions P and Q (i.e, a measure of how well the model Q describes the true
distribution P)

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Volkl | 10. Machine Learning
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Logistic Regression for Binary Classification (1)

_ogistic regression can be viewed as a modification of linear regression. The output of the model is number
in [0, 1] which is usual interpreted as a probability.

First, a score z is calculated from the feature vector X:

Z=wp+ wixi + woxo + ... + WpX, = W' X
eZ
The score z is mapped to the interval [0, 1] using the logistic function h(z) = : -~
+ e
w'X
— = €
X W) = —
y( ) 1 —|— eWTX

We can then find the optimal parameters W with the aid of the maximum likelihood method. Consider a
training data set {X;, y;}"_ where y; € {0,1}. The optimal parameters are then given by:

w = argmax » _ log p(yi|%;; W)

w =1
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Logistic Regression for Binary Classification (2)

In our model p(y = 1|X, w) = y(X, w) and accordingly p(y = 0| X, W) = 1 — y(x, W).

he log-likelihood therefore reads:

| ( ‘_, _,) |Ogy()?i, VT/) if Vi — 1
O X W) =
i log(1 — y(X;, w)) ify; =0

SO we need to maximize
1 ? |Og y()_(,', VT/) if Vi = 1
n log(1 — y(x;, w)), if y; =0

Maximizing the log-likelihood therefore is nothing else but minimizing the cross entropy loss function.

This optimization problem has no closed-form solution and needs to be done numerically.
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Multinomial logistic regression: Softmax function

N the previous example we considered two classes, O and 1. For multi-class classification, the logistic
function can generalized to the softmax function.

Consider K classes and let z; be the score for class i, 7 = (zy, ..., 2k)
A probabillity for class / can be predicted with the softmax function:

es

Y e

J

The softmax functions is often used as the last activation function of a neural network in order to predict
porobabillities In a classification task.

Multinomial logistic regression Is also known as softmax regression.
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Simple example of logistic regression with scikit-learn (1)

Read data https://scikit-learn.org
Data are from the wikipedia article on logistic regression .

# data: 1. hours studies, 2. passed (0/1)

filename = "data/exam.txt"

df = pd.read csv(filename, engine='python', sep='\s+')

x tmp = df['hours studied'].values
X = np.reshape(x tmp, (-1, 1))
y = df['passed'] .values

Fit the model

from sklearn.linear model import LogilisticRegression
clf = LogisticRegression(penalty='none', fit intercept=True)
clf.fit(x, Vy);

Calculate predictions

hours studied tmp = np.linspace (0., 6., 1000)
hours studied = np.reshape (hours studied tmp, (-1, 1))
y pred = clf.predict proba (hours studied)
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https://scikit-learn.org

Simple example of logistic regression with scikit-learn (2)

Plot result

df .plot.scatter (x="hours studied', y='passed')
plt.plot (hours studied, y pred[:,1])

plt.xlabel ("preparation time in hours", fontsize=14)
plt.ylabel ("probability of passing exam", fontsize=14)
plt.savefig("logistic regression.pdf")

+- (o | (s =
i i i i

probability of passing exam

2
ol
i

preparation time 1n hours
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Reminder: Neyman—Pearson lemma

The likelihood ratio

(X|H1) H; : signal hypothesis

(%) =

X
(X| Ho) Hy : background hypothesis

IS an optimal test statistic, i.e., it provides highest "signal efficiency" 1 — [3 for a given "background efficiency"” a.

Accept hypothesis if t(X) =

2.

F(R|Hy)
F(RHo) ~

C

Problem: the underlying pdf's are almost never known explicitly.

WO approaches:

1.

—stimate signal and background pdf's and construct test statistic lbased on Neyman-Pearson lemma

Decision boundaries determined directly without approximating the pdf's (linear discriminants, decision

trees, neural networks, ...)

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. V6lkl | 10. Machine Learning
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Estimating PDFs from histograms?

Consider 2d example:

G. Cowan': https://www.pp.rhul.ac.uk/~cowan/stat_course.html
>\ > .
signal At Ce L back-
: .o ° ..o o _Jo '.'F‘ © = e = - -
.?'r'z{“; ..:L . o L. [ ground
*Te :.. °
¢ ® e . | 2 . ® e ’
o ¢ | % . ¢
0 oo 7 :—' -
o geo ol ® 1
X X

approximate PDF by N(x, y|S) and N(x, y|B)

M bins per variable in d dimensions: M< cells
— hard to generate enough training data (often not practical for d > 1)

In general in machine learning, problems related to a large number of dimensions of
the feature space are referred to as the "curse of dimensionality”
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Nalve Bayesian classifier
(also called "projected likelihood classification”)

Application of the Neyman-Pearson lemma (ignoring correlations between the x)):

f(x1, X2, ..., x,) approximated as L = fi(x1) - h(x2) - ... fu(xp)

where fi(x1) = /dxzdx;g...dxn f(x1, X2, ..., Xp)

f2(x0) = /XmdX3...an f(x1, X2, ..., Xn)

n practice, the f,(x;) are often obtained from the 1d histograms of the feature k of the feature training
feature vectors. Some smoothing is typically applied by fitting a suitable function to the 1d histogram.

. L Ls(X) 1
1 1 ] . X : :
Classification of feature vector x: Yy ( ) Ls()?) n Lb(?) 1 - Lb(?) / Ls()?)

Performance not optimal if true PDF does not factorize
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k-nearest neighbor method (1)

K-NN classifier

» Estimates probability density around the input vector

> p()_E S) and p()? | B) are approximated by the number of signal and background events in the training sample that lie in a
small volume around the point X

Algorithms finds k nearest neighbors:
k = ks + kp

Probability for the event to be of signal type:

ks(X)

Ps()?) —

kK-NN is an example of a nonparametric model (methods only uses training data to make predictions).

By contrast, parametric models learn parameters from data.
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k-nearest neighbor method (2)

Simplest choice for distance measure Iin TMVA manual

feature space is the Euclidean distance: 1 ShttpS:// root.cern.ch/guides/tmva-manual

R= 5 -] | |

Better: take correlations between variables >
INto account:

R=\/(Xx~7)TV-i(x - y)

V = covariance matrix

"Mahalanobis distance”

The k-NN classifier has best performance when the boundary that separates signal and background events
has irregular features that cannot be easily approximated by parametric learning methods.
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Fisher linear discriminant

Linear discriminant is simple. Can still be optimal if amount of training data is limited.

Ansatz for test statistic: y(X) = Z Wixj = W' X
i=1

Choose parameters w; so that separation between signal and background distribution is maximum.

;)

Need to define "separation®.

(7s — 7'b)z
>2+ ¥

Fisher: maximize J(w) =

G. Cowan':
https://www.pp.rhul.ac.uk/~cowan/stat_course.ntm|
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Fisher linear discriminant: Variable definitions

Mean and covariance for signal and background:
,u?’b — /X,' f()_(“‘/sb) dx
Vit = [ (= i) g — 15 F(¥1H,) 85

Mean and variance of y(x) for signal and background:

Ts,b — /y()?)f()?‘Hsb) d)_( — \/T/T/Is,b

sb — /(y(X) — Ts b)zf(X‘Hs b) dx = VT/TVS bW

G. Cowan':
https://www.pp.rhul.ac.uk/~cowan/stat_course.ntml
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Fisher linear discriminant:
Determining the coefficients w;

Numerator of J(W):

(76 — b))% = (Z w7 — M?)) — Z wiw;(p; — M?)(“JS'

i=1 ij—l

Denominator of J(w):

Maximize:
w! Bw  separation between classes

w!Ww separation within classes

G. Cowan':
https://www.pp.rhul.ac.uk/~cowan/stat_course.ntml
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Fisher linear discriminant:

Determining the coefficients w;

Setting ﬂ —09

(9w,-

IVES:

—

y(X

|
=

with w oc W™(jis — jip)

We obtain linear decision boundaries.

Welg

—>
Nt vector w ca

direc

lon In feature s

Oace O

events are projected.

G. Cowan':
https://www.pp.rhul.ac.uk/~cowan/stat_course.ntml

N be interpretec
N which t

as a
he

linear decision boundary
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Fisher linear discriminant: Remarks

In case the signal and background pdfs f(X|Hs) and f(X|Hy)are both multivariate Gaussian with the same
covariance but different means, the Fisher discriminant Is

f(X|Hs)
f (X|Hb)

y(X) o< In

That is, in this case the Fisher discriminant is an optimal classifier according to the Neyman-Pearson lemma
(as y(x) is a monotonic function of the likelihood ratio)

Test statistic can be written as

y(X) = wo + Z Wi Xj
i=1

where events with y > O are classified as signal. Same functional form as for the perceptron (prototype of
neural networks).
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Example: Classification with scikit-learn (1)

Iris flower data set

» Introduced 1936 In a paper by Ronald Fisher

» Task: classity flowers

» Three species: Iris setosa, Iris virginica and iris versicolor
» Four features: petal width and length, sepal width/length, in centimeters

https://archive.ics.uci.edu/ml/datasets/Iris
https://en.wikipedia.org/wiki/Iris_flower_data_se

Y
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Example: Classification with scikit-learn (2) O leann

# Import some data to play with
# columns: Sepal Length, Sepal Width, Petal Length and Petal Width

1ris = datasets.load 1iris()
X = 1ris.data
y = 1lris.target

# just to create a nice table

df = pd.DataFrame ({"Sepal Length (cm)": X[:,0], "Sepal Width (cm)": X[:,1],
'"Petal Length (cm)': X[:,2], 'Petal Width (cm)': X[:,3],
'category': v})

df.head ()

Sepal Length (cm) Sepal Width (cm) Petal Length (cm) Petal Width (cm) category

0) 5.1 3.5 1.4 0.2 0
1 4.9 3.0 1.4 0.2 0
2 4.7 3.2 1.3 0.2 0
3 4.6 3.1 1.5 0.2 0
4 5.0 3.6 1.4 0.2 0

list(iris.target names)

[ 'setosa', 'versicolor', 'virginica']

# split data into training and test data sets
X train, X test, y train, y test = train test split (X, y, test size=0.5, random state=42)
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Example: Classification with scikit-learn (3) O learn

Softmax regression

from sklearn.linear model import LogisticRegression ()LItFNJt'
log reg = LogisticRegression (multi class="'multinomial', penalty='none') ]

log reg.fit(x train, y train); , , .
— - - LoglsticRegression

accuracy: 0.96

. [[29 0 O]
k-nearest neighbor [ 0 23 0]
[ O 3 207]]

from sklearn.neighbors import KNeighborsClassifier

kn neigh.fit(x train, y train); accuracy: 0.95

[[29 0 0]
: : .. L 023 0]
Fisher linear discriminant [0 4 197)
from sklearn.discriminant analysis import LinearDiscriminantAnalysis LinearDiscriminantAnalysis
fisher 1d = LinearDiscriminantAnalysis () accuracy: 0.99
fisher 1d.fit(x train, y train); [[29 0 0]
[ 0 23 0]
[ O 1 227]

Classification accuracy
With scikit-learn it Is

for clf in [log reg, kn neigh, fisher 1d]:

T cusacy seore y rerts 1 prec extremely simple 1o test
print (type (c1f) .__ name_ ) and apply different
print (f"accuracy: {acc:0.2f}") o :

classification methods

# confusion matrix: columns: true class, row: predicted class
print (confusion matrix(y test, y pred),"\n")
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Examples of metrics: Accuracy, precision and recall

Precision:

Fraction of correctly classified instances among
all instances that obtain a certain class label:

TP
TP+ FP

precision =

“purity”

Accuracy:

Fraction of correct predictions:
TP + TN
°+ IN+FP +FN

accuracy =

ris classification example:
precision and recall for softmax classification
see sklearn.metrics.classification report

https://en.wikipedia.org/wiki/Precision _and recall

Recall:

Fraction of positive instances that are correctly classified.

| TP TP: true positives
recall = FP: false positives
D
TP +FN FN: false negatives
“efficiency”

2 - precision - recall

F1 = — |
precision + recall
y pred = log reg.predict (x test)
print (classification report(y test, y pred))
precision recall fl-score support
0 1.00 1.00 1.00 29
1 0.88 1.00 0.94 23
2 1.00 0.87 0.93 23
accuracy 0.96 715
macro avg 0.96 0.96 0.96 75
welghted avg 0.96 0.96 0.96 715
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Perceptron (‘| ) Rosenblatt, 1957

X1 Output: “binary classifier”
- 1 if w-R+b>o0,
h(xX) = ,
O; 0 otherwise
C y(X) =w-X+ b
Xn ()
Retina

Associative area

-
/>X

The perceptron was designed for image recognition.

. . : Mark 1 Perceptron. Source: Rosenblatt, Frank
It was first mplemented in hardware (400 photocells, (1961) Principles of Neurodynamics: Perceptrons
weights = potentiometer settings). and the Theory of Brain Mechanisms
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sign (w’ x)

THE MARK I PERCEPTRON



Perceptron (2)

McCulloch-Pitts (MCP) neuron (1943)

» First mathematical model of a biological neuron

» Boolean input

» Equal weights for all inputs

4

hreshold haro

coded

Improvements by Rosenblatt:

» Different weights for inputs

» Algorithm to update weights and threshold

given labeled training data

Shortcoming of the perceptron:
it cannot learn the XOR function
Minsky, Papert, 1969

y €10,1}

OR AND XOR

\@ @ 0 @ @ O

Jd R
\7

L
AN O ©

Ja Y
€
P n
N

©_

O

7

XOR: not linearly separable
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The biological inspiration: the neuron

Cell body

Axon Telodendria

Axon hillock Synaptic terminals

\
Golgi apparatus
Ilfer:icézﬁ)llje:ﬁ,mlc C. elegans (roundworm):
IS4 302 neurons, each with on average 25
Mitochondrion ™ Dendrite synaptic connections
/ J \ Dendritic branches Human brain-

1011 neurons, each with on average
/000 synaptic connections

https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/List of animals by number of neurons
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Non-linear transfer / activation function

Discriminant: y(X)=h| wy+ Z Wi X;
i=1

_ 1
—xamples for h: T ("sigmoid” or "logistic” function), tanhx

2 ' [ sigmoid activation function Non-linear activation function
0s L — 'logistic regression” ] needed In neural networks when
feature space Is not linearly
0.6 - separable
0.4 - G o
Neural net with linear activation
10 functions Is just a perceptron
| |

4 -2 0 2 4
X
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Feedforward neural network with one hidden layer

superscripts indicates layer numlber

Gi(X) = h [ wig) + > w;'x
j=1
2) — A (2) (2) 1 (3
y(X) Wig" + Z Wi, ;i (X)
X, j=1

hidden layer

Straightforward to generalize to multiple hidden layers
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Neural network output and decision boundaries

P. Bhat, Multivariate Analysis Methods in Particle Physics, inspirehep.net/record/879273

al Input Hidden Output b
layer layer layer 800|="'|---|---|---|---_
- — Signal
— Packground | output of neural
@ 600 -
- " network
g 400 |5 -
0 - -
S
=
=

200

0 0.2 0.4 0.6 0.8 1
NN output

25 i T T T .I. |' T T T T | T T T |/|| / |/_
. &) i . * Signal yd
 Background |7

20 _ ;.&_ .54 — NN contours
decision H Z : signal
boundaries 5 et probability
for different o : p(s | x1, Xx2)
cuts on NN Y
output n \ }

% 50 100 150 200

Variable x,
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Fun with neural nets In the browser

o Epoch Learning rate Activation Regularization Regularization rate Problem type
4
OOO: 251 0.03 v Tanh v None v 0 v Classification v
DATA FEATURES + — 1 HIDDEN LAYER OUTPUT
Which dataset do Which properties do r ‘ Test loss 0.000
you want to use? you want to feed in? LY = Training loss 0.000

6 neurons

-
x1 . e —— —— —_— — o= - P '_‘ ‘ - - ( y ’__"7‘-‘;-':‘. :i:.:j: - I,_»-;.V.' ( e =
~ e © v 2 0 & A 8 .' oG 4
" s // o © - “ e _' " 3tt _ 3
. .'—J : 5 / 9. s 8g o mr AN
Ratio of training to ’ f o8 o, Bt e . 1
test data: 50% | ' 4 o a W5 TV ee
X 12 0
L

-1
Noise: 0 . 2
o 3
-4
Batch size: 1 XiX2 -5
o 6

6

REGENERATE sin(X")
< Colors shows
_ ! _
sin(X2) This is the output dat.a, neuron and i . !
Hover to seeé it
larger.

Show test data Discretize output

http://playground.tensorflow.org
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Network training

—

X, . training event, a=1,..., N

t, . correct label for training event a

\

e.qg., ta =1, O for signal and background, respectively

—

w : vector containing all weights

Loss function (example):

E(W) = 5 D (v @) — )2 = 3 E,()

Welights are determined by minimizing the loss function (also called error function)
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Back-propagation (1)

Start with an initial guess w(®) for the weights an then update weights after each

training event:

Gradient descent:

. »
---------
......
¥ § 4 J
'
‘‘‘‘‘‘
|||||
''''''''''
IIIII
........
.....
'''''''''
' §

7T = ) _ pvE, (™)

| learning rate

Choosing a good learning rate can be essential:

Initial
weight

g : 2
!_— Gradient J(w)

J(w)

Global cost minimum

Jmin(w)
e ————————————————————

https://github.com/rasbt/python-machine-learning-book/blob/master/code/ch02/ch02.ipynb
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Back-propagation (2)
Let's write network output as follows:

y(%) = h(u(R)) with (%) =2 w0;(%). ¢(%) = h (Z w}i’xk) = h(v(%)

Here we defined ¢o = xo = 1 and the sums start from O to include the offsets.

Weights from hidden layer to output:

OE ou
5 = (Va — ta)h' (u(X5))
5’W1(J?) 5’W1(J?)

E, = %(Ya — ta)z — = (Ya — ta)h/(u(;a))gbj()?a)

Further application of the chain rule gives weights from input to hidden layer.

“Learning representations by back-propagating errors.”,
Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams
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Example of a loss l[andscape of a modern artificial neural network

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, Tom Goldstein
Visualizing the Loss Landscape of Neural Nets

https://papers.nips.cc/paper files/paper/2018/hash/
a4 1b3bb3e6b050b6c9067/c6/16630915-Abstract.html
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More OnN gradient descent Aurélien Geron, Hands-On Machine Learning

with Scikit-Learn and TensorFlow

r Stochastic gradient descent Stochastic Gradient Descent

» Just uses one training event at a time

» fast, but quite irregular approach to the
MiniMum

Cost

» can help escape local minima

» one can decrease learning rate to settle at the
minimum ("simulated annealing”)

= Batch gradient descent

» use entire training sample to calculate gradient s8] —
. =—a Stochastic
of loss function 361 — Mini-batch
» computationally expensive 3.4| == Batch
61 3.2}
. , 3.0}
= Mini-batch gradient descent 28|
» calculate gradient for a random sub-sample of 207
the training set >4 . , .
2.5 3.0 3.5 4.0 4.5

0o
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Universal approximation theorem

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Math. Control Signals Systems (1989) 2: 303314 Mathem atics of Control

"A feed-forward network with a single hidden Signals, and Systems
ayer containing a finite number of neurons (i.e., a 2 1999 Springer Veriag Now Yorkine:
multilayer perceptron), can approximate

continuous functions on compact subsets of Rn."

Approximation by Superpositions of a Sigmoidal Function*

. . cvbenk
One of the first versions of the theorem was G. Cybenkot

Abstract. In this paper we demonstrate that finite linear combinations of com-

p roveo by G cO rg c Cybe N kO 1N 989 fO I S g MOl d positions of a fixed, univariate function and a set of afline functionals can uniformly
: : : approximate any continuous function of n real variables with support in the unit
aCt|Vat on fU nCthnS hypercube; only mild conditions are imposed on the univariate function. Our

results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well approximated by continuous feedforward neural networks with
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

The theorem does not touch upon the
gorithmic learnabllity of those parameters

Key words. Neural networks, Approximation, Completeness.

Q

https://link.springer.com/article/10.100//BF02551274
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Deep neural networks

Deep networks: many hidden layers with large number of neurons

Challenges

» Hard too train ("vanishing gradient problem”)

» Training slow

» Risk of overtraining

SIg progress in recent years

» Interest In NN waned before ca. 2006

» Milestone: paper by G.

inton (2000):

"learning for deep belief nets”

» Image recognition, AlphaGo, ...

»  Soon: self-driving cars,

. hidden layer 1 hidden laver 2 hidden layver 3
input laver

output laver

http://neuralnetworksanddeeplearning.com
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Drawbacks of the sigmoid activation function

http://cs231n.stanford.edu/slides

7(x) = 1+ e~

= Saturated neurons “Kill” the gradients

= Sigmoid outputs are not zero-centered

D

_10 10 = exp() Is a bit compute expensive

Sigmoid
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Activation functions

Sigmoid Leaky RelLU

(2) — 1+i_m max(0.1z, x)
tanh Maxout
tanh(z) 5 max(wq = + by, ws « + ba)
RelLU =LU
ax(( ) T

http://cs231n.stanford.edu/slides
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Re |_U http://cs231n.stanford.edu/slides

. f(x) = max(0, x)
= Does not saturate (in +region)
= Very computationally efficient

= Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

~10 10 = Actually more biologically plausible

than sigmoid
RelLU
(Rectified Linear Unit) But: gradient vanishes for x < 0
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Bias-variance tradeoft

Goal: generalization of training data

= Simple models (few parameters): danger of bias

» Classifiers with a small number of degrees of freedom are less prone to statistical fluctuations: different
training samples would result in similar classification boundaries ("small variance")

= Complex models (many parameters): danger of overfitting

» large variance of decision boundaries for different training samples

Degree 1 Degree 4 Degree 15
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.82e+08(+/- 5.46e+08)
— Model — Model —— Model https://scikit-learn.org/stable/
——— True function ——— True function ——— True function auto examples/model Se|eCtiOﬂ/
e Samples e Samples e Samples o .,

plot_underfitting_overtitting.ntml

underfitting

X X X
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Example of overtraining

> 4

- training sample

Network "learns”
merely statistical f
training sample

‘eatures that are

uctuations In the

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. V6lkl | 10. Machine Learning

G. Cowan: https://www.pp.rhul.ac.uk/~cowan/stat_course.htm|

>

00 Mmany neurons/layers make a neural network too flexible = overtraining

test sample




Error on training and validation sample vs. model complexity

Und%tzng 0ver/ﬁitmg

o N\ 7 N\

Enew: €rror on new, unseen data
(i.e., error on validation sample)

Error

optimum = minimum of error
rate for test sample

Model complexity

Machine Learning — A First Course for Engineers and Scientists, Online draft version July 8, 2022,
http://smlbook.org © Andreas Lindholm, Niklas Wahlstrom, Fredrik Lindsten, and Thomas B. Schon 2022.
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Regularization: Avoid overfitting http:/cs231n.stanford.edu/slides

L(W § :L (25, W), y5) + AR(W)
J J
Y Y
Data loss: Model predictions Regularization: Model
should match training data should be “simple”, so it

works on test data

Occam’s Razor:
"Among competing hypotheses,

the simplest is the best”
William of Ockham, 1285 - 1347

In common use:
L2 regularization  E(W) =22 Wy,
L1 regularization R(W) = 3. 22 [Wki]
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Another approach to prevent overfitting: Dropout

= Randomly remove nodes during training

= Avoid co-adaptation of nodes

(a) Standard Neural Net (b) After applying dropout.

Srivastava et al., "Dropout: A Simple Way to Prevent Neural Networks from Overfitting"
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Xavier and He initialization

= |nitial weig

Nts determine speed of convergence

and whetr

er algorithm converges at all

= Xavier Glorot and Yoshua Bengio

» Paper "U

nderstanding the Difficulty of Training

Deep Feedforward Neural Networks®

» |dea: Variance of the outputs of each layer to be

equal to the variance of its inputs

Aurélien Géron, Hands-On Machine Learning

with Scikit-Learn and TensorFlow

R S

N

| Softmax

"\ Softmax
, output layer
7/

", Hidden layer
’,’ (e.g., ReLU)

Layer with nin iInputs connected to Nout
neurons in the next layer

Activation function  Uniform distribution [—r, r] Normal distribution (x = 0)

Logistic r = \/nin+nout

_ 6 . 2
tanh = 4-\V/nin‘|‘nout 0 = 4-\/nin‘|‘nout

RelLU (and variants) r = \@\/ninfnout 0 = \ﬁ\/n.nfno )
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Pros and cons of multi-layer perceptrons

Pros:

= Capabillity to learn non-linear models

Cons:
= | oss function can have several local minima
= Hyperparameters need to be tuned
» number of layers, neurons per layer, and training iterations
= Sensitive to feature scaling

» preprocessing needed (e.g., scaling of all feature to range [0,1])
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Decision trees

root node __ S/B
52/48 MiniBooNE Detector
< 100 EMT Hits? = 100 branch node St
s - (node with further
B S/B branching)
4/37 48/11
<0.2 GeV > 0.2 GeV
Energy?
S/B S *
9/10 39/1
<00 em_~p adingy 2200 em MiniBooNE: 1520
Q B photomultiplier signals,
goal: separation of ve from
/ 7/1 2/9 Vv, events
arXiv:physics/0508045v

leaf node (no further branching)

Leaf nodes classity events as either signal or background
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Decision trees Ann.Rev.Nucl.Part.Sci. 61 (2011) 281-309

x, <6, x; > 6, . |
2
Rs
63 B
R,
6, R, R
R;
01 64 X1

—asy to interpret and visualize:
Space of feature vectors split up into rectangular volumes
(attributed to either signal or background)

How to build a decision tree in an optimal way"?
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FINnding optimal cuts

Separation btw. signal and background is often measured with the
Gini index (or Gini impurity):

G = p(1—p)
Here p Is the purity:
Zsignal " w; = weight of event |
P Zsignal Wi + Zbackgmund Wi lusefulness of weights will
become apparent soon|
Improvement in signal/background separation after splitting a set A into two
sets B and C: @

/N

A = WaGs— WsGg — WrGe  where Wy = ZW,-
X
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Separation measures

> L
E |
g 0.2_—
0.15—
E Split criterion
0.1 = Misclas. error
- = Entropy
005 = Gini
0 ] ] | ] ] ] | ] ] ] | ] ] ] | ] ] ]
0 0.2 0.4 0.6 0.8 1
signal purity
N\
_ P
—ntropy: —plnp—(1—p)In(1—p)
Gini index: 1 — lafter Corrado Gini, used to measure income
p( p) and wealth inequalities, 1912]
Misclassification rate: 1 — max(p,1 — p)
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Decision tree pruning

When to stop growing a tree?
» When all nodes are essentially pure”?

» Well, that's overfitting!

\XJ>C2HXJ<C2\ \x1>c3HXJ<c3\
e @ @
» Cut back fully grown tree to avoid
overtraining, I.e., replace nodes and e > ca \Xk -

subtrees by leaves

TN
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Single decision trees: Pros and cons

Pros:

= Requires little data preparation

= Can use continuous and categorical inputs

Cons:

= Danger of overfitting training data

= Sensitive to fluctuations in the training data
= Hard to find global optimum

= \When to stop splitting”?
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Ensemble methods: Combine weak learners

= Bootstrap Aggregating (Bagging)

» Sample training data (with replacement) and train a separate model on each of
the derived training sets

» Classify example with majority vote, or compute . 1 .

average output from each tree as model output y(X) = Noooe yi(X
=1
= Boosting

» Train N models in sequence, giving more weight to examples not correctly

classified by previous mode N
. . Z trees Q{y(%
» Take weighted average to classify examples y(X) = =1 171
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Random forests

= “One of the most widely used and versatile algorithms in data science and
machine learning” (arxiv:1803.08823v3)

= Use bagging to select random example subset

= [rain a tree, but only use random subset of features at each split

» this reduces the correlation between different trees
» makes the decision more robust to missing data
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Boosted decision trees: |dea Weight is increased f

event was misclassified

classifier by the previous classifier
 —
- Training Sample COx)

| re-weight — "Next classifier should
| classifier pay more attention to
Weighted Sample CtH(x) misclassified events"
l re-weight
, classifier
Weighted Sample e CO(x)
re-weight Neiassifier _
| l classifier y(x) 0 Z WiC(I)(X)
Weighted Sample —_— COI(x) i
l re-weight
v
classifier

Weighted Sample Cm)(x)

H. Voss, Lecture: Graduierten-Kolleg, http://tmva.sourceforge.net/talks.shtml
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http://tmva.sourceforge.net/talks.shtml

AdaBoost (short for Adaptive Boosting)

Initial training sample

X1, .o, Xn: multivariate event data
Vi, -0 Yn: true class labels, +1 or —1
Wl(l), W,Sl) event weights

with equal weights normalized as
> w) =1
i=1

Train first classifier fq:

f1(X;) > 0 classify as signal
f1(X;) <0 classify as background
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AdaBoost: Updating events weights

Define training sample k+1 from training sample k by updating weights:

— i Fi(%)yi /2
(k+1) (k)€ F
W: = W; 7

- \

. k
normalization factor so that g W,-( ) =1
i=1

| = event Index

Weight Is increased If event was misclassitied by the previous classitier

— "Next classifier should pay more attention to misclassified events®

At each step the classifier fx minimizes error rate

k=Y W I(yif(%) < 0),  1(X) =1if X is true, 0 otherwise
=1
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AdaBoost: Assigning the classifier score

Assign score to each classifier according to its error rate;:

1—8k

ai = In
€ k

Combined classifier (weighted average):
K
F(%) = arfi(X)
k=1

It can be shown that the error rate of the combined classifier satisfies

e < HZ\/&“/((]. —€k)
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Gradient boosting

= | ke In AdaBoost, decision trees are iteratively added to an ensemble

= Can be applied to classification and regression

= Basic idea

» Train a first decision tree

» Then train a second one on the residual errors made by the first tree

» And so on ...

L abeled training data: {X., y;}
Model prediction at iteration m: F, (X))

New model: F, ,(xX) = F,(X) + h,(X)

Find &, (X) by fitting it to
{(5519 )’1 T Fm(il))a (5529 )’2 T Fm(XZ))a © .. (-;C)na yn T Fm(}n))}
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General remarks on multi-variate analyses (MVAS)

MVA Methods

» More effective than classic cut-based analyses

» Take correlations of input variables into account

Important: find good input variables for MVA methods

» Good separation power between S and B

4

4

N\

N\

O strong correlation among variables

O correlation with the parameters you try to measure in your signal sample!

Pre-processing

»  Apply obvious variable transformations and let MVA method do the rest

» Make use of obvious symmetries: if e.g. a particle production process is symmetric in polar angle 6 use |cos 6| and not

» It is genera

COS B as input variable

ly useful to bring all input variables to a similar numerical range

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics

http://tmva.sourceforge.net/talks.shtml
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Example of a feature transformation

var0' = +/var 02 + var 1 . . .
INn this case a linear classifier works well

var(Q :
var1 = atan| —— after feature transformation
var
N L ‘ < - Signal
:1 4'I_I | | | | [ I‘I | I‘I |‘I | IJ‘I‘I“I | | I I = nal <° 1 4_ ‘-‘ ) ‘.: . ‘.‘2.‘ “‘:‘“
® F RICT I Vot i 9 = L b v, caled - Background
Z12F v Hlackground s | S P
::%/u : ‘ ] + - Y :
1__"'.;./ > - <N 1.2
0.8~ ' = = L
s ] © n
0.6__ ] 3 1_
N 7] t
0.4__ -] c i
- . n
0.2 - i
- ] 0.8—
0 — u
0.2~ - i
0.4 E 0.6
0.6 > i S “
-0-8;_ll|lll|llllllllllllllllllllllllllll‘ l‘ll‘:“lllllll_l: 0.4__. . ‘-“
-08-06-04-02 0 02040608 1 1.2 1.4 TR T T T
var0 -3 -2 -1 0 1 2 3

atan(var0/var1)

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics
http://tmva.sourceforge.net/talks.shtml
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Which method to use”? rl\w/lﬁpf:l/%ii%ico.cem.Ch/event/619370/

= L inear model
= Nearest Neighbors
= (Deep”?) Neural network

m Decision tree ensemble
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David Wolpert, Willlam Macready, 1997
https://de.wikipedia.org/wiki/No-free-Lunch-Theoreme

No free lunch theorem

"Folkloric" version:

Any two optimization algorithms are equivalent when their
performance Is averaged across all possible problems

In other words:

f an algorithm performs well on a certain class of problems then
it necessarily pays for that with degraded performance on the
set of all remaining problems

How do we pay for our lunch?

Domain knowledge and/or biases in the choice of the algorithms
(link)

Relevance for practical problem?
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https://pdfs.semanticscholar.org/fee1/abe79f179f465d2725be63e97a50034bc511.pdf

Practical advice — \Which algorithm to choose?

M. Kagan, https://indico.cern.ch/event/619370/

From Kaggle competitions:

Structured data: "High level” features that have meaning

» feature engineering + decision trees
» Random forests
» XGBoost

Unstructured data: "Low level" features, no individual meaning

» deep neural networks

» €.9. Image classification: convolutional NN
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