Problem set 2 - Quark Gluon Plasma Physics - SS 2023

Discussion in the lecture: Friday May 5

2.1 Parton scattering

In a collision of two protons, the interaction of two (approximately massless) partons with momentum fractions x_{1} and x_{2} results in two outgoing partons 3 and 4:

The proton four-momenta can be written as $P_{1}=\left(E_{\mathrm{b}}, 0,0, E_{\mathrm{b}}\right)$ and $P_{2}=\left(E_{\mathrm{b}}, 0,0,-E_{\mathrm{b}}\right)$ where E_{b} is the beam energy. The parton four-momenta are given by

$$
\begin{aligned}
& \hat{p}_{1}=x_{1} P_{1} \\
& \hat{p}_{2}=x_{2} P_{2} \\
& \hat{p}_{3}=\left(p_{T} \cosh y_{3}, \vec{p}_{T}, p_{T} \sinh y_{3}\right) \\
& \hat{p}_{4}=\left(p_{T} \cosh y_{4},-\vec{p}_{T}, p_{T} \sinh y_{4}\right) .
\end{aligned}
$$

a) Show that $x_{1}=\frac{p_{T}}{\sqrt{s}}\left(e^{y_{3}}+e^{y_{4}}\right)$ and $x_{2}=\frac{p_{T}}{\sqrt{s}}\left(e^{-y_{3}}+e^{-y_{4}}\right)$. (hint: $\hat{p}_{1}+\hat{p}_{2}=\hat{p}_{3}+\hat{p}_{4}$)
b) Show that the center-of-mass rapidity of the parton system is given by $\frac{1}{2} \ln \frac{x_{1}}{x_{2}}$.

