Quark-Gluon Plasma Physics

11. Thermal Photons and Dileptons

Prof. Dr. Braun-Munzinger Prof. Dr. Klaus Reygers Prof. Dr. Johanna Stachel Heidelberg University SS 2023

The role of direct photons in heavy-ion physics

- Escape medium unscathed
- Produced over the entire duration of the collision (unlike low-p_T hadrons)
 - Test of space-time evolution, in particular of the hydro paradigm
- Experimental access to initial QGP temperature (?)

QGP photon rate r_{γ} (lowest order):

$$E_{\gamma} rac{dr_{\gamma}}{d^3 p} \propto lpha lpha_s T^2 e^{-E_{\gamma}/T} \log rac{E_{\gamma} T}{k_c^2}$$

Total emission rate: $r_\gamma \propto T^4$

Example: Temperature of the universe from Planck spectrum

Difference in heavy-ion collisions: photons not in thermal equilibrium

A complication for the temperature measurement: Blueshift due to radial flow

4

Known and expected photon sources in heavy-ion collisions

 $\gamma_{\text{direct}} := \gamma_{\text{incl}} - \gamma_{\text{decay}}$

Small signal (O(10)% or smaller) at low p_T (1 < p_T < 3 GeV/c), where thermal photon from the QGP are expected

Feynman diagrams: Photon production in the QGP and in the HG

Schematic photon spectrum in A+A collisions

Calculation: Sources of Direct Photons in Au+Au Collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Window for thermal photons from QGP in this calculation: $p_T = 1 - 3$ GeV/c

The Statistical Subtraction Method

Idea: Cancellation of uncertainties common to photon and π^0 measurement

$$\gamma_{ ext{direct}} = \gamma_{ ext{incl}} - \gamma_{ ext{decay}} = (1 - rac{1}{R_{\gamma}}) \cdot \gamma_{ ext{incl}}$$

Which uncertainties cancel (partially)?

- Calorimeter: global energy scale, energy non-linearity
- Photon conversions: conversion probability, photon selection
- Method pioneered by WA80/98 at the CERN SPS
 - WA98 made the first direct-photon measurement in A-A
 - Interpretation at SPS energies difficult (initial state effect or QGP photons?)

CERN SPS results: Direct photons in Pb-Pb at $\sqrt{s_{NN}} = 17.3$ GeV

Consistent with QGP scenario, but data can also be explained without a QGP

PRL 85 (2000) 3595 PRL 93 (2004) 022301 (low *p*_T points: HBT)

Direct photon excess in Au-Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

- Two experimental techniques
 - Virtual photons $(\gamma^* \rightarrow e^+e^-),$ extrapolated to $m_{\gamma^*} = 0$
 - Photon conversion combined with π⁰ tagging using e.m. calorimeter
- 20-25% excess in central Au-Au

Direct photon excess in Pb-Pb at the LHC

- pQCD agrees with data for $p_T \gtrsim 5 \text{ GeV/c}$
- Evidence for an additional photon source at lower p_T

ALICE, Physics Letters B 754 (2016) 235

The direct photon puzzle

Au-Au at RHIC

- Models fail to describe direct photon data
- Puzzle has two parts
 - Yields
 - ► V2
- Pb-Pb at the LHC
 - Similar trends
 - However, no puzzle with current uncertainties

Plots: Paquet et al., arXiv:1509.06738

Chiral symmetry

Consider a u,d-quark spinor $q(x) = \begin{pmatrix} u(x) \\ d(x) \end{pmatrix}$. One can introduce right-handed

and left-handed quark fields (projections with positive/negative chirality):

$$q_{\mathsf{R},\mathsf{L}} = rac{1}{2}(1\pm\gamma_5)q_{\mathsf{R},\mathsf{L}}$$

For massless particles (photons, gluons) chirality is the same as helicity.

For massless quarks ($m_q = 0$), the QCD Lagrangian has a **global symmetry** related to the **conserved right- or left-handedness** (chirality) of the massless spin 1/2 particles.

The right- and left-handed components of the massless quark fields do not mix. Right-handed quarks stay right-handed, left-handed quarks stay left-handed.

Chiral symmetry breaking

At low temperatures, the chiral symmetry is spontaneously broken.

The order parameter is the chiral condensate:

```
\langle \bar{q}q \rangle \neq 0 ~{
m for}~ T < T_c
```

Chiral symmetry is restored above T_c .

Vacuum expectation value of the quark condensate:

```
\langle 0|\bar{q}q|0\rangle \approx (-250 \,\text{MeV})^3 corresponds to 5 quark-
antiquark pairs per fm<sup>3</sup>
```

The spontaneous breaking of a global symmetry is accompanied by **(almost) massless Goldstone bosons**. For two quark flavors, these are the pions which are much lighter than other hadrons (e.g. $m_{\pi} \approx 140$ MeV $\ll m_{\text{proton}}$).

The small u,d quark masses break chiral symmetry explicitly, but this can be considered a small effect for low-energy QCD.

Chiral symmetry breaking and the hadron spectrum

The quark condensate cannot be directly observed. However, it affects the hadron spectrum.

If the ground state were chirally symmetric, chiral partners (e.g. the ρ and the a_1 meson) would have the same mass.

Experimentally, a large mass splitting is observed:

The restoration of chiral symmetry affects hadron properties: Chiral partners become degenerate (significant modifications of the hadron "spectral function").

Chiral condensate as a function of temperature and density

Dileptons: Motivation

- Like photons, negligible final state interaction
- Flip side: rare probe, $N_{\rm ee}/N_{\rm hadron} \approx 10^{-4}$
- Search for in-medium modifications of vector mesons ($M_{ee} < 1$ GeV)
 - ρ can decay in the medium ($\tau_{\rho,vacuum} \approx 1.3 \text{ fm/}c < \text{medium lifetime}$)
 - Broadening of the p in the medium, relation to chiral symmetry restoration?
- Thermal radiation from the QGP and access to early temperature? (Mee > 1 GeV)
 - spectrum ~ $(m_{ee}T)^{3/2} \exp(-m_{ee}/T)$
- Constrains space-time evolution
- Pioneering measurements by CERES at the CERN SPS
 - Di-electron excess for $m_{ee} > 200 \text{ MeV}$
 - Hints towards modified p meson in dense medium

quark-gluon plasma

Schematic dilepton mass spectrum

QGP physics SS2023 | P. Braun-Munzinger, K. Reygers, J. Stachel | 11. Thermal photons and dileptons 19

Schematic dilepton mass spectrum at LHC energies: Signal and background

CERN SPS results: p+A

CERN SPS results: Pb-Au

Dimuons in In-In at the CERN SPS: Support for in-medium broadening of the p meson

data – cocktail (except for ρ)

QGP temperature via dimuons at SPS energies?

NA60, Eur. Phys. J. C 61 (2009) 711, Eur. Phys. J. C 59 (2009) 607

Dielectrons at RHIC

Excess above cocktail observed below the p mass at all center-ofmass energies.

Model with model meson–baryon rescattering during the evolution describes the data.

Enhancement explained by broadening of the ρ meson ("melting ρ scenario")

However, connection to chiral symmetry restoration still debated.

Dileptons at the LHC

No significant excess above the hadronic cocktail within uncertainties

Need more statistics to be sensitive to medium effects.

Summary/questions thermal photons and dileptons

- Photons and dileptons are interesting because, once produced, they leave the medium without further interaction
- This provides a handle to study properties of the medium at early times
- Direct photon puzzle
 - Measured yield and v₂ above state-of-the-art hydrodynamic calculations at RHIC (while these models nicely fit hadronic observables)
 - Similar trend at the LHC, but no puzzle with current uncertainties
- Di-electrons and di-muons
 - Point to modifications of the p meson width in a hadron gas
 - ▶ Di-muons at the CERN SPS seem to indicate $T_{QGP} \approx 200 \text{ MeV}$