Quark-Gluon Plasma Physics

4. Basics of Nucleon-Nucleon and Nucleus-Nucleus Collisions

> Prof. Dr. Peter Braun-Munzinger Prof. Dr. Klaus Reygers Prof. Dr. Johanna Stachel Heidelberg University SS 2023

Part I: proton-proton collisions

Total p+p(pbar) Cross Section

parameterization from Regge theory:

$$\sigma_{\rm tot} = X s^{\epsilon} + Y s^{\epsilon'}$$

$$\epsilon=0.08-0.1$$
, $\epsilon'pprox-0.45$

Above ~ $\sqrt{s} = 20$ GeV all hadronic cross sections rise with increasing \sqrt{s}

Data show that

$$\sigma_{\rm tot}(h+X) = \sigma_{\rm tot}(\bar{h}+X)$$

(in line with Pomeranchuk's theorem)

Soft processes:

hard to calculate $\sigma_{tot}(\sqrt{s})$ in QCD

Modeling based on Regge theory: exchange of color-neutral object called *pomeron*

Diffractive collisions (I)

(Single) diffraction in p+p:

"Projectile" proton is excited to a hadronic state X with mass M

 $p_{\mathrm{proj}} + p_{\mathrm{targ}}
ightarrow X + p_{\mathrm{targ}}$

The excited state X fragments, giving rise to the production of (a small number) of particles in the forward direction

Theoretical view:

- Diffractive events correspond to the exchange of a Pomeron
- The Pomeron carries the quantum numbers of the vacuum $(J^{PC} = 0^{++})$
- Thus, there is no exchange of quantum numbers like color or charge
- In a QCD picture the Pomeron can be considered as a two- or multi-gluon state, see, e.g., O. Nachtmann (→ <u>link</u>)

Diffractive collisions (II)

 $\sigma_{\rm tot} = \sigma_{\rm el} + \sigma_{\rm inel}, \quad \sigma_{\rm inel} = \sigma_{\rm SD} + \sigma_{\rm DD} + \sigma_{\rm CD} + \sigma_{\rm ND}$

Diffractive collisions (III)

UA5, Z. Phys. C33, 175, 1986

$p + \overline{p}$	√s = 200 GeV	√s = 900 GeV		
Total inelastic	(41.8 ± 0.6) mb	(50.3 ± 0.4 ± 1.0) mb		
Single-diffractive	(4.8 ± 0.5 ± 0.8) mb	(7.8 ± 0.5 ± 1.8) mb		
Double-diffractive	(3.5 ± 2.2) mb	(4.0 ± 2.5) mb		
Non-diffractive	≈ 33.5 mb	≈ 38.5 mb		

Fraction of diffractive dissociation events with respect to all inelastic collisions is about 20–30% (rather independent of \sqrt{s}) See also ATLAS, arXiv:1201.2808

Charged-particle Multiplicity as a fct. of \sqrt{s} : Similarities between pp and e⁺e⁻

What is the distribution of the number of produced particles per collision?

Independent sources: Poisson distribution

Observation:

Multiplicity distributions in pp, e+e-, and lepton-hadron collisions well described by a Negative Binomial Distribution (NBD)

Deviations from the NBD were discovered by UA5 at $\sqrt{s} = 900$ GeV and later confirmed at the Tevatron at $\sqrt{s} = 1800$ GeV (shoulder structure at $n \approx 2 < n$)

$$P^{ ext{NBD}}_{\mu,k}(n) = rac{(n+k-1)\cdot(n+k-2)\cdot\ldots\cdot k}{\Gamma(n+1)} \left(rac{\mu/k}{1+\mu/k}
ight)^n rac{1}{(1+\mu/k)^k}$$

 $\langle n \rangle = \mu, \ D := \sqrt{\langle n^2 \rangle - \langle n \rangle^2} = \sqrt{\mu \left(1 + \frac{\mu}{k}\right)}$

Limits of the NBD: $k \rightarrow \infty$: Poisson distribution integer k, k<0: Binomial distribution $(N = -k, p = -\langle n \rangle/k)$

 π^0 transverse momentum distributions at different \sqrt{s}

Low p_T (< ~2 GeV/c): "soft processes"

$$E rac{d^3 \sigma}{d^3 p} = A(\sqrt{s}) \cdot e^{-\alpha p_T}, \ \alpha \approx 6/(\text{GeV}/c)$$

High p_T ("hard scattering"):

$$E\frac{\mathsf{d}^3\sigma}{\mathsf{d}^3p} = B(\sqrt{s})\cdot\frac{1}{p_{\mathsf{T}}^{n(\sqrt{s})}}$$

Average p_T :

$$\langle p_{\mathsf{T}} \rangle = \frac{\int_{0}^{\infty} p_{\mathsf{T}} \frac{\mathrm{d}N_x}{\mathrm{d}p_{\mathsf{T}}} \mathrm{d}p_{\mathsf{T}}}{\int_{0}^{\infty} \frac{\mathrm{d}N_x}{\mathrm{d}p_{\mathsf{T}}} \mathrm{d}p_{\mathsf{T}}} \approx 300 - 400 \text{MeV}/c$$

$$\int_{0}^{\infty} \frac{\mathrm{d}N_x}{\mathrm{d}p_{\mathsf{T}}} \mathrm{d}p_{\mathsf{T}}$$

$$pretty energy-independent$$

$$for \sqrt{s} < 100 \text{ GeV}$$

$$\mathbf{10^{-9}} = \frac{\int_{0}^{\pi^0} p_{\mathsf{T}} \sqrt{s} = 7000 \text{ GeV} (\text{ALICE}) n \approx 6.0}{\int_{0}^{\pi^0} p_{\mathsf{T}} \sqrt{s} = 900 \text{ GeV} (\text{ALICE}) n \approx 6.0}{\int_{0}^{\pi^0} p_{\mathsf{T}} \sqrt{s} = 200 \text{ GeV} (\text{PHENIX}) n \approx 8.1}{\int_{0}^{\pi^0} p_{\mathsf{T}} \sqrt{s} = 200 \text{ GeV} (\text{PHENIX}) n \approx 9.8}$$

Mean p_T increases with \sqrt{s}

m_T scaling in pp collisions

 m_T scaling:

shape of m_T spectra the same for different hadron species

example:
$$\frac{dN/dm_T|_{\eta}}{dN/dm_T|_{\pi^0}} \approx 0.45$$

possible interpretation: thermodynamic models

$$\Xi \frac{\mathrm{d}^3 n}{\mathrm{d}^3 p} \propto E e^{-E/T} \\ \rightarrow \frac{1}{m_T} \frac{\mathrm{d} n}{\mathrm{d} m_T} \propto K_1 \left(\frac{m_T}{T}\right)$$

RHIC/LHC: m_T scaling (approximately) satisfied, different universal function for mesons and baryons

Do deviations from m_T scaling in pp at low p_T indicate onset of radial flow? (1312.4230)

Theoretical modeling: General considerations

- Description of particle production amenable to perturbative methods only at sufficiently large *p*_T (so that α_s becomes sufficiently small)
 - parton distributions (PDF)
 - parton-parton cross section from perturbative QCD (pQCD)
 - fragmentation functions (FF)

■ Low-*p*_T:

Need to work with (QCD inspired) models, and confront them with data

e.g. Lund string model

Modeling particle production as string breaking (I)

- Color flux tube between two quarks breaks due to quark-antiquark pair production in the intense color field
- Lund model:

The basic assumption of the symmetric Lund model is that the vertices at which the quark and the antiquark are produced lie approximately on a curve on constant proper time

 Result: flat rapidity distribution of the produced particles Modeling particle production as string breaking (II)

In terms of the transverse mass of the produced quark ($m_{T,q'} = m_{T,q'bar}$) the probability that the break-up occurs is:

$$P \propto \exp\left(-\frac{\pi m_{\perp q'}^2}{k}\right) = \exp\left(-\frac{\pi p_{\perp q'}^2}{k}\right) \exp\left(-\frac{\pi m_{q'}^2}{k}\right)$$

This leads to a transverse momentum distribution for the quarks of the form:

$$\frac{1}{p_T} \frac{\mathrm{d}N_{\mathrm{quark}}}{\mathrm{d}p_T} = \mathrm{const.} \cdot \exp\left(-\pi p_T^2/k\right) \quad \rightsquigarrow \quad \sqrt{\langle p_T^2 \rangle_{\mathrm{quark}}} = \sqrt{k/\pi}$$

For pions (two quarks) one obtains: $\sqrt{\langle p_T^2 \rangle_{pion}} = \sqrt{2k/\pi}$

With a string tension of 1 GeV/fm this yields $\langle p_T \rangle_{pion} \approx 0.37$ GeV/c, in approximate agreement with data

Modeling particle production as string breaking (III)

Convolution of the string breaking mechanism with fluctuations of the string tension described by a Gaussian give rise to exponential p_T spectra

Phys. Lett. B466, 301–304 (1999)

The tunneling process implies heavy-quark suppression:

 $u\overline{u}: d\overline{d}: s\overline{s}: c\overline{c} \approx 1:1:0.3:10^{-11}$

The production of baryons can be modeled by quark-diquark string replacing the q-qbar pair by an quark-diquark pair

Collisions of hadrons described as excitation of quark-diquarks strings:

Part II: nucleus-nucleus collisions

Ultra-Relativistic Nucleus-Nucleus Collisions: Importance of Nuclear Geometry

- Ultra-relativistic energies
 - De Broglie wave length much smaller than size of the nucleon
 - Wave character of the nucleon can be neglected for the estimation of the total cross section
- Nucleus-Nucleus collision can be considered as a collision of two black disks

$$R_A \approx r_0 \cdot A^{1/3}$$
, $r_0 = 1.2 \, {
m fm}$

$$\sigma_{\rm inel}^{\rm A+B} \approx \sigma_{\rm geo} \approx \pi r_0^2 (A^{1/3} + B^{1/3})^2$$

Participants and spectators

- N_{coll}: number of inelastic nucleon-nucleon collisions
- N_{part}: number of nucleons which underwent at least one inelastic nucleonnucleon collisions

Charged particle pseudorapidity distributions for different $\sqrt{s_{NN}}$

Charged-particle Pseudorapidity Distributions: Comparison e+e-, pp, and AA

$dN_{ch}/d\eta$ vs $\sqrt{s_{NN}}$ in pp and central A-A collisions

- $dN_{ch}/d\eta$ scales with s^{α}
- Increase in central A+A stronger than in p+p

QGP physics SS2023 | P. Braun-Munzinger, K. Reygers, J. Stachel | 4. Basics of Nucleon-Nucleon and Nucleus-Nucleus Collisions 21

Centrality dependence of dN_{ch}/dη

• $dN_{ch}/d\eta / N_{part}$ increases with centrality

Relative increase similar at RHIC and the LHC: Importance of geometry!

Average p_T of pions, kaons, and protons in Au-Au@200 GeV and Pb-Pb@2.76 TeV

Nuclear stopping power (Au-Au at $\sqrt{s_{NN}} = 200$ GeV)

Average rapidity loss:

Initial rapidity:

$$y_{\rm p} = 5.36$$

Net baryons after the collision:

$$\langle y \rangle = \frac{2}{N_{\text{part}}} \int_{0}^{y_{p}} y \frac{dN_{B-\bar{B}}}{dy} \, dy$$

Average rapidity loss:

$$\langle \delta y \rangle = y_p - \langle y \rangle \approx 2$$

Average energy loss of a nucleon in central Au+Au@200GeV is 73 ± 6 GeV

Bjorken's formula for the initial energy density

Assumptions:

- Particles (quarks and gluons) materialize at proper time τ₀
- Position z and longitudinal velocity (i.e. rapidity) are correlated
 - As if particles streamed freely from the origin

 $\varepsilon = \frac{E}{V} = \frac{1}{A} \frac{dE}{dz}\Big|_{z=0} = \frac{1}{A} \frac{dE}{dy}\Big|_{y=0} \frac{dy}{dz}\Big|_{z=0} = \frac{1}{A} \frac{dE}{dy}\Big|_{y=0} \frac{1}{\tau} = \frac{\langle m_T \rangle}{A \cdot \tau} \frac{dN}{dy}\Big|_{y=0}$

 $z = \tau \sinh y$

A =transverse area

$$arepsilon = rac{1}{A \cdot au_0} \left. rac{\mathrm{d} E_{\mathrm{T}}}{\mathrm{d} y}
ight|_{y=0}$$
 , $au_0 pprox 1 \, \mathrm{fm}/c$

However, this formula neglects longitudinal work:

- dE/dy drops as a fct. of time
- Bjorken formula underestimates ε

J.D. Bjorken, Phys.Rev. D27 (1983) 140-151, 3494 citations on inspirehep.net on May 11, 2023

Energy density in central Pb-Pb collisions at the LHC

$$\varepsilon = \frac{1}{A \cdot \tau_0} \left. \frac{dE_T}{dy} \right|_{y=0}$$
$$= \frac{1}{A \cdot \tau_0} J(y, \eta) \left. \frac{dE_T}{d\eta} \right|_{\eta=0}$$
with $J(y, \eta) \approx 1.09$

Transverse area:

$$A = \pi R_{\rm Pb}^2$$
 with $R_{\rm Pb} \approx 7$ fm

Central Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV:

$$dE_T/d\eta = 2000 \,\mathrm{GeV}$$

Energy density:

$$arepsilon_{
m LHC} = 14 \, {
m GeV}/{
m fm}^3$$

 $pprox 2.6 imes arepsilon_{
m RHIC}$ for $au_0 = 1 \, {
m fm}/c$

Glauber modeling: An interface between theory and experiment

Starting point: nucleon density

$$\rho(r) = \frac{\rho_0 \left(1 + wr^2 / R^2 \right)}{1 + \exp((r - R) / a)}$$

Nucleus	Α	R (fm)	a (<u>fm</u>)	w
С	12	2.47	0	0
0	16	2.608	0.513	-0.051
AI	27	3.07	0.519	0
S	32	3.458	0.61	0
Ca	40	3.76	0.586	-0.161
Ni	58	4.309	0.516	-0.1308
Cu	63	4.2	0.596	0
W	186	6.51	0.535	0
Au	197	6.38	0.535	0
Pb	208	6.68	0.546	0
U	238	6.68	0.6	0

Woods-Saxon parameters typically from e⁻-nucleus scattering (sensitive to charge distribution only)

Difference between neutron and proton distribution small and typically neglected

Nuclear Thickness Function

Projection of nucleon density on the transverse plane ("nuclear thickness fct."):

 $T_{A}(\vec{s}') = \int dz \ \rho_{A}(z, \vec{s}')$ (analogous for nucleus B)

 $dT_{AB} = T_A(\vec{s} + \vec{b}/2) \cdot T_B(\vec{s} - \vec{b}/2) d^2s$

 \mathbf{x}

Number of nucleon-nucleon encounters per transverse area element:

Nuclear Overlap function and the number of nucleon-nucleon collisions

Nuclear overlap function:

$$T_{AB}(\vec{b}) = \int T_{A}(\vec{s} + \vec{b}/2) \cdot T_{B}(\vec{s} - \vec{b}/2) d^{2}s$$

Nuclear overlap function resembles integrated luminosity of a collider:

$$N_{\rm coll}(b) = T_{\rm AB}(b) \cdot \sigma_{\rm inel}^{\rm NN}$$

Or, more generally, for a process with cross section σ_{int} :

$$N_{\rm int}(b) = T_{\rm AB}(b) \cdot \sigma_{\rm int}$$

Probability for an Inelastic A+B collision

Def's (different normalization of the thickness functions):

$$\hat{T}_{\mathsf{A}}(\vec{s}') = T_{\mathsf{A}}(\vec{s}')/A$$
 $\hat{T}_{\mathsf{B}}(\vec{s}') = T_{\mathsf{B}}(\vec{s}')/B$ $\hat{T}_{\mathsf{AB}}(\vec{b}) = T_{\mathsf{AB}}(\vec{b})/(AB)$

We can then write:

$$N_{\text{coll}}(b) = AB \hat{T}_{AB}(b) \cdot \sigma_{\text{inel}}^{\text{NN}}$$

$$p_{\rm NN} = \hat{T}_{\rm AB}(\vec{b}) \cdot \sigma_{\rm inel}^{\rm NN}$$

probability for a certain nucleon from nucleus A to collide with a certain nucleon from nucleus B

Probability for k nucleon-nucleon coll.: $P(k, \vec{b}) = {AB \choose k} p_{NN}^k (1 - p_{NN})^{AB-k}$

Probability for k = 0 is $(1 - p_{NN})^{AB}$. Thus: $p_{\text{inel}}^{AB}(\vec{b}) = 1 - (1 - \hat{T}_{AB}(\vec{b}) \cdot \sigma_{\text{inel}}^{NN})^{AB} \approx 1 - \exp(-AB\hat{T}_{AB}(\vec{b}) \cdot \sigma_{\text{inel}}^{NN})$ Poisson limit of the binomial distribution

do/db for Pb-Pb

Number of Participants

Probability that a test nucleon of nucleus A interacts with a certain nucleon of nucleus B:

$$p_{\mathrm{NN,A}}(\vec{s}) = \hat{T}_{\mathrm{B}}(\vec{s} - \vec{b}/2)\sigma_{\mathrm{inel}}^{\mathrm{NN}}$$

Probability that the test nucleon does not interact with any of the *B* nucleons of nucleus B: (1 + (7))B

$$(1-p_{\mathsf{NN},\mathsf{A}}(ec{s}))^B$$

Probability that the test nucleon makes at least one interaction:

$$1-(1-
ho_{\mathsf{NN},\mathsf{A}}(ec{s}))^Bpprox 1-\exp(-B
ho_{\mathsf{NN},\mathsf{A}}(ec{s}))$$

Number of participants:

$$\begin{split} N_{\text{part}}(\vec{b}) &= N_{\text{part}}^{\text{A}}(\vec{b}) + N_{\text{part}}^{\text{B}}(\vec{b}) \\ &= \int T_{\text{A}}(\vec{s} + \vec{b}/2) \cdot \left[1 - \exp(-T_{\text{B}}(\vec{s} - \vec{b}/2)\sigma_{\text{inel}}^{\text{NN}}) \right] \, \text{d}^2s \\ &+ \int T_{\text{B}}(\vec{s} - \vec{b}/2) \cdot \left[1 - \exp(-T_{\text{A}}(\vec{s} + \vec{b}/2)\sigma_{\text{inel}}^{\text{NN}}) \right] \, \text{d}^2s \end{split}$$

Npart vs Impact Parameter b

Glauber Monte Carlo Approach

- Randomly select impact parameter b
- Distribute nucleons of two nuclei according to nuclear density distribution
- Consider all pairs with one nucleon from nucleus A and the other from B
- Count pair as inel. n-n collision if distance d in x-y plane satisfies:

$$d < \sqrt{\sigma_{
m inel}^{
m NN}/\pi}$$

Repeat many times: (N_{part})(b) (N_{coll})(b)

Centrality selection: Forward and transverse energy

Example: Pb-Pb, fixed-target experiment (WA98, CERN SPS)

Both E_T and E_{ZDC} can be used to define centrality classes

Centrality Selection: Charged-Particle Multiplicity

- Measure charged particle multiplicity
 - ALICE: VZERO detectors (2.8 < η < 5.1 and -3.7 < η < -1.7)
 - Assumption: $\langle N_{ch} \rangle$ (b) increases monotonically with decreasing b
- Define centrality class by selecting a percentile of the measured multiplicity distribution (e.g. 0-5%)
 - Need Glauber fit to define "100%" (background at low multiplicities)

How $\langle N_{part} \rangle$, $\langle N_{coll} \rangle$, and $\langle b \rangle$ are Assigned to an Experimental Centrality Class?

- Glauber Monte Carlo
 - Find impact parameter interval
 - [*b*₁, *b*₂] which corresponds to the same percentile
 - Average N_{part}(b), N_{coll}(b), etc over this interval

• Example: Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV

• $\sigma_{NN}(inel) = (64 \pm 5) \text{ mb}$

Centrality	b_{\min}	b_{\max}	$\langle N_{\rm part} \rangle$	RMS	(sys.)	$\langle N_{\rm coll} \rangle$	RMS	(sys.)	$\langle T_{\rm AA} \rangle$	RMS	(sys.)
	(fm)	(fm)							1/mbarn	1/mbarn	1/mbarn
0–5%	0.00	3.50	382.7	17	3.0	1685	140	190	26.32	2.2	0.85
5-10%	3.50	4.94	329.4	18	4.3	1316	110	140	20.56	1.7	0.67
10-20%	4.94	6.98	260.1	27	3.8	921.2	140	96	14.39	2.2	0.45
20-40%	6.98	9.88	157.2	35	3.1	438.4	150	42	6.850	2.3	0.23
40-60%	9.88	12.09	68.56	22	2.0	127.7	59	11	1.996	0.92	0.097
60-80%	12.09	13.97	22.52	12	0.77	26.71	18	2.0	0.4174	0.29	0.026
80–100%	13.97	20.00	5.604	4.2	0.14	4.441	4.4	0.21	0.06939	0.068	0.0055