Introduction to Data Analysis and Machine Learning in Physics

Jörg Marks, Klaus Reygers

11-14 April 2023 9:00 - 12:00 and 14:00 - 17:00

L

Outline

- Day 1
 - Introduction, software and data fitting
- Day 2
 - Machine learning basics
- Day 3
 - Machine learning decision trees
- Day 4
 - Machine learning convolutional networks and graph neural networks
- Organization and Objective
 - 2 ETC: Compulsory attendance is required Active participation in the exercises
 - Course in CIP pool in a tutorial style
 - Obtain basic knowledge for problem-oriented self-studies

Course Information (1)

- Course requirements
 - ▶ Python knowledge needed / good C++ knowledge might work
 - Userid to use the CIP Pool of the faculty of physics
- Course structure
 - Course in CIP pool using the jupyter3 hub
 - Lectures are interleaved with tutorial/exercise sessions in small groups (up to 5 persons / group)
- Course homepage which includes and distributes all material https://www.physi.uni-heidelberg.de/~reygers/lectures/2023/ml/

```
/transparencies Transparencies of the lectures
/examples iPython files shown in the lectures
/exercises Exercises to be solved during the course
/solutions Solutions of the exercises
```

Course Information (2)

TensorFlow and Keras are now also installed in the CIP jupyter hub. In addition, with a google account you can run jupyter notebooks on Google Colab:

```
https://colab.research.google.com/
```

Missing python libraries can be included by adding the following to a cell (here for the pypng library):

!pip install pypng

4

Course Information (3)

- Your installation at home:
 - ► Web Browser to access jupyter3
 - Access to the CIP pool via an ssh client on your home PC
- No requirements for a special operating system
- Software:
 - firefox or similar
 - Cisco AnyConnect
 - ssh client (MobaXterm on Windows, integrated in Linux/Mac)
- Local execution of python / iPython
 - Install anaconda3 and download / run the iPython notebooks (also python scripts are available)
- Hints for software installations and CIP pool access
 https://www.physi.uni-heidelberg.de/~marks/root_einfuehrung/Folien/CIPpoolAccess.PDF

Course Information (4)

Alternatively, you can install the libraries needed on your local computer.

Here are the relevant instruction for macOS using pip:

Assumptions: homebrew is installed.

Install python3 (see https://docs.python-guide.org/starting/install3/osx/)

```
$ brew install python
```

\$ python --version
Python 3.8.5

Make sure pip3 is up-to-date (alternative: conda \rightarrow don't mix conda and pip installations)

\$ pip3 install --upgrade pip

Install modules needed:

\$ pip3 install --upgrade jupyter matplotlib numpy pandas
scipy scikit-learn xgboost iminuit tensorflow tensorflow_datasets Keras

Topcics and file name conventions

- 0. Introduction (this file) (introduction.pdf)
- 1. Introduction to python (01_intro_python_*)
- 2. Data modeling and fitting (02_fit_intro_*)
- 3. Machine learning basics (03_ml_intro_*)
- 4. Decisions trees (04_decision_trees_*)
- 5. Neural networks (05_neural_networks_*)

- Technicalities
- Summary of NumPy
- Plotting with matplotlib
- Input / output of data
- Summary of pandas
- Fitting with iminuit and PyROOT
- Transparencies with activated links, examples and exercises
 - ► Software: 01_intro_python.pdf
 - ► Fitting: 02_fit_intro.pdf

- Introduction to machine learning 03_ml_intro.pdf
 - ► Tensorflow / Keras, datasets
 - Supervised learning
 - Classification
- Multivariate analysis 03_ml_intro_mva.pdf
 - Regression
 - Linear regression
 - Logistic regression
 - Softmax regression (multi-class classification)

- Decision trees
- Bagging and boosting
- Random forest
- XGBoost

 $04_decision_trees.pdf$

- Neural networks
- Convolutional neural networks
- Hand-written digit recognition with Keras

 $05_neural_networks.pdf$