
Introduction to Data Analysis and Machine Learning in Physics:
5. Convolutional Neural Networks and Graph Neural Networks

Jörg Marks, Klaus Reygers

Studierendentage, 11-14 April 2023

1

Historical perspective: Perceptron (1)

h(x) =
{

1 if w · x + b > 0,

0 otherwise

Mark 1 Perceptron. Frank Rosenblatt (1961)

The perceptron was designed for image recognition. It was first implemented in hardware (400
photocells, weights = potentiometer settings).

2

Historical perspective: Perceptron (2)

• McCulloch–Pitts (MCP) neuron (1943)
▶ First mathematical model of a biological neuron
▶ Boolean input
▶ Equal weights for all inputs
▶ Threshold hardcoded

• Improvements by Rosenblatt
▶ Different weights for inputs
▶ Algorithm to update weights and threshold

given labeled training data
Shortcoming of the perceptron:
it cannot learn the XOR function
Minsky, Papert, 1969 XOR: not linearly separable

3

The biological inspiration: the neuron

4

Neural network output and decision boundaries

P. Bhat, Multivariate
Analysis Methods in
Particle Physics, inspire-
hep.net/record/879273

5

Recap: Backpropagation

Backpropagation summary
• Make prediction for a given training instance (forward pass)
• Calculate error (value of loss function)
• Go backwards and determine the contribution of each weight (reverse pass)
• Adjust the weights to reduce the error

Practical considerations:
• Nowadays, people will implements neural networks with frameworks like Keras or

TensorFlow
• No need to implement backpropagation yourself
• TensorFlow efficiently calculates gradient function efficiently (‘autodiff’)

6

More on gradient descent
• Stochastic gradient descent

▶ just uses one training event at a time
▶ fast, but quite irregular approach to the

minimum
▶ can help escape local minima
▶ one can decrease learning rate to settle at the

minimum (“simulated annealing”)
• Batch gradient descent

▶ use entire training sample to calculate gradient
of loss function

▶ computationally expensive
• Mini-batch gradient descent

▶ calculate gradient for a random sub-sample of
the training set

7

Universal approximation theorem

“A feed-forward network with a single hidden layer
containing a finite number of neurons (i.e., a
multilayer perceptron), can approximate continuous
functions on compact subsets of Rn.”

One of the first versions of the theorem was proved
by George Cybenko in 1989 for sigmoid activation
functions

The theorem does not touch upon the algorithmic
learnability of those parameters

8

Recap: Activation functions

9

ReLU

f (x) = max(0, x)

• Does not saturate (in +region)
• Very computationally efficient
• Converges much faster than sigmoid

tanh in practice
• Actually more biologically plausible

than sigmoid
• But: gradient vanishes for x < 0

10

Bias-variance tradeoff
Goal: generalization of training data

• Simple models (few parameters): danger of bias
▶ Classifiers with a small number of degrees of freedom are less prone to statistical

fluctuations: different training samples would result in similar classification boundaries
("small variance")

• Complex models (many parameters): danger of overfitting
▶ large variance of decision boundaries for different training samples

x

y

Degree 1
MSE = 4.08e-01(+/- 4.25e-01)

Model
True function
Samples

x

y

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)

Model
True function
Samples

x

y

Degree 15
MSE = 1.80e+08(+/- 5.41e+08)

Model
True function
Samples

11

Recap: Overtraining
Too many neurons/layers make a neural network too flexible
→ overtraining

12

Monitoring overtraining
Monitor fraction of misclassified events (or loss function:)

13

Regularization: Avoid overfitting
http://cs231n.stanford.edu/slides

L1 regularization: R(W) =
∑

k |Wk |, L2 regularization: R(W) =
∑

k W 2
k

14

http://cs231n.stanford.edu/slides

Exercise 1: Hyperparameter optimization

05_neural_networks_ex_1_hyperparameter_optimization.ipynb

The multi-layer perceptron did not perform well on the superconductivity dataset. Can
you find better hyperparameters (number of hidden layers, neurons per layer, loss
function, learning rate. . .)?

Use sklearn.model_selection.GridSearchCV to find optimal parameters.

15

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2023/ml/exercises/05_neural_networks_ex_1_hyperparameter_optimization.ipynb
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

Convolutional neutral networks (CNNs): Overview

• CNNs emerged from the study of the visual cortex
• Behind many deep learning successes (e.g. in image recognition)
• Partially connected layers

▶ Fully connected layers impractical for large images (too many
neurons, overfitting)

• Key component: Convolutional layers
▶ Set of learnable filters
▶ Low-level features at the first layers; high-level features a the end

Sliding 3 × 3 filter

16

Different types of layers in a CNN
1. Convolutional layers 3. Fully connected layers

2. Pooling layers Afshine Amidi, Shervine Amidi
Convolutional Neural Networks cheatsheet

17

https://github.com/afshinea/stanford-cs-230-deep-learning/blob/master/en/cheatsheet-convolutional-neural-networks.pdf

Convolution
Convolution of a function f with a kernel or filter function g :

Practical example: blurring of an image with a Gaussian filter
https://www.cs.cornell.edu/courses/cs6670/2011sp/lectures/lec02_filter.pdf

18

https://en.wikipedia.org/wiki/Convolution

Filters can detect structures/features in an image (1)
Filters to detects the “X” structures:

© MIT 6.S191: Introduction to Deep Learning IntroToDeepLearning.com

19

Filters can detect structures/features in an image (2)

© MIT 6.S191: Introduction to Deep Learning IntroToDeepLearning.com

20

Filters can detect structures/features in an image (3)
The convolutional operation

© MIT 6.S191: Introduction to Deep Learning IntroToDeepLearning.com

21

Filters can detect structures/features in an image (4)

Extracting a feature map

© MIT 6.S191: Introduction to Deep Learning IntroToDeepLearning.com

22

CNNs for classification

© MIT 6.S191: Introduction to Deep Learning IntroToDeepLearning.com
23

AlexNet

“ImageNet Classification with Deep Convolutional Neural Networks”,
Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, 2012

figure: https://www.mdpi.com/2072-4292/9/8/848

24

Inductive bias of a CNNs
Can you summarize the inductive bias that is associated with a convolutional neural
network?

ChatGPT Mar 23 Version:
“Yes, of course! The inductive bias associated with a convolutional neural network (CNN) is

that it assumes that the input data has a grid-like topology, such as images, audio spectrograms
or video frames.
CNNs are designed to learn local and translation-invariant features by convolving small filters
over the input data. This allows them to identify patterns in the input that are useful for
classification or other tasks. The filters can be learned through backpropagation, and the output
of each convolutional layer is usually downsampled (e.g., through max pooling) to reduce the
dimensionality of the data.
The inductive bias of CNNs allows them to perform well on tasks involving images, audio, and
video data, where the local structure of the data is important. However, it may not be as effective
for other types of data that do not have a grid-like topology, such as text or graphs. In these
cases, other types of neural networks or machine learning algorithms may be more appropriate.”

25

MNIST classification with a CNN in Keras

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, MaxPooling2D, Conv2D, Input

conv layer with 8 3x3 filters
model = Sequential(

[
Input(shape=input_shape),
Conv2D(8, kernel_size=(3, 3), activation="relu"),
MaxPooling2D(pool_size=(2, 2)),
Flatten(),
Dense(16, activation="relu"),
Dense(num_classes, activation="softmax"),

]
)

model.summary()

26

Defining the CNN in Keras (2)

Model: "sequential_1"

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 26, 26, 8) 80

max_pooling2d_1 (MaxPooling2 (None, 13, 13, 8) 0

flatten_1 (Flatten) (None, 1352) 0

dense_2 (Dense) (None, 16) 21648

dense_3 (Dense) (None, 10) 170
===
Total params: 21,898
Trainable params: 21,898
Non-trainable params: 0

27

Model definition

Using Keras, you have to compile a model, which means adding the loss function, the
optimizer algorithm and validation metrics to your training setup.

model.compile(loss="categorical_crossentropy",
optimizer="adam",
metrics=["accuracy"])

28

Model training

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

checkpoint = ModelCheckpoint(
filepath="mnist_keras_model.h5",
save_best_only=True,
verbose=1)

early_stopping = EarlyStopping(patience=2)

history = model.fit(x_train, y_train, # Training data
batch_size=200, # Batch size
epochs=50, # Maximum number of training epochs
validation_split=0.5, # Use 50% of the train dataset for validation
callbacks=[checkpoint, early_stopping]) # Register callbacks

29

Exercise 2: Training a digit-classification neural network on the MNIST
dataset using Keras

05_neural_networks_ex_2_mnist_keras_train.ipynb

a) Plot training and validation loss as well as training and validation accuracy as a
function of the number of epochs

b) Determine the accuracy of the fully trained model.
c) Create a second notebook that reads the trained model (mnist_keras_model.h5).

Read your_own_digit.png and classify it. Create your own 28 × 28 pixel digits
with a program like gimp and check how the model performs.

d) Try to improve the performance of the network by increasing the number of filters
and by adding a second convolutional layer.

30

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2023/ml/exercises/05_neural_networks_ex_2_mnist_keras_train.ipynb

Graph Neural Networks
slides on GNNs by Martin Kroesen

• Graph Neural Networks (GNNs): Neural Networks
that operate on graph structured data

• Graph: consists of nodes that can be connected by
edges, edges can be directed or undirected

• no grid structure as given for CNNs
• node features and edge features possible
• relation often represented by adjacency matrix:

Aij = 1 if there is a link between node i and j , else 0
• tasks on node level, edge level and graph level
• full lecture:

https://web.stanford.edu/class/cs224w/

31

https://web.stanford.edu/class/cs224w/

Simple Example: Zachary’s karate club

• link: https://en.wikipedia.org/wiki/
Zachary’s_karate_club

• 34 nodes: each node represents a member of
the karate club

• 4 classes: a community each member belongs to
• task: classify the nodes
• many real world problems for GNNs exist,

e.g. social networks, molecules, recommender
systems, particle tracks

32

https://en.wikipedia.org/wiki/Zachary's_karate_club
https://en.wikipedia.org/wiki/Zachary's_karate_club

From CNN to GNN

(from Stanford GNN lecture)

• GNN: Generalization of convolutional neural network
• No grid structure, arbitrary number of neighbors defined by adjacency matrix
• Operations pass information from neighborhood

33

Architecture: Graph Convolutional Network

• Message passing from connected nodes
• The graph convolution is defined as:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2 H(l)W (l)

)
• The adjacency matrix A including

self-connections is given by Ã
• The degree matrix of the corrected adjacency

matrix is given by D̃ii = Σj Ãij

• The weights of the given layer are called W (l)

• H(l) is the matrix for activations in layer l

https://arxiv.org/abs/1609.02907

34

https://arxiv.org/abs/1609.02907

Architecture: Graph Attention Network

• Calculate the attention coefficients eij
from the features h for each node i
with its neighbors j

eij = a (W hi , W hj)

a: learnable weight vector
• Normalize attention coefficients

αij = softmaxj(eij) = exp(eij)
Σkexp(eik)

• Calculate node features

h(l+1)
i = σ

(
ΣαijW hl

j

)
https://arxiv.org/abs/1710.10903

35

https://arxiv.org/abs/1710.10903

Example: Identification of inelastic interactions in TRD
• Identification of inelastic interactions of light

antinuclei in the Transition Radiation Detector
in ALICE

• Thesis:
https://www.physi.uni-heidelberg.de/
Publications/Bachelor_Thesis_
Maximilian_Hammermann.pdf

• Construct nearest neighbor graph from signals
in detector

• Use global pooling for graph classification

interaction of antideuteron:

36

https://www.physi.uni-heidelberg.de/Publications/Bachelor_Thesis_Maximilian_Hammermann.pdf
https://www.physi.uni-heidelberg.de/Publications/Bachelor_Thesis_Maximilian_Hammermann.pdf
https://www.physi.uni-heidelberg.de/Publications/Bachelor_Thesis_Maximilian_Hammermann.pdf

Example: Google Maps
• link: https://www.deepmind.com/blog/

traffic-prediction-with-advanced-graph-neural-networks

• GNNs are used for traffic predictions and estimated times of arrival (ETAs)

37

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks
https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

Example: Alpha Fold
• link: https://www.deepmind.com/blog/

alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

• “A folded protein can be thought of as a ‘spatial graph’, where residues are the
nodes and edges connect the residues in close proximity”

38

https://www.deepmind.com/blog/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
https://www.deepmind.com/blog/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

Exercise 3: Illustration of Graphs and Graph Neural Networks

On the PyTorch Geometric webpage, you can find official examples for the application of
Graph Neural Networks:
https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html

The first introduction notebook shows the functionality of graphs with the example of
the Karate Club. Follow and reproduce the first notebook. Study and understand the
data format.

At the end, the separation power of Graph Convolutional Networks (GCN) are shown via
the node embeddings. You can replace the GCN with a Graph Attention Layers and
compare the results.

39

https://colab.research.google.com/drive/1h3-vJGRVloF5zStxL5I0rSy4ZUPNsjy8?usp=sharing

Exercise 4: Classifying molecules

The PyTorch Geometric webpage also provides an example of the classification of
molecules:
https://colab.research.google.com/drive/1I8a0DfQ3fI7Njc62__mVXUlcAleUclnb?usp=sharing

Study this notebook and then modify it to apply it to the PROTEINS dataset.

40

https://pytorch-geometric.readthedocs.io/en/latest/cheatsheet/data_cheatsheet.html

Practical advice – Which algorithm to choose?

From Kaggle competitions:

Structured data: “High level” features that have meaning:
• feature engineering + decision trees
• Random forests
• XGBoost

Unstructured data: “Low level” features, no individual meaning:
• deep neural networks
• e.g. image classification: convolutional NN

41

Outlook: Autoencoders

• Unsupervised method based on neural
networks to learn a representation of
the input data

• Autoencoders learn to copy the input
to the output layer

▶ low dimensional coding of the input
in the central layer

• The decoder generates data based on
the coding (generative model)

• Applications
▶ Dimensionality reduction
▶ Denoising of data
▶ Machine translation

Encoder Decoder

Latent space:
Low-dimensional

representation

Input Reconstructed
input

42

Outlook: Generative adversarial network (GANs)

https://developers.google.com/machine-learning/gan/gan_structure

• Discriminator’s classification provides a signal that the generator uses to update its
weights

• Application in particle physics: fast detector simulation
• Full GEANT simulation usually very CPU intensive

43

https://developers.google.com/machine-learning/gan/gan_structure

The future

“Das Interessante an unserer Intelligenz ist, dass wir Go spielen können und dann vom
Tisch aufstehen und Essen machen können, was eine Maschine nicht kann.”

Bernhard Schölkopf, Max-Planck-Institut für intelligente Systeme (Interview FAZ)

“My view is throw it all away and start again”
Geoffrey Hinton (DNN pioneer) on deep neural networks and backpropagation (Interview, 2017)

44

https://www.faz.net/aktuell/wirtschaft/kuenstliche-intelligenz/ki-fachmann-wie-gut-europa-in-der-forschung-aufgestellt-ist-16650700.html
https://www.axios.com/artificial-intelligence-pioneer-says-we-need-to-start-over-1513305524-f619efbd-9db0-4947-a9b2-7a4c310a28fe.html

