
Introduction to Data Analysis and Machine Learning in Physics:
3. Machine Learning Basics, Multivariate Analysis

Jörg Marks, Klaus Reygers

Studierendentage, 11-14 April 2023

1



Multi-variate analyses (MVA)
• General Question

There are 2 categories of distinguishable data, S and B, described by discrete
variables. What are criteria for a separation of both samples?

▶ Single criteria are not sufficient to distinguish S and B
▶ Reduction of the variable space to probabilities for S or B

• Classification of measurements using a set of observables (V1, V2, ...., Vn)
▶ find optimal separation conditions considering correlations

2



Multi-variate analyses (MVA)
• Regression - in the multidimensional observable space (V1, V2, ...., Vn) a functional

connection with optimal parameters is determined

• supervised regression: model is known
• unsupervised regression: model is unknown
• for the parameter determination Maximum likelihood fits are used

3



MVA Classification in N Dimensions
For each event there are N measured variables

• Search for a mathematical transformation F of the N
dimensional input space to a one dimensional output
space F (V ) : RN → R

• A simple cut in F implements a complex cut in the N
dimensional variable space

• Determine F (V ) using a model and fit the parameters
4



MVA Classification in N Dimensions
• Parameters

Important measures to quantify quality

Efficiency: ϵ = NS(F>F0)
Ns

Purity: π = NS(F>F0)
(Ns+NB)(F>F0)

• Reciever Operations Characteristics (ROC)
Errors in classification

5



MVA Classification in N Dimensions

• Interpretation of F (V )
▶ The distributions of F (V |S) and F (V |S) are

interpreted as probability density functions
(PDF), PDFS(F ) and PDFB(F )

▶ For a given F0 the probability for signal and
background for a given S/B can be determined
P(data = S|F ) = fS ·PDFS (F )

fB ·PDFB(F )+fS ·PDFS (F )

• A cut in the one dimensional Variable F (V ) = F0 and accepting all events on the
right determines the signal and background efficiency (background rejection). A
systematic change of F (V ) gives the ROC curve.

• A cut in F (V ) corresponds to a complex hyperplane, which can not neccessarily be
described by a function.

6



Simple Cuts in Variables
• The most simple classificator to select signal events are cuts in all variables which

show a separation
▶ The output is binary and not a probability on S or B.
▶ An optimization of the cuts is done by maximizing of the background suppression for

given signal efficiencies.
▶ Significance sig = ϵS · NS/

√
ϵS · NS + ϵB(ϵS)NB

7



Fisher Discriminat
Idea: Find a plane, that the projection of the data on the plane gives an optimal
separation of signal and background
• The Fisher discriminat is the linear combination

of all input variables
F (V ) =

∑
i wi · Vi = wT V

• w defines the orientation of the plane. The
coefficients are defined such that the difference
of the expectation values of both classes is large
and the variance is small.
J(w) = (FS−FB)2

σ2
S+σ2

B
= wT Kw

wT Lw
with K as covariance of the the expectation
values FS − FB and L is the sum

• For the separation a value Fc is determined.

8



k-Nearest Neighbor Method (1)

k-NN classifier:
• Estimates probability density around the input vector
• p(x|S) and p(x|B) are approximated by the number of signal and background

events in the training sample that lie in a small volume around the point x

Algorithms finds k nearest neighbors:

k = ks + kb

Probability for the event to be of signal type:

ps(x) = ks(x)
ks(x) + kb(x)

9



k-Nearest Neighbor Method (2)

Simplest choice for distance measure in feature space
is the Euclidean distance:

R = |x − y |

Better: take correlations between variables into
account:

R =
√

(x − y)T V −1(x − y)

V = covariance matrix, R = "Mahalanobis distance"

The k-NN classifier has best performance when the boundary that separates signal and
background events has irregular features that cannot be easily approximated by
parametric learning methods.

10



Linear regression revisited

"Galton family heights data":
origin of the term "regression"

60.0 62.5 65.0 67.5 70.0 72.5 75.0 77.5 80.0
Father's height (inches)

55

60

65

70

75

80

So
n'

s h
ei

gh
t (

in
ch

es
)

linear fit
y = x

• data: {xi , yi}
• objective: predict y = f (x)
• model:

f (x ; θ) = mx + b, θ = (m, b)
• loss function:

J(θ|x , y) = 1
N

∑N
i=1(yi − f (xi))2

• model training: optimal parameters
θ̂ = arg min J(θ)

11



Linear regression
• Data: vectors with p components (“features”): x = (x1, ..., xp)
• n observations: {xi , yi}, i = 1, ..., n
• Prediction for given vector x :

y = w0 + w1x1 + w2x2 + ... + wpxp ≡ w⊺x where x0 := 1

• Find weights that minimze loss function:

ŵ = min
w

n∑
i=1

(w⊺xi − yi)2

• In case of linear regression closed-form solution exists:

ŵ = (X⊺X )−1X⊺y where X ∈ Rn×p

• X is called the design matrix, row i of X is xi

12



Linear regression with regularization

• Standard loss function

C(w) =
n∑

i=1
(w⊺xi − yi)2

• Ridge regression

C(w) =
n∑

i=1
(w⊺xi − yi)2 + λ|w |2

• LASSO regression

C(w) =
n∑

i=1
(w⊺xi − yi)2 + λ|w |

w1

w2 w2

w1

ŵ
ŵ

LASSO Ridge

t t

LASSO regression tends to give sparse solutions
(many components wj = 0). This is why LASSO
regression is also called sparse regression.

13



Logistic regression (1)

• Consider binary classification task, e.g., yi ∈ {0, 1}
• Objective: Predict probability for outcome y = 1 given an observation x
• Starting with linear “score”

s = w0 + w1x1 + w2x2 + ... + wpxp ≡ w⊺x

• Define function that translates s into a quantity that has the properties of a
probability

σ(s) = 1
1 + e−s

• We would like to determine the optimal weights for a given training data set. They
result from the maximum-likelihood principle.

14



Logistic regression (2)
• Consider feature vector x. For a given set of weights w the model predicts

▶ a probability p(1|w) = σ(w⊺x) for outcome y = 1
▶ a probabiltiy p(0|w) = 1 − σ(w⊺x) for outcome y = 0

• The probability p(yi |w) defines the likelihood Li(w) = p(yi |w) (the likelihood is a
function of the parameters w and the observations yi are fixed).

• Likelihood for the full data sample (n observations)

L(w) =
n∏

i=1
Li(w) =

n∏
i=1

σ(w⊺x)yi (1 − σ(w⊺x))1−yi

• Maximizing the log-likelihood ln L(w) corresponds to minimizing the loss function

C(w) = − ln L(w) =
n∑

i=1
−yi ln σ(w⊺x) − (1 − yi) ln(1 − σ(w⊺x))

• This is nothing else but the cross-entropy loss function
15



Example 1 - Probability of passing an exam (logistic regression) (1)
Objective: predict the probability that someone passes an exam based on the number of
hours studying

ppass = σ(s) = 1
1 + e−s , s = w1t + w0, t = # hours

• Data set:
▶ preparation t time in hours
▶ passed / not passes (0/1)

• Parameters need to be
determined through numerical
minimization

▶ w0 = −4.0777
▶ w1 = 1.5046

03_ml_basics_logistic_regression.ipynb
0 1 2 3 4 5 6

preparation time in hours

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y 
of

 p
as

sin
g 

ex
am

16

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2023/ml/examples/03_ml_basics_logistic_regression.ipynb


Example 1 - Probability of passing an exam (logistic regression) (2)
Read data from file:

# data: 1. hours studies, 2. passed (0/1)
df = pd.read_csv(filename, engine='python', sep='\s+')
x_tmp = df['hours_studied'].values
x = np.reshape(x_tmp, (-1, 1))
y = df['passed'].values

Fit the data:

from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(penalty='none', fit_intercept=True)
clf.fit(x, y);

Calculate predictions:

hours_studied_tmp = np.linspace(0., 6., 1000)
hours_studied = np.reshape(hours_studied_tmp, (-1, 1))
y_pred = clf.predict_proba(hours_studied)

17



Precision and recall

Precision:
Fraction of correctly classified instances
among all instances that obtain a certain
class label.

precision = TP
TP + FP

"purity"

Recall:
Fraction of positive instances that are
correctly classified.

recall = TP
TP + FN

"efficiency"

TP: true positives, FP: false positives, FN: false negatives

18



Example 2: Heart disease data set (logistic regression) (1)
Read data:

filename = "https://www.physi.uni-heidelberg.de/~reygers/lectures/2023/ml/data/heart.csv"
df = pd.read_csv(filename)
df

03_ml_basics_log_regr_heart_disease.ipynb
19

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2023/ml/examples/03_ml_basics_log_regr_heart_disease.ipynb


Example 2: Heart disease data set (logistic regression) (2)
Define array of labels and feature vectors

y = df['target'].values
X = df[[col for col in df.columns if col!="target"]]

Generate training and test data sets

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, shuffle=True)

Fit the model

from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(penalty='none', fit_intercept=True, max_iter=1000, tol=1E-5)
lr.fit(X_train, y_train)

20



Example 2: Heart disease data set (logistic regression) (3)
Test predictions on test data set:

from sklearn.metrics import classification_report
y_pred_lr = lr.predict(X_test)
print(classification_report(y_test, y_pred_lr))

Output:

precision recall f1-score support

0 0.75 0.86 0.80 63
1 0.89 0.80 0.84 89

accuracy 0.82 152
macro avg 0.82 0.83 0.82 152

weighted avg 0.83 0.82 0.82 152

21



Example 2: Heart disease data set (logistic regression) (4)
Compare to another classifier usinf the receiver operating characteristic (ROC) curve
Let’s take the random forest classifier

from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(max_depth=3)
rf.fit(X_train, y_train)

Use roc_curve from scikit-learn

from sklearn.metrics import roc_curve

y_pred_prob_lr = lr.predict_proba(X_test) # predicted probabilities
fpr_lr, tpr_lr, _ = roc_curve(y_test, y_pred_prob_lr[:,1])

y_pred_prob_rf = rf.predict_proba(X_test) # predicted probabilities
fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_prob_rf[:,1])

22



Example 2: Heart disease data set (logistic regression) (5)

plt.plot(tpr_lr, 1-fpr_lr, label="log. regression")
plt.plot(tpr_rf, 1-fpr_rf, label="random forest")

Classifiers can be compared with the area
under curve (AUC) score.

from sklearn.metrics import roc_auc_score
auc_lr = roc_auc_score(y_test,y_pred_lr)
auc_rf = roc_auc_score(y_test,y_pred_rf)
print(f"AUC scores: {auc_lr:.2f}, {auc_knn:.2f}")

This gives
AUC scores: 0.82, 0.83

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

log. regression
random forest

23



Multinomial logistic regression: Softmax function

In the previous example we considered two classes (0, 1). For multi-class classification,
the logistic function can generalized to the softmax function.

Now consider k classes and let si be the score for class i : s = (s1, ..., sk)

A probability for class i can be predicted with the softmax function:

σ(s)i = esi∑k
j=1 esj

for i = 1, ..., k

The softmax functions is often used as the last activation function of a neural network in
order to predict probabilities in a classification task.

Multinomial logistic regression is also known as softmax regression.

24



Example 3: Iris data set (softmax regression) (1)
Iris flower data set

• Introduced 1936 in a paper by Ronald Fisher
• Task: classify flowers
• Three species: iris setosa, iris virginica and iris versicolor
• Four features: petal width and length, sepal width/length, in centimeters

03_ml_basics_iris_softmax_regression.ipynb

https://archive.ics.uci.edu/ml/datasets/Iris

https://en.wikipedia.org/wiki/Iris_flower_data_set

25

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2023/ml/examples/03_ml_basics_iris_softmax_regression.ipynb
https://archive.ics.uci.edu/ml/datasets/Iris
https://en.wikipedia.org/wiki/Iris_flower_data_set


Example 3: Iris data set (softmax regression) (2)
Get data set

# import some data to play with
# columns: Sepal Length, Sepal Width, Petal Length and Petal Width
iris = datasets.load_iris()
X = iris.data
y = iris.target

# split data into training and test data sets
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)

Softmax regression

from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression(multi_class='multinomial', penalty='none')
log_reg.fit(x_train, y_train);

26



Example 3 : Iris data set (softmax regression) (3)

Accuracy and confusion matrix for different classifiers

for clf in [log_reg, kn_neigh, fisher_ld]:
y_pred = clf.predict(x_test)
acc = accuracy_score(y_test, y_pred)
print(type(clf).__name__)
print(f"accuracy: {acc:0.2f}")

# confusion matrix:
# columns: true class, row: predicted class
print(confusion_matrix(y_test, y_pred),"\n")

LogisticRegression
accuracy: 0.96
[[29 0 0]
[ 0 23 0]
[ 0 3 20]]

KNeighborsClassifier
accuracy: 0.95
[[29 0 0]
[ 0 23 0]
[ 0 4 19]]

LinearDiscriminantAnalysis
accuracy: 0.99
[[29 0 0]
[ 0 23 0]
[ 0 1 22]]

27



Exercise 1: Classification of air showers measured with the MAGIC telescope

• Cosmic gamma rays (30 GeV - 30 TeV).
• Cherenkov light from air showers
• Background: air showers caused by

hadrons.

28



Exercise 1: Classification of air showers measured with the MAGIC telescope

Gamma shower Hadronic shower
29



Exercise 1: Classification of air showers measured with the MAGIC telescope

30



Exercise 1: Classification of air showers measured with the MAGIC telescope
MAGIC data set
https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope

1. fLength: continuous # major axis of ellipse [mm]
2. fWidth: continuous # minor axis of ellipse [mm]
3. fSize: continuous # 10-log of sum of content of all pixels [in #phot]
4. fConc: continuous # ratio of sum of two highest pixels over fSize [ratio]
5. fConc1: continuous # ratio of highest pixel over fSize [ratio]
6. fAsym: continuous # distance from highest pixel to center, projected onto major axis [mm]
7. fM3Long: continuous # 3rd root of third moment along major axis [mm]
8. fM3Trans: continuous # 3rd root of third moment along minor axis [mm]
9. fAlpha: continuous # angle of major axis with vector to origin [deg]
10. fDist: continuous # distance from origin to center of ellipse [mm]
11. class: g,h # gamma (signal), hadron (background)

g = gamma (signal): 12332
h = hadron (background): 6688

For technical reasons, the number of h events is underestimated.
In the real data, the h class represents the majority of the events.

31

https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope


Exercise 1: Classification of air showers measured with the MAGIC telescope

03_ml_basics_ex_1_magic.ipynb
a) Create for each variable a figure with a plot for gammas and hadrons overlayed.
b) Create training and test data set. The test data should amount to 50% of the total

data set.
c) Define the logistic regressor and fit the training data
d) Determine the model accuracy and the AUC score
e) Plot the ROC curve (background rejection vs signal efficiency)

32

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2023/ml/exercises/03_ml_basics_ex_1_magic.ipynb


General remarks on multi-variate analyses (MVAs)
• MVA Methods

▶ More effective than classic cut-based analyses
▶ Take correlations of input variables into account

• Important: find good input variables for MVA methods
▶ Good separation power between S and B
▶ No strong correlation among variables
▶ No correlation with the parameters you try to measure in your signal sample!

• Pre-processing
▶ Apply obvious variable transformations and let MVA method do the rest
▶ Make use of obvious symmetries: if e.g. a particle production process is symmetric in

polar angle θ use | cos θ| and not cos θ as input variable
▶ It is generally useful to bring all input variables to a similar numerical range

33



Example of feature transformation

34



Exercise 2: Data preprocessing

a) Read the description of the sklearn.preprocessing package.
b) Start from the example notebook on the logistic regression for the heart disease

data set (03_ml_basics_log_regr_heart_disease.ipynb). Pre-process the heart
disease data set according to the given example. Does preprocessing make a
difference in this case?

35

https://scikit-learn.org/stable/modules/preprocessing.html
https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2023/ml/examples/03_ml_basics_log_regr_heart_disease.ipynb

