
Introduction to Data Analysis and Machine Learning in Physics:
5. Neural networks

Martino Borsato, Jörg Marks, Klaus Reygers

Studierendentage, 11-14 April 2022

1

Exercises

• Exercise 1: Learn XOR with a MLP
I 05_neural_networks_ex_1_xor.ipynb

• Exercise 2: Visualising decision boundaries of classifiers
I 05_neural_networks_ex_2_decision_boundaries.ipynb

• Exercise 3: Boston house prices (MLP regression)
I 05_neural_networks_ex_3_boston_house_prices.ipynb

• Exercise 4: Training a digit-classification neural network on the MNIST dataset
using Keras

I 05_neural_networks_ex_4_mnist_keras_train.ipynb

2

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/exercises/05_neural_networks_ex_1_xor.ipynb
https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/exercises/05_neural_networks_ex_2_decision_boundaries.ipynb
https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/exercises/05_neural_networks_ex_3_boston_house_prices.ipynb
https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/exercises/05_neural_networks_ex_4_mnist_keras_train.ipynb

Perceptron (1)

h(x) =

(
1 if w · x + b > 0;

0 otherwise

Mark 1 Perceptron. Frank Rosenblatt (1961)

The perceptron was designed for image recognition. It was first implemented in hardware (400
photocells, weights = potentiometer settings).

3

Perceptron (2)

• McCulloch–Pitts (MCP) neuron (1943)
I First mathematical model of a biological
neuron

I Boolean input
I Equal weights for all inputs
I Threshold hardcoded

• Improvements by Rosenblatt
I Different weights for inputs
I Algorithm to update weights and threshold
given labeled training data

Shortcoming of the perceptron:
it cannot learn the XOR function
Minsky, Papert, 1969

XOR: not linearly separable

4

The biological inspiration: the neuron

5

Non-linear transfer / activation function
Discriminant:

y(x) = h

w0 +

nX
i=1

wixi

!
Examples for function h:

1

1 + e−x
(”sigmoid” or ”logistic” function); tanh x

Non-linear activation function needed in
neural networks when feature space is not
linearly separable.

Neural net with linear activation functions is
just a perceptron

6

Feedforward neural network with one hidden layer

ffii (x) = h

0@w (1)
i0 +

nX
j=1

w
(1)
i j xj

1A

y(x) = h

0@w (2)
10 +

mX
j=1

w
(2)
1j ffij(x)

1A

superscripts indicates layer number, i.e.,
w

(1)
i j refers to the input weights of neuron

i in the hidden layer (= layer 1).

Straightforward to generalize to multiple hidden layers

7

Neural network output and decision boundaries

P. Bhat, Multivariate
Analysis Methods in
Particle Physics, inspire-
hep.net/record/879273

8

Fun with neural nets in the browser

http://playground.tensorflow.org
9

http://playground.tensorflow.org

Backpropagation (1)
Start with an initial guess w0 for the weights an then update weights after each training
event:

w (fi+1) = w (fi) − ”∇Ea(w
(fi)); ” = learning rate

Gradient descent:

10

Backpropagation (2)
Let’s write network output as follows:

y(x) = h(u(x)); u(x) =
mX
j=0

w
(2)
1j ffij(x)

ffij(x) = h

nX

k=0

w
(1)
jk xk

!
≡ h (vj(x))

For Ea =
1
2(ya − ta)

2 one obtains for the weights
from hidden layer to output:

@Ea

@w
(2)
1j

= (ya − ta)h
′(u(xa))

@u

@w
(2)
1j

= (ya − ta)h
′(u(xa))ffij(xa)

Further application of the chain rule gives weights from input to hidden layer.
11

Backpropagation (3)
Backpropagation summary

• Make prediction for a given training instance (forward pass)
• Calculate error (value of loss function)
• Go backwards and determine the contribution of each weight (reverse pass)
• Adjust the weights to reduce the error

Practical considerations:
• Nowadays, people will implements neural networks with frameworks like Keras or
TensorFlow

• No need to implement backpropagation yourself
• TensorFlow efficiently calculates gradient function based on a kind of symbolic
differentiation

12

More on gradient descent
• Stochastic gradient descent

I just uses one training event at a time
I fast, but quite irregular approach to the
minimum

I can help escape local minima
I one can decrease learning rate to settle at the
minimum (“simulated annealing”)

• Batch gradient descent
I use entire training sample to calculate
gradient of loss function

I computationally expensive
• Mini-batch gradient descent

I calculate gradient for a random sub-sample of
the training set

13

Universal approximation theorem

“A feed-forward network with a single hidden layer
containing a finite number of neurons (i.e., a
multilayer perceptron), can approximate continuous
functions on compact subsets of Rn.”

One of the first versions of the theorem was proved
by George Cybenko in 1989 for sigmoid activation
functions

The theorem does not touch upon the algorithmic
learnability of those parameters

14

Deep neural networks
Deep networks: many hidden layers with large number of neurons
• Challenges

I Hard too train (“vanishing
gradient problem”)

I Training slow
I Risk of overtraining

• Big progress in recent years
I Interest in NN waned before ca. 2006
I Milestone: paper by G. Hinton (2006):
“learning for deep belief nets”

I Image recognition, AlphaGo, …
I Soon: self-driving cars, …

15

Drawbacks of the sigmoid activation function

ff(x) =
1

1 + e−x

• Saturated neurons “kill” the gradients
• Sigmoid outputs are not zero-centered
• exp() is a bit compute expensive

16

Activation functions

17

ReLU

f (x) = max(0; x)

• Does not saturate (in +region)
• Very computationally efficient
• Converges much faster than sigmoid
tanh in practice

• Actually more biologically plausible
than sigmoid

• But: gradient vanishes for x < 0

18

Bias-variance tradeoff (1)

Goal: generalization of training data
• Simple models (few parameters): danger of bias

I Classifiers with a small number of degrees of freedom are less prone to statistical
fluctuations: different training samples would result in similar classification
boundaries (”small variance”)

• Complex models (many parameters): danger of overfitting
I large variance of decision boundaries for different training samples

19

Bias-variance tradeoff (2)

x

y

Degree 1
MSE = 4.08e-01(+/- 4.25e-01)

Model
True function
Samples

x

y

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)

Model
True function
Samples

x

y

Degree 15
MSE = 1.80e+08(+/- 5.41e+08)

Model
True function
Samples

20

Example of overtraining
Too many neurons/layers make a neural network too flexible
→ overtraining

21

Monitoring overtraining
Monitor fraction of misclassified events (or loss function:)

22

Regularization: Avoid overfitting
http://cs231n.stanford.edu/slides

L1 regularization: R(W) =
P

k |Wk |, L2 regularization: R(W) =
P

k W
2
k

23

http://cs231n.stanford.edu/slides

Another approach to prevent overfitting: Dropout
• Randomly remove nodes during training
• Avoid co-adaptation of nodes

Srivastava et al., ”Dropout: A Simple Way to Prevent Neural Networks from Overfitting”
24

Pros and cons of multi-layer perceptrons

Pros
• Capability to learn non-linear models

Cons
• Loss function can have several local minima
• Hyperparameters need to be tuned

I number of layers, neurons per layer, and training iterations
• Sensitive to feature scaling

I preprocessing needed (e.g., scaling of all feature to range [0,1])

25

Example 1: Boston house prices (MLP regression) (1)
• Objective: predict house prices in Boston suburbs in the mid-1970s
• Boston house data set: 506 instances, 13 features

- CRIM per capita crime rate by town
- ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS proportion of non-retail business acres per town
- CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- NOX nitric oxides concentration (parts per 10 million)
- RM average number of rooms per dwelling
- AGE proportion of owner-occupied units built prior to 1940
- DIS weighted distances to five Boston employment centres
- RAD index of accessibility to radial highways
- TAX full-value property-tax rate per $10,000
- PTRATIO pupil-teacher ratio by town
- B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
- LSTAT % lower status of the population
- MEDV Median value of owner-occupied homes in $1000's

05_neural_networks_boston_house_prices.ipynb
26

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/examples/05_neural_networks_boston_house_prices.ipynb

Example 1: Boston house prices (MLP regression) (2)

boston = datasets.load_boston()
X = boston.data
y = boston.target

from sklearn.neural_network import MLPRegressor
mlp = MLPRegressor(hidden_layer_sizes=(100),

activation='logistic', random_state=1, max_iter=5000)
mlp.fit(X_train, y_train)

y_pred_mlp = mlp.predict(X_test)

rms = np.sqrt(mean_squared_error(y_test, y_pred_mlp))
print(f"root mean square error {rms:.2f}")

27

Example 1: Boston house prices (MLP regression) (3)

0 10 20 30 40 50
Actual house price (k$)

0

10

20

30

40

50

Pr
ed

ite
d

ho
us

e
pr

ice
 (k

$)

28

Exercise 1: XOR

05_neural_networks_ex_1_xor.ipynb

a) Define a multi-layer perceptron classifier that
learns the XOR problem.
from sklearn.neural_network import MLPClassifier

X = [[0, 0], [0, 1], [1, 0], [1, 1]]
y = [0, 1, 1, 0]

b) Define a multi-layer perceptron regressor that
fits the depicted 2d data (see notebook).

c) Plot the mean square error vs. the number of
number of training epochs for b).

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.6

0.8

1.0

29

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/exercises/05_neural_networks_ex_1_xor.ipynb

Exercise 2: Visualising decision boundaries of classifiers

05_neural_networks_ex_2_decision_boundaries.ipynb

Visualize the decision boundaries of a scikit-learn decision tree, a scikit-learn
multi-layer perceptron, and XGBoost for different toy data sets.

30

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/exercises/05_neural_networks_ex_2_decision_boundaries.ipynb

Exercise 3: Boston house prices (hyperparameter optimization)

05_neural_networks_ex_3_boston_house_prices.ipynb

a) Can you find better hyperparameters (number of hidden layers, neurons per layer,
loss function, …)? Try this first by hand.

b) Now use sklearn.model_selection.GridSearchCV to find optimal parameters.

31

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/exercises/05_neural_networks_ex_3_boston_house_prices.ipynb
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

TensorFlow

• Powerful open source library with a focus on deep
neural networks

• Performs computations of data flow graphs
• Takes care of computing gradients of the defined
functions (automatic differentiation)

• Computations in parallel on multiple CPUs or GPUs
• Developed by the Google Brain team
• Initial release in 2015
• https://www.tensorflow.org/

32

https://www.tensorflow.org/

Keras

• Open-source library providing high-level building blocks
for developing deep-learning models

• Uses TensorFlow as backend engine for low-level
tensor manipulation (version 2.4)

• Part of TensorFlow core API since TensorFlow 1.4
release

• Over 375,000 individual users as of early-2020
• Primary author: François Chollet (Google engineer)
• https://keras.io/

33

https://keras.io/

Example 2: Boston house prices with Keras
from tensorflow.keras import models
from tensorflow.keras import layers

model = models.Sequential()
model.add(layers.Dense(64, activation='relu',

input_shape=(train_data.shape[1],)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(1))
model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])

model.fit(partial_train_data, partial_train_targets,
epochs=num_epochs, batch_size=1, verbose=0)

Evaluate the model on the validation data
val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0)

05_neural_networks_boston_keras.ipynb

34

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/examples/05_neural_networks_boston_keras.ipynb

Convolutional neutral networks (CNNs)

• CNNs emerged from the study of the visual cortex
• Behind many deep learning successes
• Partially connected layers

I Fully connected layers impractical for large images (too many
neurons, overfitting)

• Key component: Convolutional layers
I Set of learnable filters
I Low-level features at the first layers; high-level features a the end

Sliding 3× 3 filter

35

Different types of layers in a CNN
1. Convolutional layers 3. Fully connected layers

2. Pooling layers Afshine Amidi, Shervine Amidi
Convolutional Neural Networks
cheatsheet

36

https://github.com/afshinea/stanford-cs-230-deep-learning/blob/master/en/cheatsheet-convolutional-neural-networks.pdf
https://github.com/afshinea/stanford-cs-230-deep-learning/blob/master/en/cheatsheet-convolutional-neural-networks.pdf

MNIST classification with a CNN in Keras

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, MaxPooling2D, Conv2D, Input

conv layer with 8 3x3 filters
model = Sequential(

[
Input(shape=input_shape),
Conv2D(8, kernel_size=(3, 3), activation="relu"),
MaxPooling2D(pool_size=(2, 2)),
Flatten(),
Dense(16, activation="relu"),
Dense(num_classes, activation="softmax"),

]
)

model.summary()

37

Defining the CNN in Keras (2)

Model: "sequential_1"

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 26, 26, 8) 80

max_pooling2d_1 (MaxPooling2 (None, 13, 13, 8) 0

flatten_1 (Flatten) (None, 1352) 0

dense_2 (Dense) (None, 16) 21648

dense_3 (Dense) (None, 10) 170
===
Total params: 21,898
Trainable params: 21,898
Non-trainable params: 0

38

Model definition

Using Keras, you have to compile a model, which means adding the loss function,
the optimizer algorithm and validation metrics to your training setup.

model.compile(loss="categorical_crossentropy",
optimizer="adam",
metrics=["accuracy"])

39

Model training

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

checkpoint = ModelCheckpoint(
filepath="mnist_keras_model.h5",
save_best_only=True,
verbose=1)

early_stopping = EarlyStopping(patience=2)

history = model.fit(x_train, y_train, # Training data
batch_size=200, # Batch size
epochs=50, # Maximum number of training epochs
validation_split=0.5, # Use 50% of the train dataset for validation
callbacks=[checkpoint, early_stopping]) # Register callbacks

40

Exercise 4: Training a digit-classification neural network on the MNIST
dataset using Keras

05_neural_networks_ex_4_mnist_keras_train.ipynb

a) Plot training and validation loss as well as training and validation accuracy as a
function of the number of epochs

b) Determine the accuracy of the fully trained model.
c) Create a second notebook that reads the trained model

(mnist_keras_model.h5). Read your_own_digit.png and classify it.
Create your own 28× 28 pixel digits with a program like gimp and check how the
model performs.

41

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/exercises/05_neural_networks_ex_4_mnist_keras_train.ipynb

Practical advice – Which algorithm to choose?

From Kaggle competitions:

Structured data: “High level” features that have meaning:
• feature engineering + decision trees
• Random forests
• XGBoost

Unstructured data: “Low level” features, no individual meaning:
• deep neural networks
• e.g. image classification: convolutional NN

42

Outlook: Autoencoders

• Unsupervised method based on
neural networks to learn a
representation of the input data

• Autoencoders learn to copy the input
to the output layer

I low dimensional coding of the input
in the central layer

• The decoder generates data based on
the coding (generative model)

• Applications
I Dimensionality reduction
I Denoising of data
I Machine translation

Encoder Decoder

Latent space:
Low-dimensional

representation

Input Reconstructed
input

43

Outlook: Generative adversarial network (GANs)

https://developers.google.com/machine-learning/gan/gan_structure

• Discriminator’s classification provides a signal that the generator uses to update
its weights

• Application in particle physics: fast detector simulation
• Full GEANT simulation usually very CPU intensive

44

https://developers.google.com/machine-learning/gan/gan_structure

The future

“Das Interessante an unserer Intelligenz ist, dass wir Go spielen können und dann
vom Tisch aufstehen und Essen machen können, was eine Maschine nicht kann.”

Bernhard Schölkopf, Max-Planck-Institut für intelligente Systeme (Interview FAZ)

“My view is throw it all away and start again”
Geoffrey Hinton (DNN pioneer) on deep neural networks and backpropagation (Interview,

2017)

45

https://www.faz.net/aktuell/wirtschaft/kuenstliche-intelligenz/ki-fachmann-wie-gut-europa-in-der-forschung-aufgestellt-ist-16650700.html
https://www.axios.com/artificial-intelligence-pioneer-says-we-need-to-start-over-1513305524-f619efbd-9db0-4947-a9b2-7a4c310a28fe.html
https://www.axios.com/artificial-intelligence-pioneer-says-we-need-to-start-over-1513305524-f619efbd-9db0-4947-a9b2-7a4c310a28fe.html

