
Introduction to Data Analysis and Machine Learning in Physics:
4. Decisions Trees

Martino Borsato, Jörg Marks, Klaus Reygers

Studierendentage, 6-9 April 2021

1

Exercises

I Exercise 1: Compare different decision tree classifiers
I 04_decision_trees_ex_1_compare_tree_classifiers.ipynb

I Exercise 2: Apply XGBoost classifier to MAGIC data set
I 04_decision_trees_ex_1_compare_tree_classifiers.ipynb

I Exercise 3: Feature importance
I Exercise 4: Interpret a classifier with SHAP values

2

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2021/ml/exercises/04_decision_trees_ex_1_compare_tree_classifiers.ipynb
https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2021/ml/exercises/04_decision_trees_ex_2_magic_xgboost_and_random_forest.ipynb

Decision trees

Leaf nodes classify events as either signal or background
3

Decision trees: Rectangular volumes in feature space

I Easy to interpret and visualize: Space of feature vectors split up into rectangular
volumes (attributed to either signal or background)

I How to build a decision tree in an optimal way?
4

Finding optimal cuts
Separation btw. signal and background is often measured with the Gini index (or Gini
impurity):

G = p(1− p)

Here p is the purity:

p =
∑

signal wi∑
signal wi + ∑

background wi
, wi = weight of event i

Usefulness of weights will become apparent soon.
Improvement in signal/background separation after splitting a set A into two sets B and
C:

∆ = WAGA −WBGB −WCGC where WX =
∑
X

wi

5

Gini impurity and other purity measures

6

Decision tree pruning

When to stop growing a tree?
I When all nodes are essentially pure?
I Well, that’s overfitting!

Pruning
I Cut back fully grown tree to avoid

overtraining, i.e., replace nodes and
subtrees by leaves

7

Single decision trees: Pros and cons

Pros:
I Requires little data preparation (unlike neural networks)
I Can use continuous and categorical inputs

Cons:
I Danger of overfitting training data
I Sensitive to fluctuations in the training data
I Hard to find global optimum
I When to stop splitting?

8

Ensemble methods: Combine weak learners

I Bootstrap Aggregating (Bagging)
I Sample training data (with replacement) and train a

separate model on each of the derived training sets
I Classify example with majority vote, or compute average

output from each tree as model output

y(~x) = 1
Ntrees

Ntrees∑
i=1

yi (~x)

I Boosting
I Train N models in sequence, giving more weight to

examples not correctly classified by previous model
I Take weighted average to classify examples

y(~x) =
∑Ntrees

i=1 αiyi (~x)∑Ntrees
i=1 αi

9

Random forests

I “One of the most widely used and versatile algorithms in data science and machine
learning” arXiv:1803.08823v3

I Use bagging to select random example subset

I Train a tree, but only use random subset of features at each split
I this reduces the correlation between different trees
I makes the decision more robust to missing data

10

Boosted decision trees: Idea

11

AdaBoost (short for Adaptive Boosting)

Initial training sample

~x1, ..., ~xn: multivariate event data
y1, ..., yn: true class labels, +1 or −1
w (1)

1 , ...,w (1)
n event weights

with equal weights normalized as
n∑

i=1
w (1)

i = 1

Train first classifier f1:

f1(~xi) > 0 classify as signal
f1(~xi) < 0 classify as background

12

AdaBoost: Updating events weights
Define training sample k + 1 from training sample k by updating weights:

w (k+1)
i = w (k)

i
e−αk fk(~xi)yi/2

Zk

i = event index, Zk : normalization factor so that
n∑

i=1

w (k)
i = 1

Weight is increased if event was misclassified by the previous classifier
→ “Next classifier should pay more attention to misclassified events”

At each step the classifier fk minimizes error rate:

εk =
n∑

i=1
w (k)

i I(yi fk(~xi) ≤ 0), I(X) = 1 if X is true, 0 otherwise

13

AdaBoost: Assigning the classifier score

Assign score to each classifier according to its error rate:

αk = ln 1− εk
εk

Combined classifier (weighted average):

f (~x) =
K∑

k=1
αk fk(~x)

14

Gradient boosting

Basic idea:
I Train a first decision tree
I Then train a second one on the residual errors made by the first tree
I And so on

In slightly more detail:
I Consider labeled training data: {~xi , yi}
I Model prediction at iteration m: Fm(~xi)
I New model: Fm+1(~x) = Fm(~x) + hm(~x)
I Find hm(~x) by fitting it to
{(~x1, y1 − Fm(~x1)), (~x2, y2 − Fm(~x2)), ... (~xn, yn − Fm(~xn))}

15

Example 1: Predict critical temperature for superconductivty (Regression
with XGBoost) (1)

04_decision_trees_critical_temp_regression.ipynb

Superconductivty data set:
Predict the critical temperature based on 81 material features.
https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data

From the abstract:
We estimate a statistical model to predict the superconducting critical temperature
based on the features extracted from the superconductor’s chemical formula. The
statistical model gives reasonable out-of-sample predictions: ±9.5K based on
root-mean-squared-error. Features extracted based on thermal conductivity, atomic
radius, valence, electron affinity, and atomic mass contribute the most to the model’s
predictive accuracy.

https://doi.org/10.1016/j.commatsci.2018.07.052

16

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2021/ml/examples/04_decision_trees_critical_temp_regression.ipynb
https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data
https://doi.org/10.1016/j.commatsci.2018.07.052

Example 1: Predict critical temperature for superconductivty (Regression
with XGBoost) (2)

import xgboost as xgb

XGBreg = xgb.sklearn.XGBRegressor()

XGBreg.fit(X_train, y_train)

y_pred = XGBreg.predict(X_test)

from sklearn.metrics import mean_squared_error
rms = np.sqrt(mean_squared_error(y_test, y_pred))
print(f"root mean square error {rms:.2f}")

This gives:
root mean square error 9.68

0 20 40 60 80 100 120 140
true critical temperature (K)

0

20

40

60

80

100

120

140

pr
ed

ict
ed

 c
rit

ica
l t

em
pe

ra
tu

re
 (K

)

17

Exercise 1: Compare different decision tree classifiers

04_decision_trees_ex_1_compare_tree_classifiers.ipynb

Compare scikit-learns’s AdaBoostClassifier, RandomForestClassifier, and
GradientBoostingClassifier by plotting their ROC curves for the heart disease data set.

Is there a classifier that clearly performs best?

18

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2021/ml/exercises/04_decision_trees_ex_1_compare_tree_classifiers.ipynb

Exercise 2: Apply XGBoost classifier to MAGIC data set
04_decision_trees_ex_2_magic_xgboost_and_random_forest.ipynb
train XGBoost boosted decision tree
import xgboost as xgb
XGBclassifier = xgb.sklearn.XGBClassifier(nthread=-1, seed=1, n_estimators=1000)

a) Plot predicted probabilities for the test sample for signal and background events
(plt.hist)

b) Which is the most important feature for discriminating signal and background according to
XGBoost? Hint: use plot_impartance from XGBoost (see XGBoost plotting API). Do you
get the same answer for all three performance measures provided by XGBoost (“weight”,
“gain”, or “cover”)?

c) Visualize one decision tree from the ensemble (let’s say tree number 10). For this you need
the the graphviz package (pip3 install graphviz)

d) Compare the performance of XGBoost with the random forest classifier from scikit
learn. Plot signal and background efficiency for both classifiers in one plot. Which classifier
performs better?

19

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2021/ml/exercises/04_decision_trees_ex_2_magic_xgboost_and_random_forest.ipynb
https://xgboost.readthedocs.io/en/latest/python/python_api.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html

Exercise 3: Feature importance

04_decision_trees_ex_3_magic_feature_importance.ipynb

Evaluate the importance of each of the n features in the training of the XGBoost
classifier for the MAGIC data set by dropping one of the features. This gives n different
classifiers. Compare the performance of these classifiers using the AUC score.

20

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2021/ml/exercises/04_decision_trees_ex_3_magic_feature_importance.ipynb

Exercise 4: Interpret a classifier with SHAP values

SHAP (SHapley Additive exPlanations) are a means to explain the output of any
machine learning model. Shapeley values are a concept that is used in cooperative game
theory. They are named after Lloyd Shapley who won the Nobel Prize in Economics in
2012.

Use the Python library SHAP to quantify the feature importance.
a) Study the documentation at

https://shap.readthedocs.io/en/latest/tabular_examples.html

b) Create a summary plot of the feature importance in the MAGIC data set with
shap.summary_plot for the XGBoost classifier of exercise 2. What are the three
most important features?

c) Do the same for the superconductivity data set? What are the three most
important features?

21

https://en.wikipedia.org/wiki/Shapley_value
https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/tabular_examples.html

