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Exercises

• Exercise 1: Air shower classification (MAGIC telescope)
I Logistic regression
I 03_ml_basics_ex01_magic.ipynb

• Exercise 2: Hand-written digit recognition with logistic regression
I Logistic regression
I 03_ml_basics_ex02_mnist_softmax_regression.ipynb

• Exercise 3: Data preprocessing
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https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/exercises/03_ml_basics_ex_1_magic.ipynb
https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/exercises/03_ml_basics_ex_2_mnist_softmax_regression.ipynb


What is machine learning? (1)
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What is machine learning? (2)
“Machine learning is the subfield of computer science that gives computers the ability
to learn without being explicitly programmed” – Wikipedia

Example: spam detection J. Mayes, Machine learning 101

Manual feature engineering vs. automatic feature detection 4

https://docs.google.com/presentation/d/1kSuQyW5DTnkVaZEjGYCkfOxvzCqGEFzWBy4e9Uedd9k/preview?imm_mid=0f9b7e&cmp=em-data-na-na-newsltr_20171213&slide=id.g168a3288f7_0_58


AI, ML, and DL
“AI is the study of how to make computers perform things that, at the moment, people
do better.” Elaine Rich, Artificial intelligence, McGraw-Hill 1983

G. Marcus, E. Davis, Rebooting AI

“deep” in deep learning: artificial neural nets with many neurons and multiple layers of
nonlinear processing units for feature extraction
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Multivariate analysis: An early example from particle physics
• Signal: e+e− → W+W−

I often 4 well separated hadron
jets

• Background: e+e− → qqgg
I 4 less well separated hadron
jets

• Input variables based on jet
structure, event shape, … none
by itself gives much separation.

(Garrido, Juste and Martinez, ALEPH 96-144) 6



Applications of machine learning in physics

• Particle physics: Particle identification / classification
• Astronomy: Galaxy morphology classification
• Chemistry and material science: predict properties of new molecules / materials
• Many-body quantum matter: classification of quantum phases

Machine learning and the physical sciences, arXiv:1903.10563
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https://arxiv.org/abs/1903.10563


Some successes and unsolved problems in AI

M. Woolridge, The road to conscious machines

Impressive progress in certain fields:
• Image recognition
• Speech recognition
• Recommendation systems
• Automated translation
• Analysis of medical data

How can we profit from these developments in
physics?
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The deep learning hype – why now?

Artificial neural networks are around for decades. Why did deep learning take off after
2012?

• Improved hardware – graphical processing units [GPUs]
• Large data sets (e.g. images) distributed via the Internet
• Algorithmic advances
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Different modeling approaches

• Simple mathematical representation like linear regression. Favored by
statisticians.

• Complex deterministic models based on scientific understanding of the physical
process. Favored by physicists.

• Complex algorithms to make predictions that are derived from a huge number of
past examples (“machine learning” as developed in the field of computer science).
These are often black boxes.

• Regression models that claim to reach causal conclusions. Used by economists.
D. Spiegelhalter, The Art of Statistics – Learning from data
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Machine learning: The “hello world” problem

Recognition of handwritten digits
• MNIST database (Modified
National Institute of Standards
and Technology database)

• 60,000 training images and
10,000 testing images labeled
with correct answer

• 28 pixel x 28 pixel
• Algorithms have reached
“near-human performance”

• Smallest error rate (2018): 0.18%

https://en.wikipedia.org/wiki/MNIST_database
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https://en.wikipedia.org/wiki/MNIST_database


Machine learning: Image recognition
ImageNet database

• 14 million images, 22,000 categories
• Since 2010, the annual ImageNet Large Scale Visual Recognition Challenge
(ILSVRC): 1.4 million images, 1000 categories

• In 2017, 29 of 38 competing teams got less than 5% wrong
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ImageNet: Large Scale Visual Recognition Challenge

O. Russakovsky et al, arXiv:1409.0575
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Adversarial attack

Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy, arXiv:1412.6572v1
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https://arxiv.org/abs/1412.6572v1


Types of machine learning
Reinforcement learning

• The machine (“the agent”) predicts a scalar reward
given once in a while

• Weak feedback

LeCun 2018, Power And Limits of Deep Learning

Supervised learning
• The machine predicts a category based on labeled
training data

• Medium feedback

Unsupervised learning
• Describe/find hidden structure from “unlabeled”
data

• Cluster data in different sub-groups with similar
properties
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https://www.youtube.com/watch?v=0tEhw5t6rhc


Books on machine learning (1)

Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning,
free online http://www.deeplearningbook.org/

Kevin Murphy, Probabilistic Machine Learning: An Introduction, draft pdf
version

Aurelien Geron, Hands-On Machine Learning with Scikit-Learn and
TensorFlow

16

http://www.deeplearningbook.org/
https://probml.github.io/pml-book/
https://probml.github.io/pml-book/


Books on machine learning (2)

Francois Chollet, Deep Learning with Python

Martin Erdmann, Jonas Glombitza, Gregor Kasieczka, Uwe Klemradt,
Deep Learning for Physics Research
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Papers

A high-bias, low-variance introduction to Machine Learning for physicists
https://arxiv.org/abs/1803.08823

Machine learning and the physical sciences
https://arxiv.org/abs/1903.10563
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https://arxiv.org/abs/1803.08823
https://arxiv.org/abs/1903.10563


Supervised learning in a nutshell
• Supervised Machine Learning requires labeled training data, i.e., a training
sample where for each event it is known whether it is a signal or background
event.

• Each event is characterized by n observables: x = (x1; x2; :::; xn) ”feature vector”

• Design function y(x ;w) with adjustable parameters w
• Design a loss function
• Find best parameters which minimize loss
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Supervised learning: classification and regression

The codomain Y of the function y: X → Y can be a set of labels or classes or a
continuous domain, e.g., R

• Y = finite set of labels → classification
I binary classification: Y = {0; 1}
I multi-class classification: Y = {c1; c2; :::; cn}

• Y = real numbers → regression

”All the impressive achievements of deep learning amount to just curve fitting”

J. Pearl, Turing Award Winner 2011
To Build Truly Intelligent Machines, Teach Them Cause and Effect, Quantamagazine
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https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/


Classification: Learning decision boundaries
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Supervised learning: Training, validation, and test sample

• Decision boundary fixed with training sample
• Performance on training sample becomes better with more iterations
• Danger of overtraining: Statistical fluctuations of the training sample will be learnt
• Validation sample = independent labeled data set not used for training → check
for overtraining

• Sign of overtraining: performance on validation sample becomes worse → Stop
training when signs of overtraining are observed (early stopping)

• Performance: apply classifier to independent test sample
• Often: test sample = validation sample (only small bias)
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Supervised learning: Cross validation
Rule of thumb if training data not expensive
• Training sample: 50%
• Validation sample: 25%
• Test sample: 25%

Cross validation (efficient use of scarce training
data)
• Split training sample in k independent subset

Tk of the full sample T

• Train on T \ Tk resulting in k different
classifiers

• For each training event there is one classifier
that didn’t use this event for training

• Validation results are then combined

Often test sample = validation
sample (bias is rather small)
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Often used loss functions

Square error loss:
• often used in regression

E(y(x ;w); t) = (y(x ;w)− t)2

Cross entropy:
• t ∈ {0; 1}
• y(x ;w): predicted probability for
outcome t = 1

• often used in classification

E(y(x ;w); t) =− t log y(x ;w)

− (1− t) log(1− y(x ;w))
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More on entropy

• Self-information of an event x : I(x) = − log p(x)
I in units of nats (1 nat = information gained by observing an event of probability 1=e)

• Shannon entropy: H(P ) = −
P

pi log pi
I Expected amount of information in an event drawn from a distribution P

I Measure of the minimum of amount of bits needed on average to encode symbols
drawn from a distribution

• Cross entropy: H(P;Q) = −E[logQ] = −
P

pi log qi
I Can be interpreted as a measure of the amount of bits needed when a wrong
distribution Q is assumed while the data actually follows a distribution P

I Measure of dissimilarity between distributions P and Q (i.e, a measure of how well
the model Q describes the true distribution P)
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Hypothesis testing

test statistic
• a (usually scalar) variable which
is a function of the data alone that
can be used to test hypotheses

• example: ffl2 w.r.t. a theory curve

›B ≡ ¸: “background efficiency”, i.e., prob. to misclassify bckg. as signal
›S ≡ 1− ˛: “signal efficiency”

H0 is true H0 is false (i.e., H1 is true)
H0 is rejected Type I error (¸) Correct decision (1− ˛)
H0 is not rejected Correct decision (1− ¸) Type II error (˛)
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Neyman-Pearson Lemma
The likelihood ratio

t(x) =
f (x |H1)

f (x |H0)

is an optimal test statistic, i.e., it provides highest “signal efficiency” 1− ˛ for a given
“background efficiency” ¸. Accept hypothesis if t(x) > c .

Problem: the underlying pdf’s are almost never known explicitly.

Two approaches
1. Estimate signal and background pdf’s and construct test statistic based on

Neyman-Pearson lemma
2. Decision boundaries determined directly without approximating the pdf’s (linear

discriminants, decision trees, neural networks, …)
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Estimating PDFs from Histograms?

approximate PDF by N(x; y |S) and N(x; y |B)

M bins per variable in d dimensions: Md cells→ hard to generate enough training
data (often not practical for d > 1)
In general in machine learning, problems related to a large number of dimensions of
the feature space are referred to as the ”curse of dimensionality”
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Naïve Bayesian Classifier (also called “Projected Likelihood
Classification”)

Application of the Neyman-Pearson lemma (ignoring correlations between the xi ):

f (x1; x2; :::; xn) approximated as L = f1(x1) · f2(x2) · ::: · fn(xn)

where f1(x1) =

Z
dx2dx3:::dxn f (x1; x2; :::; xn)

f2(x2) =

Z
dx1dx3:::dxn f (x1; x2; :::; xn)

...

Classification of feature vector x :

y(x) =
Ls(x)

Ls(x) + Lb(x)
=

1

1 + Lb(x)=Ls(x)

Performance not optimal if true PDF does not factorize
29



k-Nearest Neighbor Method (1)

k-NN classifier:
• Estimates probability density around the input vector
• p(x |S) and p(x |B) are approximated by the number of signal and background
events in the training sample that lie in a small volume around the point x

Algorithms finds k nearest neighbors:

k = ks + kb

Probability for the event to be of signal type:

ps(x) =
ks(x)

ks(x) + kb(x)
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k-Nearest Neighbor Method (2)

Simplest choice for distance measure in feature
space is the Euclidean distance:

R = |x − y |

Better: take correlations between variables into
account:

R =
q
(x − y)TV −1(x − y)

V = covariance matrix; R = ”Mahalanobis distance”

The k-NN classifier has best performance when the boundary that separates signal
and background events has irregular features that cannot be easily approximated by
parametric learning methods.
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Fisher Linear Discriminant
Linear discriminant is simple. Can still be optimal if amount of training data is limited.
Ansatz for test statistic:

y(x) =
nX

i=1

wixi = w|x

Choose parameters wi so that separation between signal and background distribution
is maximum.
Need to define “separation”.

Fisher: maximize

J(w) =
(fis − fib)

2

Σ2
s +Σ2

b
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Fisher Linear Discriminant: Determining the Coefficients wi

Coefficients are obtained from:

@J

@wi
= 0

Linear decision boundaries

Weight vector w can be interpreted as a direction in
feature space onto which the events are projected.
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Linear regression revisited

”Galton family heights data”:
origin of the term ”regression”

60.0 62.5 65.0 67.5 70.0 72.5 75.0 77.5 80.0
Father's height (inches)
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linear fit
y = x

• data: {xi ; yi}
• objective: predict y = f (x)

• model:
f (x ; „) = mx + b; „ = (m; b)

• loss function:
J(„|x; y) = 1

N

PN
i=1(yi − f (xi ))

2

• model training: optimal parameters
„̂ = argmin J(„)
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Linear regression
• Data: vectors with p components (“features”): x = (x1; :::; xp)

• n observations: {xi ; yi}; i = 1; :::; n

• Prediction for given vector x :

y = w0 + w1x1 + w2x2 + :::+ wpxp ≡ w|x where x0 := 1

• Find weights that minimze loss function:

ŵ = min
w

nX
i=1

(w|xi − yi )
2

• In case of linear regression closed-form solution exists:

ŵ = (X|X)−1X|y where X ∈ Rn×p

• X is called the design matrix, row i of X is xi
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Linear regression with regularization

• Standard loss function

C(w) =
nX

i=1

(w|xi − yi )
2

• Ridge regression

C(w) =
nX

i=1

(w|xi − yi )
2 + –|w |2

• LASSO regression

C(w) =
nX

i=1

(w|xi − yi )
2 + –|w |

w1

w2 w2

w1

ŵ
ŵ

LASSO Ridge

t
t

LASSO regression tends to give sparse solutions
(many components wj = 0). This is why LASSO
regression is also called sparse regression.
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Logistic regression (1)

• Consider binary classification task, e.g., yi ∈ {0; 1}
• Objective: Predict probability for outcome y = 1 given an observation x

• Starting with linear “score”

s = w0 + w1x1 + w2x2 + :::+ wpxp ≡ w|x

• Define function that translates s into a quantity that has the properties of a
probability

ff(s) =
1

1 + e−s

• We would like to determine the optimal weights for a given training data set. They
result from the maximum-likelihood principle.
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Logistic regression (2)
• Consider feature vector x . For a given set of weights w the model predicts

I a probability p(1|w) = ff(w|x) for outcome y = 1

I a probabiltiy p(0|w) = 1− ff(w|x) for outcome y = 0

• The probability p(yi |w) defines the likelihood Li (w) = p(yi |w) (the likelihood is a
function of the parameters w and the observations yi are fixed).

• Likelihood for the full data sample (n observations)

L(w) =
nY

i=1

Li (w) =
nY

i=1

ff(w|x)yi (1− ff(w|x))1−yi

• Maximizing the log-likelihood lnL(w) corresponds to minimizing the loss function

C(w) = − lnL(w) =
nX

i=1

−yi lnff(w
|x)− (1− yi ) ln(1− ff(w|x))

• This is nothing else but the cross-entropy loss function
38



scikit-learn

• Free software machine learning library for Python
• Initial release: 2007
• features various classification, regression and
clustering algorithms including k-nearest neighbors,
multi-layer perceptrons, support vector machines,
random forests, gradient boosting, k-means

• Scikit-learn is one of the most popular machine learning
libraries on GitHub

• https://scikit-learn.org/
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Example 1 - Probability of passing an exam (logistic regression) (1)
Objective: predict the probability that someone passes an exam based on the number
of hours studying

ppass = ff(s) =
1

1 + e−s
; s = w1t + w0; t = # hours

• Data set:
I preparation t time in hours
I passed / not passes (0/1)

• Parameters need to be
determined through
numerical minimization

I w0 = −4:0777

I w1 = 1:5046

03_ml_basics_logistic_regression.ipynb
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https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/examples/03_ml_basics_logistic_regression.ipynb


Example 1 - Probability of passing an exam (logistic regression) (2)
Read data from file:
# data: 1. hours studies, 2. passed (0/1)
df = pd.read_csv(filename, engine='python', sep='\s+')
x_tmp = df['hours_studied'].values
x = np.reshape(x_tmp, (-1, 1))
y = df['passed'].values

Fit the data:
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(penalty='none', fit_intercept=True)
clf.fit(x, y);

Calculate predictions:
hours_studied_tmp = np.linspace(0., 6., 1000)
hours_studied = np.reshape(hours_studied_tmp, (-1, 1))
y_pred = clf.predict_proba(hours_studied)
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Precision and recall

Precision:
Fraction of correctly classified instances
among all instances that obtain a certain
class label.

precision =
TP

TP+ FP
”purity”

Recall:
Fraction of positive instances that are
correctly classified.

recall = TP
TP+ FN

”efficiency”

TP: true positives, FP: false positives, FN: false negatives
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Example 2: Heart disease data set (logistic regression) (1)
Read data:
filename = "https://www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/data/heart.csv"
df = pd.read_csv(filename)
df

03_ml_basics_log_regr_heart_disease.ipynb
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https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/examples/03_ml_basics_log_regr_heart_disease.ipynb


Example 2: Heart disease data set (logistic regression) (2)

Define array of labels and feature vectors
y = df['target'].values
X = df[[col for col in df.columns if col!="target"]]

Generate training and test data sets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test

= train_test_split(X, y, test_size=0.5, shuffle=True)

Fit the model
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(penalty='none',

fit_intercept=True, max_iter=1000, tol=1E-5)
lr.fit(X_train, y_train)
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Example 2: Heart disease data set (logistic regression) (3)

Test predictions on test data set:
from sklearn.metrics import classification_report
y_pred_lr = lr.predict(X_test)
print(classification_report(y_test, y_pred_lr))

Output:

precision recall f1-score support

0 0.75 0.86 0.80 63
1 0.89 0.80 0.84 89

accuracy 0.82 152
macro avg 0.82 0.83 0.82 152

weighted avg 0.83 0.82 0.82 152
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Example 2: Heart disease data set (logistic regression) (4)

Compare to another classifier using the receiver operating characteristic (ROC) curve

Let’s take the random forest classifier
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(max_depth=3)
rf.fit(X_train, y_train)

Use roc_curve from scikit-learn
from sklearn.metrics import roc_curve

y_pred_prob_lr = lr.predict_proba(X_test) # predicted probabilities
fpr_lr, tpr_lr, _ = roc_curve(y_test, y_pred_prob_lr[:,1])

y_pred_prob_rf = rf.predict_proba(X_test) # predicted probabilities
fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_prob_rf[:,1])
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Example 2: Heart disease data set (logistic regression) (5)

plt.plot(tpr_lr, 1-fpr_lr, label="log. regression")
plt.plot(tpr_rf, 1-fpr_rf, label="random forest")

Classifiers can be compared with the area
under curve (AUC) score.
from sklearn.metrics import roc_auc_score
auc_lr = roc_auc_score(y_test,y_pred_lr)
auc_rf = roc_auc_score(y_test,y_pred_rf)
print(f"AUC scores: {auc_lr:.2f}, {auc_knn:.2f}")

This gives
AUC scores: 0.82, 0.83
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Multinomial logistic regression: Softmax function

In the previous example we considered two classes (0, 1). For multi-class
classification, the logistic function can generalized to the softmax function.

Now consider k classes and let si be the score for class i : s = (s1; :::; sk)

A probability for class i can be predicted with the softmax function:

ff(s)i =
esiPk
j=1 e

sj
for i = 1; :::; k

The softmax functions is often used as the last activation function of a neural network
in order to predict probabilities in a classification task.

Multinomial logistic regression is also known as softmax regression.
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Example 3: Iris data set (softmax regression) (1)
Iris flower data set

• Introduced 1936 in a paper by Ronald Fisher
• Task: classify flowers
• Three species: iris setosa, iris virginica and iris versicolor
• Four features: petal width and length, sepal width/length, in centimeters

03_ml_basics_iris_softmax_regression.ipynb

https://archive.ics.uci.edu/ml/datasets/Iris

https://en.wikipedia.org/wiki/Iris_flower_data_set
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https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/examples/03_ml_basics_iris_softmax_regression.ipynb
https://archive.ics.uci.edu/ml/datasets/Iris
https://en.wikipedia.org/wiki/Iris_flower_data_set


Example 3: Iris data set (softmax regression) (2)

Get data set
# import some data to play with
# columns: Sepal Length, Sepal Width, Petal Length and Petal Width
iris = datasets.load_iris()
X = iris.data
y = iris.target

# split data into training and test data sets
x_train, x_test, y_train, y_test =

train_test_split(X, y, test_size=0.5, random_state=42)

Softmax regression
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression(multi_class='multinomial', penalty='none')
log_reg.fit(x_train, y_train);
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Example 3 : Iris data set (softmax regression) (3)
Accuracy and confusion matrix for different classifiers
for clf in [log_reg, kn_neigh, fisher_ld]:

y_pred = clf.predict(x_test)
acc = accuracy_score(y_test, y_pred)
print(type(clf).__name__)
print(f"accuracy: {acc:0.2f}")

# confusion matrix:
# columns: true class, row: predicted class
print(confusion_matrix(y_test, y_pred),"\n")

LogisticRegression
accuracy: 0.96
[[29 0 0]
[ 0 23 0]
[ 0 3 20]]

KNeighborsClassifier
accuracy: 0.95
[[29 0 0]
[ 0 23 0]
[ 0 4 19]]

LinearDiscriminantAnalysis
accuracy: 0.99
[[29 0 0]
[ 0 23 0]
[ 0 1 22]]
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General remarks on multi-variate analyses (MVAs)
• MVA Methods

I More effective than classic cut-based analyses
I Take correlations of input variables into account

• Important: find good input variables for MVA methods
I Good separation power between S and B
I No strong correlation among variables
I No correlation with the parameters you try to measure in your signal sample!

• Pre-processing
I Apply obvious variable transformations and let MVA method do the rest
I Make use of obvious symmetries: if e.g. a particle production process is symmetric
in polar angle „ use | cos „| and not cos „ as input variable

I It is generally useful to bring all input variables to a similar numerical range
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Example of feature transformation
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Exercise 1: Classification of air showers measured with the MAGIC
telescope

• Cosmic gamma rays (30 GeV - 30 TeV).
• Cherenkov light from air showers
• Background: air showers caused by
hadrons.
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Exercise 1: Classification of air showers measured with the MAGIC
telescope

Gamma shower Hadronic shower
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Exercise 1: Classification of air showers measured with the MAGIC
telescope
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Exercise 1: Classification of air showers measured with the MAGIC
telescope

MAGIC data set
https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope

1. fLength: continuous # major axis of ellipse [mm]
2. fWidth: continuous # minor axis of ellipse [mm]
3. fSize: continuous # 10-log of sum of content of all pixels [in #phot]
4. fConc: continuous # ratio of sum of two highest pixels over fSize [ratio]
5. fConc1: continuous # ratio of highest pixel over fSize [ratio]
6. fAsym: continuous # dist. from highest pixel to center, proj. onto major axis [mm]
7. fM3Long: continuous # 3rd root of third moment along major axis [mm]
8. fM3Trans: continuous # 3rd root of third moment along minor axis [mm]
9. fAlpha: continuous # angle of major axis with vector to origin [deg]
10. fDist: continuous # distance from origin to center of ellipse [mm]
11. class: g,h # gamma (signal), hadron (background)

g = gamma (signal): 12332
h = hadron (background): 6688

For technical reasons, the number of h events is underestimated.
In the real data, the h class represents the majority of the events.
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Exercise 1: Classification of air showers measured with the MAGIC
telescope

03_ml_basics_ex_1_magic.ipynb
a) Create for each variable a figure with a plot for gammas and hadrons overlayed.
b) Create training and test data set. The test data should amount to 50% of the total

data set.
c) Define the logistic regressor and fit the training data
d) Determine the model accuracy and the AUC score
e) Plot the ROC curve (background rejection vs signal efficiency)
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https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/exercises/03_ml_basics_ex_1_magic.ipynb


Exercise 2: Hand-written digit recognition with logistic regression
03_ml_basics_ex_2_mnist_softmax_regression.ipynb
a) Define logistic regressor from scikit-learn and fit data
b) Use classification_report from scikit-learn to determine precision and

recall
c) Read in a hand-written digit and classify it. Print the probabilities for each digit.

Determine the digit with the highest probability.
d) (Optional) Create you own hand-written digit with a program like gimp and check

what the classifier does

Hint: You can install required packages on the jupyter hub server like so:
!pip3 install --user pypng
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https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/exercises/03_ml_basics_ex_2_mnist_softmax_regression.ipynb


Exercise 3: Data preprocessing

a) Read the description of the sklearn.preprocessing package.
b) Start from the example notebook on the logistic regression for the heart disease

data set (03_ml_basics_log_regr_heart_disease.ipynb). Pre-process the heart
disease data set according to the given example. Does preprocessing make a
difference in this case?
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https://scikit-learn.org/stable/modules/preprocessing.html
https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/examples/03_ml_basics_log_regr_heart_disease.ipynb

