
Introduction to Data Analysis and Machine Learning in Physics:
2. Data modeling and fitting

Day 1: 11. April 2022

Martino Borsato, Jörg Marks, Klaus Reygers

1



Data modeling and fitting - introduction
Data analysis is a process of understanding and modeling measured data. The goal is to
find patterns and to obtain inferences allowing to observe underlying patterns.

• There are 2 approaches to statistical data modeling
I Hypothesis testing: is our data compatible with a certain model?
I Determination of model parameter: use the data to determine the parameters of a

(theoretical) model
• For the determination of model parameter

I Analysis of data distributions → mean, variance, median, FWHM, . . . .
allows for an approximate determination of model parameter

I Data fitting with the least square method → an iterative process which minimizes the
deviation of a model decribed by parameters from data. This determines the optimal
values and uncertainties of the parameters.

I Maximum likelihood fitting → find a set of model parameters which most likely
describe the data by maximizing the probability distributions.

The parameter determination by minimization is an integral part of machine learning
approaches, here a system learns patterns and predicts related ones. This is the focus in
the upcoming days. 2



Data modeling and fitting - introduction
Data analysis is a process of understanding and modeling measured data. The goal is to
find patterns and to obtain inferences allowing to observe underlying patterns.

• There are 2 approaches to statistical data modeling
I Hypothesis testing: is our data compatible with a certain model?
I Determination of model parameter: use the data to determine the parameters of a

(theoretical) model
• For the determination of model parameter

I Analysis of data distributions → mean, variance, median, FWHM, . . . .
allows for an approximate determination of model parameter

I Data fitting with the least square method → an iterative process which minimizes the
deviation of a model decribed by parameters from data. This determines the optimal
values and uncertainties of the parameters.

I Maximum likelihood fitting → find a set of model parameters which most likely
describe the data by maximizing the probability distributions.

The parameter determination by minimization is an integral part of machine learning
approaches, here a system learns patterns and predicts related ones. This is the focus in
the upcoming days. 3



Least Square (LS) Method (1)

The method determines the optimal parameters of functions to gaussian distributed
measurements.
Lets consider a sample of n measurements yi and a parametrized description of the
measurement ηi = f (xi |θ) with a parameter set θ = θ1, θ2, ....θk , dependent values xi
and measurement errors σi .
The parameter set should be determined such that

S =
n∑

i=1

(yi − ηi)2

σ2
i

=
n∑

i=1

(yi − f (xi |θ))2

σ2
i

−→ minimal

In case of correlated measurements the covariance matrix of the yi has to be taken into
account. This is accomplished by defining a weight matrix from the covariance matrix of
the input data. A decorrelation of the input data should be considered.

S follows a χ2-distribution with (n − k) degrees of freedom.

4



Least Square (LS) Method (2)
� Example LS-method

Often the fit function f (x , θ) is linear in θ = θ1, θ2, ....θk

f (x |θ) = θ1f1(x) + ....+ θk fk(x)

If the model is a straight line and our parameters are θ1 and θ2 (f1(x) = 1,
f2(x) = x) we have f (x |θ) = θ1 + θ2x

The LS equation is

S =
n∑

i=1

(yi −ηi )2

σ2
i

=
n∑

i=1

(yi −θ1−xiθ2)2

σ2
i

and with

∂S
∂θ1

=
n∑

i=1

−2(yi −θ1−xiθ2)
σ2

i
= 0 and ∂S

∂θ2
=

n∑
i=1

−2xi (yi −θ1−xiθ2)
σ2

i
= 0

the parameters θ1 and θ2 can be determined.

In case of linear fit functions solutions can be found by matrix inversion

5



Least Square (LS) Method (3)
� Use of a nonlinear fit function f (x , θ) like f (x |θ) = θ1 · e−θ2x

results in the LS equation

S =
n∑

i=1

(yi −ηi )2

σ2
i

=
n∑

i=1

(yi −θ1·e−θ2xi )2

σ2
i

which we have to minimize
∂S
∂θ1

=
n∑

i=1

2e−2θ2xi (θ1−yi eθ2xi )
σ2

i
= 0 and ∂S

∂θ2
=

n∑
i=1

2θ1xIe−2θ2xi (yi eθ2xi −θ1)
σ2

i
= 0

In a nonlinear system, the LS Ansatz leads to derivatives which are functions of the
independent variable and the parameters → no closed solutions

In general, we have gradient equations which don’t have closed solutions. There are
a couple of methods including approximations which allow together with numerical
methods to find a global minimum, Gauss–Newton algorithm, Levenberg–Marquardt
algorithm, gradient descend methods and also direct search methods.

6



Minuit - a programm package for minimization (1)
In general data fitting and also solving machine learning algorithms lead to a
minimization problem of functions. In the 1975-1980 F. James (CERN) developed a
FORTRAN-based package, MINUIT, which is a framework to handle multiparameter
minimization and compute the best-fit parameter values and uncertainties, including
correlations between the parameters.

The user provides a minimization function F (X ,P) with the parameter space
P = (p1, ....pk) and variable space X (also multi-dimensional). There is an interface via
functions which influences the minimization process. MINUIT provides error calculations
including correlations for the parameter space by evaluating the shape of the function in
some neighbourhood of the minimum.

The package has now a new object-oriented implementation as Minuit2 library , written
in C++.

During the minimization F (X ,P) is evaluated for various X . For the choice of
P = (p1, ....pk) different methods are used

7

http://seal.web.cern.ch/seal/documents/minuit/mntutorial.pdf
http://seal.web.cern.ch/seal/documents/minuit/mnerror.pdf
https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html


Minuit - a programm package for minimization (2)

SEEK: Search for the minimum with Monte Carlo methods, mostly used at the start of
the minimization with unknown starting values. It is not a converging algorithm.

SIMPLX: Uses the simplex method of Nelder and Mead. Function values are compared
in the parameter space. Via step size control the minimum is approached. Parameter
errors are only approximate, no covariance matrix is calculated.

MIGRAD: Uses an algorithm of R. Fletcher, which takes the function and the gradient
to approach the minimum with a variable metric method. An error matrix and
correlation coefficients are available

HESSE: Calculates the hessian matrix of second derivatives and determines the
covariance matrix.

MINOS: Calculates (asymmetric) errors using likelihood profiles. The algorithm for
finding the positive and negative MINOS errors for parameter n consists of varying n
each time minimizing F (X ,P) with respect to all the others.

8



Minuit - a programm package for minimization (3)

Fit process with the minuit package

� The individual steps decribed above can be called several times and in different
order during the minimization process.

� Each of the parameters pi of P = (p1, ....pk) can be set constant and released
during the minimization steps.

� Problems are expected in models with strong correlation between parameters →
change model to uncorrelated definitions

� Local minima, edges/steps or undefined ranges in F (X ,P) are problematic →
simplify your model

9



Minuit2 - The iminuit package

iminuit is a Jupyter-friendly Python interface for the Minuit2 C++ library.

� The class iminuit.Minuit instanciates the minuit object. The minimizer function
is given as argument. Basic steering of the fit like setting start parameters, error
definition and print level is also done here.
from iminuit import Minuit
def fcn(x, y, z): # definition of the minimizer function

return (x - 2) ** 2 + (y - x) ** 2 + (z - 4) ** 2
fcn.errordef = Minuit.LEAST_SQUARES # for Minuit to compute errors correctly
m = Minuit(fcn, x=0, y=0, z=0) # instanciate minuit, set start values

� Several methods determine the interaction with the fitting process, calls to migrad,
hesse or printing of parameters and errors
......
m.migrad() # run optimiser
print(m.values , m.errors) # print results
m.hesse() # run covariance estimator

10

https://iminuit.readthedocs.io/en/stable/


Minuit2 - iminuit example
� The function fcn describes the model with parameters to be determined by data.

fcn is minimal when the model parameters agree best with data. fcn has
positional arguments, one for each fit parameter. iminuit example fit:
02_fit_exp_fit_iMinuit.ipynb
......
x = np.array([....],dtype='d') # measurements x
y = np.array([....],dtype='d') # measurements y
dy = np.array([....],dtype='d') # error in y
def xp(a, b , c):

return a * np.exp(b*x) + c
# least-squares function = sum of data residuals squared
def fcn(a,b,c):

return np.sum((y - xp(a,b,c)) ** 2 / dy ** 2)
# limit the range of b and fix parameter c
m = Minuit(fcn,a=1,b=-0.7,c=1,limit_b=(-1,0.1),fix_c=True)
m.migrad() # run minimizer
m.fixed["c"] = False # release parameter c
m.migrad() # rerun minimizer

� Might be useful to fix parameters or limit the range for some applications
11

https://www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/examples/02_fit_exp_fit_iMinuit.ipynb


Minuit2 - iminuit (3)
� Results and control information of the fit can be printed and accessed in the the
prorgamm.
......
m = Minuit(fcn,....,print_level=1) # set flag in the initializer
m.migrad() # run minimizer
a_fit = m.values['a'] # get parameter value a
a_fit_error = m.errors['a'] # get parameter error of a
print (m.values,m.errors) # print results

� After processing Hesse, covariance and correlation information of the fit is available
......
m.hesse() # run covariance estimator
m.matrix() # get covariance matrix
m.matrix(correlation=True) # get full correlation matrix
cov = m.np_matrix() # save matrix to numpy
cor = m.np_matrix(correlation=True)
print(cor[0, 1]) # print correlation between parameter 1 and 2

12



Minuit2 - iminuit (4)
� Minos provides asymmetric uncertainty intervals and parameter contours by
scanning one parameter and minimizing the function with respect to all other
parameters for each scan point. Results are displayed with matplotlib.
......
m.minos()
print (m.get_merrors()['a'])
m.draw_profile('b')
m.draw_mncontour('a', 'b', nsigma=4)

13



Exercise 3

Plot the following data with matplotlib as in the iminuit example:

x: 0.2,0.4,0.6,0.8,1.,1.2,1.4,1.6,1.8,2.,2.2,2.4,2.6,2.8,3.,3.2,
3.4,3.6, 3.8,4.

y: 0.04,0.021,0.035,0.03,0.029,0.019,0.024,0.018,0.019,0.022,0.02,
0.025,0.018,0.024,0.019,0.021,0.03,0.019,0.03,0.024

dy: 1.792,1.695,1.541,1.514,1.427,1.399,1.388,1.270,1.262,1.228,1.189,
1.182,1.121,1.129,1.124,1.089,1.092,1.084,1.058,1.057

� Exchange in the example iminuit fit 02_fit_exp_fit_iMinuit.ipynb the
exponential function by a 3rd order polynomial and perform the fit

� Compare the correlation of the parameters of the exponential and the polynomial fit
� What defines the fit quality, give an estimate

Solution: 02_fit_ex_3_sol.ipynb

14

https://www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/solutions/02_fit_ex_3_sol.ipynb


Exercise 4

Plot the following data with matplotlib:

x: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
dx: 0.1,0.1,0.5,0.1,0.5,0.1,0.5,0.1,0.5,0.1
y: 1.1,2.3,2.7,3.2,3.1,2.4,1.7,1.5,1.5,1.7
dy: 0.15,0.22,0.29,0.39,0.31,0.21,0.13,0.15,0.19,0.13

� Perform a fit with iminuit. Which model do you use?
� Plot the resulting fit function in the graph with the data
� Print the covariance matrix. Can we improve the errors.
� Can you draw a contour plot of 2 of the fit parameters.

Solution: 02_fit_ex_4_sol.ipynb

15

https://www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/solutions/02_fit_ex_4_sol.ipynb


PyROOT
PyROOT is the python binding for the C++ data analysis toolkit ROOT developed with
and for the LHC community. You can access the full ROOT functionality from Python
while benefiting from the performance of the ROOT C++ libraries. The PyROOT
bindings are automatic and dynamic and are able to interoperate with widely-used
Python data-science libraries as NumPy, pandas, SciPy scikit-learn and
tensorflow.

• ROOT/PyROOT can be installed easily within anaconda3 (ROOT version 6.22.02
or later ) or is available in the CIP jupyter2 Hub

• Tools for statistical analysis, a math library with optimized algorithms, multivariate
analysis, visualization and simulation of data.

• Storing data including objects and classes with compression in files is a very
powerfull aspect for any data analysis project

• Within PyROOT Minuit2 can be accessed easily either with predefined functions or
your own function definition

• For advanced statistical analyses and data modeling likelihood fitting with the
packages rooFit and rooStats is available.

16

https://root.cern/manual/python/
https://root.cern/
https://jupyter2.kip.uni-heidelberg.de/


• Example reading the invariant mass measurements of a D0 from a text file and
determine µ and σ 02_fit_histFit.ipynb run with: python3 -i 02_fit_histFit.py

import numpy as np
import math
from ROOT import TCanvas, TFile, TH1D, TF1, TMinuit, TFitResult
data = np.genfromtxt('D0Mass.txt', dtype='d') # read data from text file
c = TCanvas('c','D0 Mass',200,10,700,500) # instanciate output canvas
d0 = TH1D('d0','D0 Mass',200,1700.,2000.) # instanciate histogramm
for x in data : # fill data into histogramm d0

d0.Fill(x)
def pyf_tf1_params(x, p): # define fit function

return p[0] * math.exp (-0.5 * ((x[0] - p[1])**2 / p[2]**2))
func = TF1("func",pyf_tf1_params,1840.,1880.,3)
# func = TF1("func",'gaus',1840.,1880.) # use predefined function
func.SetParameters(500.,1860.,5.5) # set start parameters
myfit = d0.Fit(func,"S") # fit function to the histogramm data
print ("Fit results: mean=",myfit.Parameter(0)," +/- ",myfit.ParError(0))
c.Draw() # draw canvas
myfile = TFile('myOutFile.root','RECREATE') # Open a ROOT file for output
c.Write() # Write canvas
d0.Write() # Write histogram
myfile.Close() # close file 17

https://www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/examples/02_fit_histFit.ipynb


• Fit Options

18



Exercise 5

Read text file FitTestData.txt and draw a histogramm using PyROOT.

� Determine the mean and sigma of the signal distribution. Which function do you
use for fitting?

� The option S fills the result object.
� Try to improve the errors of the fit values with minos using the option E and also

try the option M to scan for a new minimum, option V provides more output.
� Fit the background outside the signal region use the option R+ to add the function

to your fit
Solution: 02_fit_ex_5_sol.ipynb

19

https://www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/exercises/FitTestData.txt
https://www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/solutions/02_fit_ex_5_sol.ipynb


iPython Examples for Fitting

The different python packages are used in example iPython notebooks to demonstrate
the fitting of a third order polynomial to the same data available as numpy arrays.

� LSQ fit of a polynomial to data using Minuit2 with iminuit and matplotlib plot:
02_fit_iminuitFit.ipynb

� Graph fitting with pyROOT with options using a python function including
confidence level plot:
02_fit_fitGraph.ipynb

� Graph fitting with numpy and confidence level plotting with matplotlib:
02_fit_numpyFit.ipynb

� Graph fitting with a polynomial fit of scikit-learn and plotting with matplotlib:
02_fit_scikitFit.ipynb

20

https://www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/examples/02_fit_iminuitFit.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/examples/02_fit_fitGraph.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/examples/02_fit_numpyFit.ipynb
https://www.physi.uni-heidelberg.de/~reygers/lectures/2022/ml/examples/02_fit_scikitFit.ipynb

