
Statistical Methods in Particle Physics 

Selected topics 5:  
Symbolic Regression 

Klaus Reygers

Heidelberg University, WS 2021/22 

Klaus Reygers (lectures) 
Rainer Stamen, Martin Völkl (tutorials)



Statistical Methods in Particle Physics WS 2021/22 | A. Selected topics: 5. Symbolic regression

An early example of symbolic regression: Kepler's laws

■ Johannes Kepler got access to Tycho 
Brahe's accurate data tables on planetary 
orbits 

■ Like many philosophers of his era, Kepler 
had a mystical belief that the circle was the 
Universe’s perfect shape 

■ After many failed attempts to describe the 
data, Kepler discovered that the orbit of 
Mars was an ellipse
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Essence of the scientific method: extracting (simple) physical laws from observation

https://earthobservatory.nasa.gov/features/OrbitsHistory/page2.php
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Another example: the Rydberg formula
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Wavelength of spectral lines of the hydrogen atom:

Empirical formula that was guessed by Rydberg. An understanding of the formula came later.
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Symbolic regression (SR)

■ Simultaneously search for  
‣ optimal functional form and  
‣ optimal parameters to describe a dataset 

■ Comparison to Machine Learning 
‣ ML:  
- Predictive, but hard to interpret ("black box") 

‣ SR:  
- Parsimonious and yet predictive  
- Ideally gives interpretable result 
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SR is a relatively small field:  
number of publications nSR < 0.02 nML

Yiqun Wang, Nicholas Wagner, James M. Rondinell,i 
Symbolic regression in materials science, 
https://doi.org/10.1557/mrc.2019.85
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Genetic Programming (GP)
■ In genetic programming one evolves a population of computer programs 
■ GP: developed by John Koza as a specific implementation of genetic algorithms (GAs)  
■ Basic algorithm
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Genetic operations: 

Crossover:  
The creation of a child program 
by combining randomly chosen 
parts from two selected parent 
programs.  

Mutation:  
The creation of a new child 
program by randomly altering a 
randomly chosen part of a 
selected parent program.  

A Field Guide to Genetic Programming, http://www.gp-field-guide.org.uk/
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Genetic Programming (GP)

■ Evolutionary algorithm → heuristic approach to 
find good programs in a vast search space 

■ A number of real-life applications 
■ Price for "human-competitive results" at the 

Genetic and Evolutionary Computation 
Conference (GECCO) 
‣ "An Evolved Antenna for Deployment on NASA’s 

Space Technology 5 Mission  
‣ "Automatic Quantum Computer Programming"  
‣ "Mate-In-N Problem in Chess"
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Antenna for NASA's Space Technology 5 Mission  
designed by an GP algorithm 

John R. Koza, 
Human-competitive results produced by genetic 
programming, 
Genet Program Evolvable Mach (2010) 11:251–284 A Field Guide to Genetic Programming, http://www.gp-field-guide.org.uk/
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Tree representation of mathematical expressions

■ Symbolic regression:  
one of the earliest applications of GP 

■ Program = mathematical expression 
■ Easy to apply mutation and cross-over in 

tree representation 
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2 + x2

Point mutation:
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Mutation

8

Yiqun Wang, Nicholas Wagner, James M. Rondinelli 
https://doi.org/10.1557/mrc.2019.85

mutation
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Crossover
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parent 1 parent 2

crossover

Yiqun Wang, Nicholas Wagner, James M. Rondinelli 
https://doi.org/10.1557/mrc.2019.85
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Pareto front
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W. La Cava, K. Danai, L. Spector, P. Fleming, A. 
Wright, and M. Lackner:  
Automatic identification of wind turbine models using 
evolutionary multi-objective optimization.  
Renew. Energy 87, 892–902 (2016) 

VAF = variance 
accounted for 

For each function complexity there is an 
optimum solution. These optimum 
solutions form a set, the Pareto front. 

In general, there is a trade-off between 
model complexity and the accuracy of 
the prediction 

Selecting a relatively simple function 
avoids over-fitting"p
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Challenges of symbolic regression using genetic programming 

■ A highly complex problem 
‣ functions = string or tree of symbols → number of strings/trees grows exponentially with length  
‣ symbolic regression probably a NP-hard problem 

■ Not obvious that genetic algorithms are better than brute-force searches 
■ Non-deterministic optimization (heuristic approach) 
‣ Descendent generations can perform worse than their parents 
‣ No guarantee to find a useful expression  

■ Preservation of good components of the equation 
‣ Good equation components do not guarantee high fitness of the full expression 

■ No effective way to find numerical values for constants in standard GPSR 
■ Bloat = program growth without (significant) return in terms of fitness

11
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Some symbolic regression tools/libraries
■ PySR 
‣ https://github.com/MilesCranmer/PySR 
‣ “the goal of this package is to have an open-

source symbolic regression tool as efficient as 
eureqa, while also exposing a configurable python 
interface.” 

■ gplearn 
‣ scikit-learn inspired and compatible API 
‣ https://gplearn.readthedocs.io/en/stable/ 

■ DEAP 
‣ https://deap.readthedocs.io/en/master/examples/

gp_symbreg.html 
■ FFX: Fast Function Extraction 
‣ https://github.com/natekupp/ffx 
‣ Fast, scalable, deterministic 
‣ Cannot handle error bars
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■ Mathematica 
‣ FindFormula 
‣ Cannot handle error bars 

■ Eureqa 
‣ https://www.nutonian.com 
‣ Comercial 
‣ Free version of available upon request for non-

profit academic research (?)  
‣ Used in "The first analytical expression to estimate 

photometric redshifts suggested by a 
machine" (arXiv:1308.4145) 

■ HeuristicLab 
‣ https://dev.heuristiclab.com 
‣ Only Windows

http://geneticprogramming.com/software/

https://github.com/MilesCranmer/PySR
https://gplearn.readthedocs.io/en/stable/
https://deap.readthedocs.io/en/master/examples/gp_symbreg.html
https://deap.readthedocs.io/en/master/examples/gp_symbreg.html
https://www.nutonian.com
https://dev.heuristiclab.com
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Example from physics: Double Pendulum
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Michael Schmidt; Hod Lipson (2009), 
"Distilling free-form natural laws from 
experimental data",  
Science. 324 (5923): 81–85

Code now commercially available as "Eureqa" 

Non-trivial conservation law found through GPSR
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An example from particle physics
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PIXEL BASED MASS ESTIMATOR 99

particles (section 4.1.2) a mass can be estimated by combination with an
independent momentum measurement.

m = p/(bg) (7.6)

The Bethe-Bloch formula describes this relationship for various materials,
but due to the complexity of the ATLAS detector it is impractical to analyti-
cally estimate the relation. Instead it is possible to find a parametrisation by
fitting low momentum Standard Model data where protons, kaons and pions
give distinct bands for momenta lower than 1 GeV/c.

In 2011 the default track reconstruction skipped tracks with momenta be-
low 1 GeV/c, requiring custom performance data files for this study. To
illustrate the method I have performed the fit on simulated events. The input
is SUSY t̃ with varying masses2. 2 t̃s are excellent particles for this study as

they behave like heavy muons, whereas R-
Hadrons would add complexity due to fluctu-
ating charge and hadronic interactions.Selection The input data has been selected by requiring an inner detector

reconstructed track, at least two hits in the pixel detector, zero shared pixel
clusters between tracks, isolation from tracks and jets

p
Dh2 + Df 2 > 0.3.

In order to estimate the bg value all tracks are matched to ‘truth’ information
from the event generation step.

Each track matching the above criteria is saved in a 2D histogram with the
following geometry: x-axis: 500 bins between 0.1 and 10 bg , y-axis: 500
bins between 0 and 20 dE/dx.

To estimate the mean dE/dx value as a function of bg the 2D histogram
is sliced by projecting along the y-axis. Each slice is fitted with a Gaussian
function and the resulting mean value with statistical errors saved in a 1D
histogram. The standard variation for each Gaussian fit is also saved in a
separate histogram.

Parametrisation The histogram with mean values are then fitted with Eu-
reqa. The figure below shows the input 2D histogram as well as the (black)
dots from the slice fits. The red and blue lines are the currently best and
second best fit function respectively.

Size: Fitness: Equation:

15 0.0135497 dE/dx(bg) = (1.175/bg + bg �0.231)/(0.080 + 0.892bg)
14 0.0138698 dE/dx(bg) = 1.184 +(1.376�0.554bg)/bg1.785

19 0.0135428 dE/dx(bg) = (bg1.006 + 1.180/bg �0.211)/(0.079 + 0.905bg)
13 0.0142499 dE/dx(bg) = 1.102 + 0.906bg�0.290bg�1.947

11 0.0147863 dE/dx(bg) = 1.072 + 1.156(0.099 + bg)�2.385
9 0.0210256 dE/dx(bg) = 1.057 +(0.030 + bg)�2.132

8 0.0257238 dE/dx(bg) = 1.040 + 0.970/bg2

7 0.0276055 dE/dx(bg) = 1.027 + bg�1.968
6 0.163132 dE/dx(bg) = exp(0.763/bg)
4 0.427812 dE/dx(bg) = 2.508/bg
1 1.01597 dE/dx(bg) = 1.535

Table 7.4: Results from fitting dE/dx =
f (bg). Execution time: 8 hours on 40 cores,
283063 generations, 1011 evaluations

⌧
dE
dx

�
(bg) =

bg + 1.1751
bg �0.2306

0.8924 bg + 0.0797
(7.7)

)
⌧

dE
dx

�
(bg) =

a + b bg +(bg)2

bg (c + d bg)
(7.8)

■ Search for exotic long-lived particles with 
ATLAS  

■ Goal: parameterize dE/dx vs. βγ including  
detector effects for a hypothetical particle 

■ Result using Eureqa:

Joergensen, Morten Dam,  
Exotic Long-Lived Particles 
CERN-THESIS-2014-021
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An further example from particle physics
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■ Custom GPSR code (python)  
■ Can handle error bars  
■ Fitness evaluation: Numerical constants 

optimized by standard fitting (Levenberg‐
Marquardt or Minuit)

David Korbany,  
Symbolic Regression in Heavy-
Ion Physics, Bachelorarbeit, 2019

Similar in structure to well-known form

Result:
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Finding partial differential 
equations (PDE) from data

16

4

PDE Form Error (no noise, noise) Discretization

KdV ut + 6uux + uxxx = 0 1%±0.2%, 7%±5% x2[�30, 30], n=512, t2[0, 20],m=201

Burgers ut + uux � ✏uxx = 0 0.15%±0.06%, 0.8%±0.6% x2[�8, 8], n=256, t2[0, 10],m=101

Schrödinger iut + 1
2uxx � x2

2 u = 0 0.25%±0.01%, 10%±7% x2[�7.5, 7.5], n=512, t2[0, 10],m=401

NLS iut + 1
2uxx + |u|2u = 0 0.05%±0.01%, 3%±1% x2[�5, 5], n=512, t2[0,⇡],m=501

KS ut + uux + uxx + uxxxx = 0 1.3%±1.3%, 70%±27% x2[0, 100], n=1024, t2[0, 100],m=251

u Reaction ut = 0.1r2u+ �(A)u� !(A)v
Di↵usion vt = 0.1r2v + !(A)u+ �(A)v 0.02%± 0.01%, 3.8%± 2.4% x, y2[�10, 10], n=256, t2[0, 10],m=201

v A2=u2+v2,!=��A2,�=1�A2 subsample 1.14%

Navier Stokes !t + (u ·r)! = 1
Rer

2! 1%± 0.2% , 7%± 6% x2[0, 9], nx=449, y2[0, 4], ny=199,
t2[0, 30],m=151, subsample 2.22%

TABLE I: Summary of regression results for a wide range of canonical modes of mathematical physics. In each example, the
correct model structure is identified using PDE-FIND. The spatial and temporal sampling used for the regression is given along
with the error produced in the parameters of the model for both no noise and 1% noise. In the reaction-di↵usion (RD) system,
0.5% noise is used. For Navier Stokes and Reaction Di↵usion, the percent of data used in subsampling is also given.

the broad applicability of the method and the success of
the technique in discovering governing PDEs.

PDE-FIND is a viable, data-driven tool for modern
applications where first-principles derivations may be
intractable (e.g. neuroscience, epidemiology, dynami-
cal networks), but where new data recordings and sen-
sor technologies are revolutionizing our understanding of
physical and/or biophysical processes on spatial domains.
To our knowledge, this is the first data-driven regression
technique that explicitly accounts for spatial derivatives
in discovering physical laws, thus allowing for a regres-
sion to an operator on an infinite-dimensional space. The
ability to discover physical laws instead of approximate,

low-dimensional subspaces enables significantly improved
future state predictions as well as the discovery of para-
metric dependencies. For instance, we can discover the
Navier Stokes equation at Re = 100 and use this knowl-
edge to accurately simulate a fully turbulent system at
Re = 10000 where no data was collected. This repre-
sents a significant paradigm shift when compared with
most data-driven, machine learning architectures where
accurate predictions can only be made near parameter
regimes where the data was sampled.

Code and supplementary material:
https://github.com/snagcli↵s/PDE-FIND
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■ In addition to searching for a function  
y = f(x1, …, xn) one can search for the 
PDE governing a physical system 

■ Rudy et al., Sci. Adv. 2017: 
‣ Deterministic SR algorithm 
‣ Terms of the governing PDE taken from a 

large library of potential candidate functions 
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Mathematica: FindFormula

■ Sometimes gives desired result 
■ Could show many rather simple examples 

where is does not 
■ User cannot define loss function or error bars 
■ Not clear how FindFormula works
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In[51]:= data = Table[{x, N[x Sin[x]]}, {x, 0, 8, .4}];

In[52]:= p1 = ListPlot[data]

Out[52]=
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In[53]:= f = FindFormula[data, x]

Out[53]= x Sin[x]

In[57]:= p2 = Plot[f, {x, 0.01, 8.}, PlotStyle → Red];

In[58]:= Show[p1, p2]

Out[58]=
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FindFormula: Mauna Loa CO2 concentration data

18

��������� data = Import[NotebookDirectory[] <> "co2_up_to_1970.txt", "Data"];

��������� p1 = ListPlot[data]

	
�������

1960 1962 1964 1966 1968

314
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318

320

322

324

326

��������� Export[NotebookDirectory[] <> "co2_data.pdf", p1]

	
������� /Users/reygers/uni/Vorlesungen/Advanved
Analysis Methods WS-2019-20 /mathematica/co2_data.pdf

�����
��� f = FindFormula[data, x, 3, SpecificityGoal � 2]

	
����
�� {-1145.7 + 0.745995 x + 2.38897 Sin[6.2 x],
-1149.47 + 0.747925 x, -1149.44 + 0.747925 x}

��������� g = FindFormula[data, x, 3, SpecificityGoal � 4]

	
������� �-1140.64 + 0.743427 x + 2.32643 Sin[6.2 x],
-1184.54 + 0.765759 Abs[x] + 0.746585 Cos�x �-0.0246137 + Cot[x]�� -

0.00747384 Csc[x], -1184.54 + 0.765759 Abs[x] +

0.746585 Cos�x �-0.0246137 + Cot[Abs[x]]�� - 0.00747384 Csc[x]�

��������� p2 = Plot[g[[1]], {x, 1958., 2000.}, PlotStyle � Red];

��������� Show[p1, p2]

	
�������
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326

��������� Export[NotebookDirectory[] <> "co2_data_and_fit.pdf", p2]

	
������� /Users/reygers/uni/Vorlesungen/Advanved Analysis
Methods WS-2019-20 /mathematica/co2_data_and_fit.pdf

��������� data = Import[NotebookDirectory[] <> "co2_up_to_1970.txt", "Data"];

��������� p1 = ListPlot[data]

	
�������

1960 1962 1964 1966 1968

314

316

318

320

322

324

326

��������� Export[NotebookDirectory[] <> "co2_data.pdf", p1]

	
������� /Users/reygers/uni/Vorlesungen/Advanved
Analysis Methods WS-2019-20 /mathematica/co2_data.pdf

�����
��� f = FindFormula[data, x, 3, SpecificityGoal � 2]

	
����
�� {-1145.7 + 0.745995 x + 2.38897 Sin[6.2 x],
-1149.47 + 0.747925 x, -1149.44 + 0.747925 x}

��������� g = FindFormula[data, x, 3, SpecificityGoal � 4]

	
������� �-1140.64 + 0.743427 x + 2.32643 Sin[6.2 x],
-1184.54 + 0.765759 Abs[x] + 0.746585 Cos�x �-0.0246137 + Cot[x]�� -

0.00747384 Csc[x], -1184.54 + 0.765759 Abs[x] +

0.746585 Cos�x �-0.0246137 + Cot[Abs[x]]�� - 0.00747384 Csc[x]�

��������� p2 = Plot[g[[1]], {x, 1958., 2000.}, PlotStyle � Red];

��������� Show[p1, p2]

	
�������

1960 1962 1964 1966 1968

314

316

318

320

322

324

326

��������� Export[NotebookDirectory[] <> "co2_data_and_fit.pdf", p2]

	
������� /Users/reygers/uni/Vorlesungen/Advanved Analysis
Methods WS-2019-20 /mathematica/co2_data_and_fit.pdf

SpecificityGoal: 
controls complexity of the fit function

Mauna Loa C02 data: https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_co2.html
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gplearn example (1)

19

# define data 
npoints = 100 
x = np.linspace(0.01, 10, npoints) 
y_smooth = 1 - np.exp(-x/2) 

# smear data points (10% relative error) 
mean, std = 0., 1. 
s = np.random.normal(mean, std, npoints) 
y_err = 0.1 * y_smooth * np.ones(npoints)  
y = y_smooth + y_err * s

# define loss function 
def _chi2(y, y_pred, w): 
    """Calculate relative difference""" 
    pulls = w * (y - y_pred) / y  
    return np.sum(pulls * pulls) 

chi2 = make_fitness(_chi2, greater_is_better=False)

func_set = ('add', 'sub', 'mul', 'div', 'neg', pexp) 

est_gp = SymbolicRegressor(population_size=500,  
                           generations=30, 
                           metric=chi2, 
                           const_range=(0.0, 1.0), 
                           init_depth = (2,4), 
                           stopping_criteria=0.01,  
                           p_crossover=0.05, 
                           p_subtree_mutation=0.05,  
                           p_hoist_mutation=0.05, 
                           p_point_mutation=0.3,  
                           parsimony_coefficient=1,  
                           random_state=0, 
                           function_set=func_set, 
                           verbose=1)



Statistical Methods in Particle Physics WS 2021/22 | A. Selected topics: 5. Symbolic regression

gplearn example (2)

20

X_train = x.reshape(-1,1) 
y_train = y 
est_gp.fit(X_train, y_train)

print(est_gp._program)

add(neg(exp(neg(mul(0.498, X0)))), div(X0, X0))

dot_data = est_gp._program.export_graphviz() 
graph = graphviz.Source(dot_data) 
graph

Nice, but requires  a lot of tuning of hyper parameters …
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PySR

21

import numpy as np
from pysr import pysr, best

# Dataset
x = np.arange(0., 8., 0.4)
y = x * np.sin(x)

# Learn equations
equations = pysr(
    x,
    y,
    niterations=5,
    binary_operators=["+", "*"],
    unary_operators=[
        "cos",
        "exp",
        “sin",

"inv(x) = 1/x", # Define your own operator!)
    ]
)

print(best(equations))

Hall of Fame:
-----------------------------------------
Complexity  Loss       Score     Equation
1           9.902e+00  -0.000e+00  0.07158296
2           6.582e+00  4.084e-01  sin(x0)
4           2.005e-13  1.556e+01  (x0 * sin(x0))

==============================
Press 'q' and then <enter> to stop execution early.
x0*sin(x0)

PySR
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AI Feynman: a Physics-Inspired Method for Symbolic Regression
■ Additional search heuristics 
‣ Dimensional analysis 
‣ Symmetry 
- check for translational, rotational or scaling symmetry of 

the function  
‣ Compositionality 
- function f is a composition of a small set of elementary 

functions, each typically taking no more than two 
arguments  

■ Equations from Feynman lectures 
‣ Eureqa: discovered 68% 
‣ AI Feynman algorithm: 100% 

■ Impressive? Not obvious how much prejudice was 
put into the algorithm by knowing the answer

22

A =
Z1Z2αℏc

4E sin2( θ
2 )

2

U =
E

1 + E
mc2 (1 − cos θ)

A =
πα2ℏ2

m2c2
(
ω0

ω
)2[ ω0

ω
+

ω
ω0

− sin2 θ]

Examples of formulas found by AI 
Feynman, but not by Eureqa

Rutherford

Compton scattering

Klein-Nishina formula 

arXiv:1905.11481
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A recent paper: 
Deep Symbolic Regression for Recurrent Sequences

23

arXiv:2201.04600

Algorithms tries to figure out rules 
underlying a sequence of numbers.

Example: sum of squares 

1. 12 = 1 
2. 12 + 22 = 5 
3. 12 + 22 + 32 = 14 
4. 12 + 22 + 32 + 42 = 30 
5. 12 + 22 + 32 + 42 + 52 = 55 
6. 12 + 22 + 32 + 42 + 52 + 62 = 91

http://recur-env.eba-rm3fchmn.us-east-2.elasticbeanstalk.com/

http://recur-env.eba-rm3fchmn.us-east-2.elasticbeanstalk.com/
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Summary: Genetic programming-based symbolic regression

■ Provides (in some cases) relatively simple and interpretable parameterization of data 

■ Heuristic search: no guarantee that a useful result is found 

■ Ultimate goal: automated discovery of physical laws

24

"We look forward to the day when, for the first time in the history of physics, a 
computer, just like Kepler, discovers a useful and hitherto unknown physics formula 
through symbolic regression!"

From arXiv:1905.11481:
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