Statistical Methods in Particle Physics

Selected topics 5: Symbolic Regression

Klaus Reygers

Heidelberg University, WS 2021/22

Klaus Reygers (lectures) Rainer Stamen, Martin Völkl (tutorials)

An early example of symbolic regression: Kepler's laws

- Johannes Kepler got access to Tycho Brahe's accurate data tables on planetary orbits
- Like many philosophers of his era, Kepler had a mystical belief that the circle was the Universe's perfect shape
- After many failed attempts to describe the data, Kepler discovered that the orbit of Mars was an ellipse

Essence of the scientific method: extracting (simple) physical laws from observation

https://earthobservatory.nasa.gov/features/OrbitsHistory/page2.php

Another example: the Rydberg formula

Wavelength of spectral lines of the hydrogen atom:

Empirical formula that was guessed by Rydberg. An understanding of the formula came later.

$$\operatorname{I}\left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)$$

Symbolic regression (SR)

Simultaneously search for

- optimal functional form and
- optimal parameters to describe a dataset
- Comparison to Machine Learning
 - ML:
 - Predictive, but hard to interpret ("black box")
 - SR:
 - Parsimonious and yet predictive
 - Ideally gives interpretable result

SR is a relatively small field: number of publications $n_{\rm SR} < 0.02 n_{\rm ML}$

Yiqun Wang, Nicholas Wagner, James M. Rondinell, i Symbolic regression in materials science, https://doi.org/10.1557/mrc.2019.85

Statistical Methods in Particle Physics WS 2021/22 | A. Selected topics: 5. Symbolic regression

Genetic Programming (GP)

- In genetic programming one evolves a population of computer programs
- GP: developed by John Koza as a specific implementation of genetic algorithms (GAs)
- Basic algorithm

A Field Guide to Genetic Programming, http://www.gp-field-guide.org.uk/

- 1: Randomly create an *initial population* of programs from the available primitives (more on this in Section 2.2).
- 2: repeat
- *Execute* each program and ascertain its fitness. 3:
- Select one or two program(s) from the population with a probability 4: based on fitness to participate in genetic operations (Section 2.3).
- Create new individual program(s) by applying genetic operations with 5:specified probabilities (Section 2.4).
- 6: until an acceptable solution is found or some other stopping condition is met (e.g., a maximum number of generations is reached).
- 7: **return** the best-so-far individual.

Algorithm 1.1: Genetic Programming

Genetic operations:

Crossover:

The creation of a child program by combining randomly chosen parts from two selected parent programs.

Mutation:

The creation of a new child program by randomly altering a randomly chosen part of a selected parent program.

Genetic Programming (GP)

- Evolutionary algorithm \rightarrow heuristic approach to find good programs in a vast search space
- A number of real-life applications
- Price for "human-competitive results" at the Genetic and Evolutionary Computation Conference (GECCO)
 - "An Evolved Antenna for Deployment on NASA's Space Technology 5 Mission
 - "Automatic Quantum Computer Programming"
 - "Mate-In-N Problem in Chess"

John R. Koza, Human-competitive results produced by genetic programming, Genet Program Evolvable Mach (2010) 11:251–284

Antenna for NASA's Space Technology 5 Mission designed by an GP algorithm

A Field Guide to Genetic Programming, http://www.gp-field-guide.org.uk/

Tree representation of mathematical expressions

- Symbolic regression: one of the earliest applications of GP
- Program = mathematical expression
- Easy to apply mutation and cross-over in tree representation

Point mutation:

Mutation

Yiqun Wang, Nicholas Wagner, James M. Rondinelli https://doi.org/10.1557/mrc.2019.85

Crossover

Yiqun Wang, Nicholas Wagner, James M. Rondinelli https://doi.org/10.1557/mrc.2019.85

Pareto front

In general, there is a trade-off between model complexity and the accuracy of the prediction

Selecting a relatively simple function avoids over-fitting

W. La Cava, K. Danai, L. Spector, P. Fleming, A.
Wright, and M. Lackner: *Automatic identification of wind turbine models using evolutionary multi-objective optimization*.
Renew. Energy 87, 892–902 (2016)

Statistical Methods in Particle Physics WS 2021/22 | A. Selected topics: 5. Symbolic regression

Challenges of symbolic regression using genetic programming

A highly complex problem

- functions = string or tree of symbols \rightarrow number of strings/trees grows exponentially with length symbolic regression probably a NP-hard problem
- Not obvious that genetic algorithms are better than brute-force searches
- Non-deterministic optimization (heuristic approach)
 - Descendent generations can perform worse than their parents
 - No guarantee to find a useful expression
- Preservation of good components of the equation
 - Good equation components do not guarantee high fitness of the full expression
- No effective way to find numerical values for constants in standard GPSR
- Bloat = program growth without (significant) return in terms of fitness

Some symbolic regression tools/libraries

PySR

- https://github.com/MilesCranmer/PySR
- "the goal of this package is to have an opensource symbolic regression tool as efficient as eureqa, while also exposing a configurable python interface."

gplearn

- scikit-learn inspired and compatible API
- https://gplearn.readthedocs.io/en/stable/

DEAP

- https://deap.readthedocs.io/en/master/examples/ <u>gp</u> symbreg.html
- FFX: Fast Function Extraction
 - https://github.com/natekupp/ffx
 - Fast, scalable, deterministic
 - Cannot handle error bars

Mathematica

- FindFormula
- Cannot handle error bars
- Eureqa
 - https://www.nutonian.com
 - Comercial
 - Free version of available upon request for nonprofit academic research (?)
 - Used in "The first analytical expression to estimate" photometric redshifts suggested by a machine" (arXiv:1308.4145)
- HeuristicLab
 - https://dev.heuristiclab.com
 - Only Windows

Example from physics: Double Pendulum

Non-trivial conservation law found through GPSR

Fig. 1. Mining physical systems. We captured the angles and angular velocities of a chaotic double-pendulum (**A**) over time using motion tracking (**B**), then we automatically searched for equations that describe a single natural law relating

Code now commercially available as "Eureqa"

Michael Schmidt; Hod Lipson (2009), "Distilling free-form natural laws from experimental data", Science. 324 (5923): 81–85

ties these variables. Without any prior knowledge about physics or geometry, the algorithm found the conservation law (**C**), which turns out to be the double pendulum's Hamiltonian. Actual pendulum, data, and results are shown.

Statistical Methods in Particle Physics WS 2021/22 | A. Selected topics: 5. Symbolic regression

An example from particle physics

- Search for exotic long-lived particles with ATLAS
- Goal: parameterize dE/dx vs. $\beta\gamma$ including detector effects for a hypothetical particle
- Result using Eureqa:

$$\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle (\beta\gamma) = \frac{\beta\gamma + \frac{1.1751}{\beta\gamma} - 0.2306}{0.8924 \beta\gamma + 0.0797}$$
$$\Rightarrow \left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle (\beta\gamma) = \frac{a + b \beta\gamma + (\beta\gamma)^2}{\beta\gamma (c + d \beta\gamma)}$$

Joergensen, Morten Dam, Exotic Long-Lived Particles CERN-THESIS-2014-021

	Size:	Fitness:	Equation:
_	15	0.0135497	$dE/dx(\beta\gamma) = (1.175/\beta\gamma + \beta\gamma - 0.231)/(0.080 + 0.892\beta\gamma)$
	14	0.0138698	$dE/dx(\beta\gamma) = 1.184 + (1.376 - 0.554\beta\gamma)/\beta\gamma^{1.785}$
	19	0.0135428	$dE/dx(\beta\gamma) = (\beta\gamma^{1.006} + 1.180/\beta\gamma - 0.211)/(0.079 + 0.903)$
	13	0.0142499	$dE/dx(\beta\gamma) = 1.102 + 0.906\beta\gamma^{-0.290\beta\gamma-1.947}$
	11	0.0147863	$dE/dx(\beta\gamma) = 1.072 + 1.156(0.099 + \beta\gamma)^{-2.385}$
	9	0.0210256	$dE/dx(\beta\gamma) = 1.057 + (0.030 + \beta\gamma)^{-2.132}$
	8	0.0257238	$dE/dx(\beta\gamma) = 1.040 + 0.970/\beta\gamma^2$
	7	0.0276055	$dE/dx(\beta\gamma) = 1.027 + \beta\gamma^{-}1.968$
	6	0.163132	$dE/dx(\beta\gamma) = \exp(0.763/\beta\gamma)$
	4	0.427812	$dE/dx(\beta\gamma) = 2.508/\beta\gamma$
	1	1.01597	$\mathrm{d}E/\mathrm{d}x(\beta\gamma) = 1.535$

Statistical Methods in Particle Physics WS 2021/22 | A. Selected topics: 5. Symbolic regression

An further example from particle physics

David Korbany, *Symbolic Regression in Heavy-Ion Physics, Bachelorarbeit, 2019*

- Custom GPSR code (python)
- Can handle error bars
- Fitness evaluation: Numerical constants optimized by standard fitting (Levenberg-Marquardt or Minuit)

Function Set:	add, mul, exp, $x \mapsto x^{-1}, x \mapsto x^k$
Terminal Set:	x_0, c_0
Initial Population:	ramped half-and-half, depth = $random(3,4,5)$, sizelimit
Algorithm:	age_fitness with default settings ³

Result: $c_0 c_1^{k_1} p_T^{-k_0} \left(1 + \frac{p_T^2}{c_1} \right)^{k_1}$

Similar in structure to well-known form

$$f(p_{\rm T}) = C_0 \frac{p_{\rm T}}{(1 + (p_{\rm T}/p_0)^2)^n}$$

Statistical Methods in Particle Physics WS 2021/22 | A. Selected topics: 5. Symbolic regression

Finding partial differential equations (PDE) from data

- In addition to searching for a function $y = f(x_1, ..., x_n)$ one can search for the PDE governing a physical system
- Rudy et al., Sci. Adv. 2017:
 - Deterministic SR algorithm
 - Terms of the governing PDE taken from a large library of potential candidate functions

Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, J. Nathan Kutz, *Data-driven discovery of partial differential equations*, arXiv:1609.06401, Sci. Adv. 2017

PDE	Form
KdV	$u_t + 6uu_x + u_{xxx} = 0$
Burgers	$u_t + uu_x - \epsilon u_{xx} = 0$
Schrödinger	$iu_t + \frac{1}{2}u_{xx} - \frac{x^2}{2}u = 0$
NLS	$\left iu_t + \frac{1}{2}u_{xx} + u ^2 u = 0 \right $
KS	$u_t + uu_x + u_{xx} + u_{xxxx} = 0$
$v_{\frac{1}{2}}$ Reaction Diffusion	$\begin{vmatrix} u_t = 0.1\nabla^2 u + \lambda(A)u - \omega(A) \\ v_t = 0.1\nabla^2 v + \omega(A)u + \lambda(A) \\ A^2 = u^2 + v^2, \omega = -\beta A^2, \lambda = 1 - 1 \end{vmatrix}$
Navier Stokes	$\omega_t + (\mathbf{u} \cdot \nabla)\omega = \frac{1}{Re} \nabla^2 \omega$

Mathematica: FindFormula

- Sometimes gives desired result
- Could show many rather simple examples where is does not
- User cannot define loss function or error bars
- Not clear how FindFormula works

FindFormula: Mauna Loa CO₂ concentration data

Mauna Loa CO2 data: https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_co2.html

SpecificityGoal: controls complexity of the fit function

 $In[114]:= f = FindFormula[data, x, 3, SpecificityGoal \rightarrow 2]$

Out[114]= $\{-1145.7 + 0.745995 x + 2.38897 Sin[6.2 x],$ -1149.47 + 0.747925 x, -1149.44 + 0.747925 x

 $\ln[115] = g = FindFormula[data, x, 3, SpecificityGoal \rightarrow 4]$

Out[115]= $\{-1140.64 + 0.743427 \times + 2.32643 \text{ Sin}[6.2 \times], \}$

-1184.54 + 0.765759 Abs[x] + 0.746585 Cos[x (-0.0246137 + Cot[x])] -

 $0.00747384 \operatorname{Csc}[x], -1184.54 + 0.765759 \operatorname{Abs}[x] +$

 $0.746585 \cos[x(-0.0246137 + Cot[Abs[x]])] - 0.00747384 Csc[x]]$

gplearn example (1)

define loss function def __chi2(y, y_pred, w): """Calculate relative difference""" pulls = $w * (y - y_pred) / y$ return np.sum(pulls * pulls) chi2 = make_fitness(_chi2, greater_is_better=False) func_set = ('add', 'sub', 'mul', 'div', 'neg', pexp) $est_gp = SymbolicRegressor(population_size=500)$ generations=30, metric=chi2, $const_range=(0.0, 1.0),$ $init_depth = (2,4),$ stopping_criteria=0.01, $p_crossover=0.05$, p_subtree_mutation=0.05, p_hoist_mutation=0.05, $p_point_mutation=0.3$, parsimony_coefficient=1, random_state=0, function_set=func_set, verbose=1)

gplearn example (2)

$X_train = x_reshape(-1,1)$ $y_train = y$ est_gp.fit(X_train, y_train)

	Populati	on Average	Best Individual		
Gen	Length	Fitness	Length	Fitness	C
0	11.54	4.55051e+16	12	9.92597	
1	11.44	2.36876e+07	12	9.92597	
2	10.96	3.94285e+07	12	9.92597	
3	11.39	3.68436e+07	12	9.92597	
4	9.24	2.59533e+07	11	4.18918	
5	9.00	3.98642e+07	11	4.18918	
6	9.94	2.22681e+07	11	0.81926	
7	10.84	2.12555e+07	11	0.707691	

print(est_gp._program)

add(neg(exp(neg(mul(0.498, X0)))), div(X0, X0))

dot_data = est_gp._program.export_graphviz() graph = graphviz.Source(dot_data) graph

Nice, but requires a lot of tuning of hyper parameters ...


```
import numpy as np
from pysr import pysr, best
# Dataset
x = np.arange(0., 8., 0.4)
y = x * np.sin(x)
# Learn equations
equations = pysr(
    Х,
    у,
    niterations=5,
    binary_operators=["+", "*"],
    unary_operators=[
        "cos",
        "exp",
        "sin",
       ''(x) = 1/x'', # Define your own operator!)
```

print(best(equations))

Hall of Fame: Complexity Loss Score Equation 9.902e+00 -0.000e+00 0.07158296 2 6.582e+00 4.084e-01 sin(x0) 2.005e-13 1.556e+01 (x0 * sin(x0)) 4

Press 'q' and then <enter> to stop execution early. x0*sin(x0)

Al Feynman: a Physics-Inspired Method for Symbolic Regression

Additional search heuristics

- Dimensional analysis
- Symmetry
 - check for translational, rotational or scaling symmetry of the function
- Compositionality
 - function f is a composition of a small set of elementary functions, each typically taking no more than two arguments
- Equations from Feynman lectures
 - Eureqa: discovered 68%
 - Al Feynman algorithm: 100%
- Impressive? Not obvious how much prejudice put into the algorithm by knowing the answer

arXiv:1905.11481

Examples of formulas found by AI Feynman, but not by Eureqa

Rutherford *A* =

$$= \left(\frac{Z_1 Z_2 \alpha \hbar c}{4E \sin^2(\frac{\theta}{2})}\right)^2$$

Compton scattering

$$U = \frac{E}{1 + \frac{E}{mc^2}(1 - \cos\theta)}$$

Klein-Nishina formula

Was
$$A = \frac{\pi \alpha^2 \hbar^2}{m^2 c^2} (\frac{\omega_0}{\omega})^2 \left[\frac{\omega_0}{\omega} + \frac{\omega}{\omega_0} - s \right]$$

A recent paper: **Deep Symbolic Regression for Recurrent Sequences**

Algorithms tries to figure out rules underlying a sequence of numbers.

Example: sum of squares

http://recur-env.eba-rm3fchmn.us-east-2.elasticbeanstalk.com/

+

Predicting a recurrence relation

The user is asked to feed a sequence of numbers to a Transformer, whose aim is to predict the recurrence relation and the following terms. For example, given the numbers [1, 1, 2, 3, 5, 8, 13], the model recognizes the Fibonacci sequence.

Input type

- User input
- **OEIS** sequence
- Integer sequence from random generator
- Float sequence from random generator

Please enter a sequence of numbers separated by commas (can be integers or floats)

1, 5, 14, 30, 55, 91

Model parameters

Predicted expression:

$$u_n=n^2+u_{n-1}$$
 avg. error : 0.00%

Predicted next terms:

140, 204, 285, 385, 506

Summary: Genetic programming-based symbolic regression

- Provides (in some cases) relatively simple and interpretable parameterization of data
- Heuristic search: no guarantee that a useful result is found
- Ultimate goal: automated discovery of physical laws

From arXiv:1905.11481:

"We look forward to the day when, for the first time in the history of physics, a computer, just like Kepler, discovers a useful and hitherto unknown physics formula through symbolic regression!"

References

- Regression, arXiv:1905.1148
- MRS Communications (2019), 9, 793–805
- David Korbany, <u>Symbolic Regression in Heavy-Ion Physics</u>, Bachelorarbeit, 2019
- Michael Kommenda, Local Optimization and Complexity Control for Symbolic Regression, doctoral thesis, 2018

Silviu-Marian Udrescu, Max Tegmark, Al Feynman: a Physics-Inspired Method for Symbolic

Yiqun Wang, Nicholas Wagner, James M. Rondinelli, Symbolic regression in materials science,

